autogluon.timeseries 1.1.0b20240413__tar.gz → 1.1.0b20240415__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (63) hide show
  1. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/setup.py +0 -1
  3. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/predictor.py +11 -1
  4. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/warning_filters.py +1 -3
  5. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/version.py +1 -1
  6. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  7. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/requires.txt +3 -4
  8. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/setup.cfg +0 -0
  9. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/__init__.py +0 -0
  10. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/configs/__init__.py +0 -0
  11. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  12. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  13. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  14. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/evaluator.py +0 -0
  15. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/learner.py +0 -0
  16. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  17. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  18. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/metrics/point.py +0 -0
  19. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  20. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/metrics/utils.py +0 -0
  21. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/__init__.py +0 -0
  22. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  23. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  24. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  25. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  26. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  27. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  28. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  29. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/chronos/model.py +0 -0
  30. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/chronos/pipeline.py +0 -0
  31. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/chronos/utils.py +0 -0
  32. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  33. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  34. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  35. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  36. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  37. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  38. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  39. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  40. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  41. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/local/naive.py +0 -0
  42. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/local/npts.py +0 -0
  43. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  44. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  45. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  46. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/models/presets.py +0 -0
  47. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/splitter.py +0 -0
  48. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  49. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/trainer/abstract_trainer.py +0 -0
  50. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  51. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/__init__.py +0 -0
  52. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  53. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  54. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  55. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  56. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  57. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/features.py +0 -0
  58. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon/timeseries/utils/forecast.py +0 -0
  59. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  60. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  61. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  62. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  63. {autogluon.timeseries-1.1.0b20240413 → autogluon.timeseries-1.1.0b20240415}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.0b20240413
3
+ Version: 1.1.0b20240415
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -30,7 +30,6 @@ install_requires = [
30
30
  "pytorch_lightning", # version range defined in `core/_setup_utils.py`
31
31
  "transformers[sentencepiece]", # version range defined in `core/_setup_utils.py`
32
32
  "accelerate", # version range defined in `core/_setup_utils.py`
33
- "statsmodels>=0.13.0,<0.15",
34
33
  "gluonts>=0.14.0,<0.14.4", # 0.14.4 caps pandas<2.2
35
34
  "networkx", # version range defined in `core/_setup_utils.py`
36
35
  # TODO: update statsforecast to v1.5.0 - resolve antlr4-python3-runtime dependency clash with multimodal
@@ -631,7 +631,11 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
631
631
  This argument has no effect if ``tuning_data`` is provided.
632
632
  refit_every_n_windows: int or None, default = 1
633
633
  When performing cross validation, each model will be retrained every ``refit_every_n_windows`` validation
634
- windows. If set to ``None``, model will only be fit once for the first validation window.
634
+ windows, where the number of validation windows is specified by `num_val_windows`. Note that in the
635
+ default setting where `num_val_windows=1`, this argument has no effect.
636
+
637
+ If set to ``None``, models will only be fit once for the first (oldest) validation window. By default,
638
+ `refit_every_n_windows=1`, i.e., all models will be refit for each validation window.
635
639
  refit_full : bool, default = False
636
640
  If True, after training is complete, AutoGluon will attempt to re-train all models using all of training
637
641
  data (including the data initially reserved for validation). This argument has no effect if ``tuning_data``
@@ -717,6 +721,12 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
717
721
  if num_val_windows == 0 and tuning_data is None:
718
722
  raise ValueError("Please set num_val_windows >= 1 or provide custom tuning_data")
719
723
 
724
+ if num_val_windows <= 1 and refit_every_n_windows > 1:
725
+ logger.warning(
726
+ f"\trefit_every_n_windows provided as {refit_every_n_windows} but num_val_windows is set to {num_val_windows}."
727
+ " Refit_every_n_windows will have no effect."
728
+ )
729
+
720
730
  if not skip_model_selection:
721
731
  train_data = self._filter_useless_train_data(
722
732
  train_data, num_val_windows=num_val_windows, val_step_size=val_step_size
@@ -7,14 +7,12 @@ import re
7
7
  import sys
8
8
  import warnings
9
9
 
10
- from statsmodels.tools.sm_exceptions import ConvergenceWarning, ValueWarning
11
-
12
10
  __all__ = ["warning_filter", "disable_root_logger", "disable_tqdm"]
13
11
 
14
12
 
15
13
  @contextlib.contextmanager
16
14
  def warning_filter(all_warnings: bool = False):
17
- categories = [RuntimeWarning, UserWarning, ConvergenceWarning, ValueWarning, FutureWarning]
15
+ categories = [RuntimeWarning, UserWarning, FutureWarning]
18
16
  if all_warnings:
19
17
  categories.append(Warning)
20
18
  with warnings.catch_warnings():
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.1.0b20240413'
2
+ __version__ = '1.1.0b20240415'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.1.0b20240413
3
+ Version: 1.1.0b20240415
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -7,7 +7,6 @@ lightning<2.2,>=2.1
7
7
  pytorch_lightning<2.2,>=2.1
8
8
  transformers[sentencepiece]<4.39.0,>=4.38.0
9
9
  accelerate<0.22.0,>=0.21.0
10
- statsmodels<0.15,>=0.13.0
11
10
  gluonts<0.14.4,>=0.14.0
12
11
  networkx<4,>=3.0
13
12
  statsforecast<1.5,>=1.4.0
@@ -16,9 +15,9 @@ utilsforecast<0.0.11,>=0.0.10
16
15
  tqdm<5,>=4.38
17
16
  orjson~=3.9
18
17
  tensorboard<3,>=2.9
19
- autogluon.core[raytune]==1.1.0b20240413
20
- autogluon.common==1.1.0b20240413
21
- autogluon.tabular[catboost,lightgbm,xgboost]==1.1.0b20240413
18
+ autogluon.core[raytune]==1.1.0b20240415
19
+ autogluon.common==1.1.0b20240415
20
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.1.0b20240415
22
21
 
23
22
  [all]
24
23
  optimum[onnxruntime]<1.19,>=1.17