autogluon.timeseries 1.0.1b20240406__tar.gz → 1.0.1b20240408__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (62) hide show
  1. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/setup.py +3 -2
  3. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/chronos/model.py +2 -1
  4. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/predictor.py +13 -10
  5. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/version.py +1 -1
  6. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  7. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/requires.txt +9 -7
  8. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/setup.cfg +0 -0
  9. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/__init__.py +0 -0
  10. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/configs/__init__.py +0 -0
  11. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  12. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  13. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  14. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/evaluator.py +0 -0
  15. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/learner.py +0 -0
  16. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  17. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  18. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/metrics/point.py +0 -0
  19. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  20. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/metrics/utils.py +0 -0
  21. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/__init__.py +0 -0
  22. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  23. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  24. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  25. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  26. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  27. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  28. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/chronos/__init__.py +0 -0
  29. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/chronos/pipeline.py +0 -0
  30. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  31. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  32. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  33. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  34. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  35. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  36. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  37. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  38. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  39. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/local/naive.py +0 -0
  40. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/local/npts.py +0 -0
  41. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  42. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  43. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  44. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/models/presets.py +0 -0
  45. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/splitter.py +0 -0
  46. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  47. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/trainer/abstract_trainer.py +0 -0
  48. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  49. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/__init__.py +0 -0
  50. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  51. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  52. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  53. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  54. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  55. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/features.py +0 -0
  56. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/forecast.py +0 -0
  57. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  58. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  59. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  60. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  61. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  62. {autogluon.timeseries-1.0.1b20240406 → autogluon.timeseries-1.0.1b20240408}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20240406
3
+ Version: 1.0.1b20240408
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -56,10 +56,11 @@ extras_require = {
56
56
  "black~=23.0",
57
57
  ],
58
58
  "chronos-openvino": [ # for faster CPU inference in pretrained models with OpenVINO
59
- "optimum[openvino,nncf]>=1.17,<1.18",
59
+ "optimum-intel[openvino,nncf]>=1.16,<1.17",
60
+ "optimum[openvino,nncf]>=1.18,<1.19",
60
61
  ],
61
62
  "chronos-onnx": [ # for faster CPU inference in pretrained models with ONNX
62
- "optimum[onnxruntime]>=1.17,<1.18",
63
+ "optimum[onnxruntime]>=1.18,<1.19",
63
64
  ],
64
65
  }
65
66
 
@@ -181,7 +181,8 @@ class ChronosModel(AbstractTimeSeriesModel):
181
181
  )
182
182
  self.context_length = self.maximum_context_length
183
183
 
184
- model_path_safe = str.replace(model_path_input, "/", "__")
184
+ # we truncate the name to avoid long path errors on Windows
185
+ model_path_safe = str(model_path_input).replace("/", "__").replace(os.path.sep, "__")[-50:]
185
186
  name = (name if name is not None else "Chronos") + f"[{model_path_safe}]"
186
187
 
187
188
  super().__init__(
@@ -451,8 +451,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
451
451
 
452
452
  data.static_features["store_id"] = data.static_features["store_id"].astype("category")
453
453
 
454
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
455
- to a ``TimeSeriesDataFrame``.
454
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
455
+ ``TimeSeriesDataFrame``.
456
456
 
457
457
  tuning_data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
458
458
  Data reserved for model selection and hyperparameter tuning, rather than training individual models. Also
@@ -472,8 +472,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
472
472
  If ``train_data`` has past covariates or static features, ``tuning_data`` must have also include them (with
473
473
  same columns names and dtypes).
474
474
 
475
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
476
- to a ``TimeSeriesDataFrame``.
475
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
476
+ ``TimeSeriesDataFrame``.
477
477
 
478
478
  time_limit : int, optional
479
479
  Approximately how long :meth:`~autogluon.timeseries.TimeSeriesPredictor.fit` will run (wall-clock time in
@@ -855,8 +855,11 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
855
855
  Parameters
856
856
  ----------
857
857
  data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]
858
- The data to evaluate the best model on. The last ``prediction_length`` time steps of the data set, for each
859
- item, will be held out for prediction and forecast accuracy will be calculated on these time steps.
858
+ The data to evaluate the best model on. The last ``prediction_length`` time steps of each time series in
859
+ ``data`` will be held out for prediction and forecast accuracy will be calculated on these time steps.
860
+
861
+ Must include both historic and future data (i.e., length of all time series in ``data`` must be at least
862
+ ``prediction_length + 1``).
860
863
 
861
864
  If ``known_covariates_names`` were specified when creating the predictor, ``data`` must include the columns
862
865
  listed in ``known_covariates_names`` with the covariates values aligned with the target time series.
@@ -1179,8 +1182,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1179
1182
  Parameters
1180
1183
  ----------
1181
1184
  data : Union[TimeSeriesDataFrame, pd.DataFrame, Path, str], optional
1182
- dataset used for additional evaluation. If not provided, the validation set used during training will be
1183
- used.
1185
+ dataset used for additional evaluation. Must include both historic and future data (i.e., length of all
1186
+ time series in ``data`` must be at least ``prediction_length + 1``).
1184
1187
 
1185
1188
  If ``known_covariates_names`` were specified when creating the predictor, ``data`` must include the columns
1186
1189
  listed in ``known_covariates_names`` with the covariates values aligned with the target time series.
@@ -1188,8 +1191,8 @@ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
1188
1191
  If ``train_data`` used to train the predictor contained past covariates or static features, then ``data``
1189
1192
  must also include them (with same column names and dtypes).
1190
1193
 
1191
- If provided data is an instance of pandas DataFrame, AutoGluon will attempt to automatically convert it
1192
- to a ``TimeSeriesDataFrame``.
1194
+ If provided data is a path or a pandas.DataFrame, AutoGluon will attempt to automatically convert it to a
1195
+ ``TimeSeriesDataFrame``.
1193
1196
 
1194
1197
  display : bool, default = False
1195
1198
  If True, the leaderboard DataFrame will be printed.
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.1b20240406'
2
+ __version__ = '1.0.1b20240408'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20240406
3
+ Version: 1.0.1b20240408
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -16,19 +16,21 @@ utilsforecast<0.0.11,>=0.0.10
16
16
  tqdm<5,>=4.38
17
17
  orjson~=3.9
18
18
  tensorboard<3,>=2.9
19
- autogluon.core[raytune]==1.0.1b20240406
20
- autogluon.common==1.0.1b20240406
21
- autogluon.tabular[catboost,lightgbm,xgboost]==1.0.1b20240406
19
+ autogluon.core[raytune]==1.0.1b20240408
20
+ autogluon.common==1.0.1b20240408
21
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.0.1b20240408
22
22
 
23
23
  [all]
24
- optimum[nncf,openvino]<1.18,>=1.17
25
- optimum[onnxruntime]<1.18,>=1.17
24
+ optimum[onnxruntime]<1.19,>=1.18
25
+ optimum-intel[nncf,openvino]<1.17,>=1.16
26
+ optimum[nncf,openvino]<1.19,>=1.18
26
27
 
27
28
  [chronos-onnx]
28
- optimum[onnxruntime]<1.18,>=1.17
29
+ optimum[onnxruntime]<1.19,>=1.18
29
30
 
30
31
  [chronos-openvino]
31
- optimum[nncf,openvino]<1.18,>=1.17
32
+ optimum-intel[nncf,openvino]<1.17,>=1.16
33
+ optimum[nncf,openvino]<1.19,>=1.18
32
34
 
33
35
  [tests]
34
36
  pytest