autogluon.timeseries 1.1.1b20240516__tar.gz → 1.1.1b20240518__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (63) hide show
  1. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/chronos/model.py +16 -15
  3. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/chronos/pipeline.py +1 -1
  4. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/predictor.py +22 -3
  5. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/trainer/abstract_trainer.py +4 -0
  6. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/version.py +1 -1
  7. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  8. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/requires.txt +3 -3
  9. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/setup.cfg +0 -0
  10. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/setup.py +0 -0
  11. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/__init__.py +0 -0
  12. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/configs/__init__.py +0 -0
  13. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  14. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  15. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  16. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/evaluator.py +0 -0
  17. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/learner.py +0 -0
  18. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  19. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  20. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/metrics/point.py +0 -0
  21. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  22. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/metrics/utils.py +0 -0
  23. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/__init__.py +0 -0
  24. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  25. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  26. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  27. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  28. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  29. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  30. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  31. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/chronos/utils.py +0 -0
  32. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  33. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  34. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  35. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  36. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  37. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  38. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  39. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  40. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  41. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/local/naive.py +0 -0
  42. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/local/npts.py +0 -0
  43. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  44. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  45. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  46. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/models/presets.py +0 -0
  47. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/splitter.py +0 -0
  48. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  49. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  50. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/__init__.py +0 -0
  51. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  52. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  53. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  54. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  55. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  56. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/features.py +0 -0
  57. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/forecast.py +0 -0
  58. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  59. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  60. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  61. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  62. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  63. {autogluon.timeseries-1.1.1b20240516 → autogluon.timeseries-1.1.1b20240518}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.1b20240516
3
+ Version: 1.1.1b20240518
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -16,27 +16,27 @@ logger = logging.getLogger(__name__)
16
16
 
17
17
  # allowed HuggingFace model paths with custom parameter definitions
18
18
  MODEL_CONFIGS = {
19
- "amazon/chronos-t5-tiny": {
19
+ "chronos-t5-tiny": {
20
20
  "num_gpus": 0, # minimum number of required GPUs
21
21
  "default_torch_dtype": "auto",
22
22
  "default_batch_size": 16,
23
23
  },
24
- "amazon/chronos-t5-mini": {
24
+ "chronos-t5-mini": {
25
25
  "num_gpus": 0,
26
26
  "default_torch_dtype": "auto",
27
27
  "default_batch_size": 16,
28
28
  },
29
- "amazon/chronos-t5-small": {
29
+ "chronos-t5-small": {
30
30
  "num_gpus": 1,
31
31
  "default_torch_dtype": "bfloat16",
32
32
  "default_batch_size": 16,
33
33
  },
34
- "amazon/chronos-t5-base": {
34
+ "chronos-t5-base": {
35
35
  "num_gpus": 1,
36
36
  "default_torch_dtype": "bfloat16",
37
37
  "default_batch_size": 16,
38
38
  },
39
- "amazon/chronos-t5-large": {
39
+ "chronos-t5-large": {
40
40
  "num_gpus": 1,
41
41
  "default_torch_dtype": "bfloat16",
42
42
  "default_batch_size": 8,
@@ -45,11 +45,11 @@ MODEL_CONFIGS = {
45
45
 
46
46
 
47
47
  MODEL_ALIASES = {
48
- "tiny": "amazon/chronos-t5-tiny",
49
- "mini": "amazon/chronos-t5-mini",
50
- "small": "amazon/chronos-t5-small",
51
- "base": "amazon/chronos-t5-base",
52
- "large": "amazon/chronos-t5-large",
48
+ "tiny": "autogluon/chronos-t5-tiny",
49
+ "mini": "autogluon/chronos-t5-mini",
50
+ "small": "autogluon/chronos-t5-small",
51
+ "base": "autogluon/chronos-t5-base",
52
+ "large": "autogluon/chronos-t5-large",
53
53
  }
54
54
 
55
55
 
@@ -75,10 +75,10 @@ class ChronosModel(AbstractTimeSeriesModel):
75
75
 
76
76
  Other Parameters
77
77
  ----------------
78
- model_path: str, default = "amazon/chronos-t5-small"
78
+ model_path: str, default = "autogluon/chronos-t5-small"
79
79
  Model path used for the model, i.e., a HuggingFace transformers ``name_or_path``. Can be a
80
80
  compatible model name on HuggingFace Hub or a local path to a model directory. Original
81
- Chronos models (i.e., ``amazon/chronos-t5-{model_size}``) can be specified with aliases
81
+ Chronos models (i.e., ``autogluon/chronos-t5-{model_size}``) can be specified with aliases
82
82
  ``tiny``, ``mini`` , ``small``, ``base``, and ``large``.
83
83
  batch_size : int, default = 16
84
84
  Size of batches used during inference
@@ -106,7 +106,7 @@ class ChronosModel(AbstractTimeSeriesModel):
106
106
 
107
107
  # default number of samples for prediction
108
108
  default_num_samples: int = 20
109
- default_model_path = "amazon/chronos-t5-small"
109
+ default_model_path = "autogluon/chronos-t5-small"
110
110
  maximum_context_length = 512
111
111
 
112
112
  def __init__(
@@ -185,9 +185,10 @@ class ChronosModel(AbstractTimeSeriesModel):
185
185
  @property
186
186
  def ag_default_config(self) -> Dict[str, Any]:
187
187
  """The default configuration of the model used by AutoGluon if the model is one of those
188
- defined in MODEL_CONFIGS. For now, these are ``amazon/chronos-t5-*`` family of models.
188
+ defined in MODEL_CONFIGS. For now, these are ``autogluon/chronos-t5-*`` family of models.
189
189
  """
190
- return MODEL_CONFIGS.get(self.model_path, {})
190
+ model_name = str(self.model_path).split("/")[-1]
191
+ return MODEL_CONFIGS.get(model_name, {})
191
192
 
192
193
  @property
193
194
  def min_num_gpus(self) -> int:
@@ -163,7 +163,7 @@ class MeanScaleUniformBins(ChronosTokenizer):
163
163
  def output_transform(self, samples: torch.Tensor, scale: torch.Tensor) -> torch.Tensor:
164
164
  scale_unsqueezed = scale.unsqueeze(-1).unsqueeze(-1)
165
165
  indices = torch.clamp(
166
- samples - self.config.n_special_tokens,
166
+ samples - self.config.n_special_tokens - 1,
167
167
  min=0,
168
168
  max=len(self.centers) - 1,
169
169
  )
@@ -146,7 +146,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
146
146
  """
147
147
 
148
148
  predictor_file_name = "predictor.pkl"
149
- _predictor_version_file_name = "__version__"
149
+ _predictor_version_file_name = "version.txt"
150
150
  _predictor_log_file_name = "predictor_log.txt"
151
151
 
152
152
  def __init__(
@@ -1041,8 +1041,27 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1041
1041
 
1042
1042
  @classmethod
1043
1043
  def _load_version_file(cls, path: str) -> str:
1044
+ """
1045
+ Loads the version file that is part of the saved predictor artifact.
1046
+
1047
+ Parameters
1048
+ ----------
1049
+ path: str
1050
+ The path that would be used to load the predictor via `predictor.load(path)`
1051
+
1052
+ Returns
1053
+ -------
1054
+ The version of AutoGluon used to fit the predictor, as a string.
1055
+
1056
+ """
1044
1057
  version_file_path = os.path.join(path, cls._predictor_version_file_name)
1045
- version = load_str.load(path=version_file_path)
1058
+ try:
1059
+ version = load_str.load(path=version_file_path)
1060
+ except:
1061
+ # Loads the old version file used in `autogluon.timeseries<=1.1.0`, named `__version__`.
1062
+ # This file name was changed because Kaggle does not allow uploading files named `__version__`.
1063
+ version_file_path = os.path.join(path, "__version__")
1064
+ version = load_str.load(path=version_file_path)
1046
1065
  return version
1047
1066
 
1048
1067
  @classmethod
@@ -1077,7 +1096,7 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1077
1096
  except:
1078
1097
  logger.warning(
1079
1098
  f'WARNING: Could not find version file at "{os.path.join(path, cls._predictor_version_file_name)}".\n'
1080
- f"This means that the predictor was fit in a version `<=0.7.0`."
1099
+ f"This means that the predictor was fit in an AutoGluon version `<=0.7.0`."
1081
1100
  )
1082
1101
  version_saved = "Unknown (Likely <=0.7.0)"
1083
1102
 
@@ -292,6 +292,10 @@ class AbstractTimeSeriesTrainer(SimpleAbstractTrainer):
292
292
  self.cache_predictions = cache_predictions
293
293
  self.hpo_results = {}
294
294
 
295
+ if self._cached_predictions_path.exists():
296
+ logger.debug(f"Removing existing cached predictions file {self._cached_predictions_path}")
297
+ self._cached_predictions_path.unlink()
298
+
295
299
  def save_train_data(self, data: TimeSeriesDataFrame, verbose: bool = True) -> None:
296
300
  path = os.path.join(self.path_data, "train.pkl")
297
301
  save_pkl.save(path=path, object=data, verbose=verbose)
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.1b20240516'
2
+ __version__ = '1.1.1b20240518'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.1b20240516
3
+ Version: 1.1.1b20240518
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -15,9 +15,9 @@ utilsforecast<0.0.11,>=0.0.10
15
15
  tqdm<5,>=4.38
16
16
  orjson~=3.9
17
17
  tensorboard<3,>=2.9
18
- autogluon.core[raytune]==1.1.1b20240516
19
- autogluon.common==1.1.1b20240516
20
- autogluon.tabular[catboost,lightgbm,xgboost]==1.1.1b20240516
18
+ autogluon.core[raytune]==1.1.1b20240518
19
+ autogluon.common==1.1.1b20240518
20
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.1.1b20240518
21
21
 
22
22
  [all]
23
23
  optimum[onnxruntime]<1.19,>=1.17