autogluon.timeseries 1.0.1b20231201__tar.gz → 1.0.1b20231203__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (59) hide show
  1. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/PKG-INFO +1 -1
  2. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/dataset/ts_dataframe.py +33 -20
  3. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/predictor.py +19 -14
  4. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/version.py +1 -1
  5. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  6. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/requires.txt +3 -3
  7. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/setup.cfg +0 -0
  8. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/setup.py +0 -0
  9. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/__init__.py +0 -0
  10. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/configs/__init__.py +0 -0
  11. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  12. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  13. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/evaluator.py +0 -0
  14. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/learner.py +0 -0
  15. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/metrics/__init__.py +0 -0
  16. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/metrics/abstract.py +0 -0
  17. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/metrics/point.py +0 -0
  18. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/metrics/quantile.py +0 -0
  19. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/metrics/utils.py +0 -0
  20. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/__init__.py +0 -0
  21. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  22. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  23. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  24. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  25. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +0 -0
  26. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  27. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  28. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  29. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  30. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  31. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  32. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  33. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  34. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  35. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/local/abstract_local_model.py +0 -0
  36. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/local/naive.py +0 -0
  37. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/local/npts.py +0 -0
  38. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  39. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  40. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -0
  41. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/models/presets.py +0 -0
  42. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/splitter.py +0 -0
  43. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  44. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/trainer/abstract_trainer.py +0 -0
  45. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  46. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/__init__.py +0 -0
  47. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/datetime/__init__.py +0 -0
  48. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/datetime/base.py +0 -0
  49. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/datetime/lags.py +0 -0
  50. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/datetime/seasonality.py +0 -0
  51. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/datetime/time_features.py +0 -0
  52. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/features.py +0 -0
  53. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/forecast.py +0 -0
  54. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  55. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  56. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  57. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  58. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  59. {autogluon.timeseries-1.0.1b20231201 → autogluon.timeseries-1.0.1b20231203}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20231201
3
+ Version: 1.0.1b20231203
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -23,7 +23,23 @@ TIMESTAMP = "timestamp"
23
23
  IRREGULAR_TIME_INDEX_FREQSTR = "IRREG"
24
24
 
25
25
 
26
- class TimeSeriesDataFrame(pd.DataFrame):
26
+ class TimeSeriesDataFrameDeprecatedMixin:
27
+ """Contains deprecated methods from TimeSeriesDataFrame that shouldn't show up in API documentation."""
28
+
29
+ def get_reindexed_view(self, *args, **kwargs) -> TimeSeriesDataFrame:
30
+ raise ValueError(
31
+ "`TimeSeriesDataFrame.get_reindexed_view` has been deprecated. If your data has irregular timestamps, "
32
+ "please convert it to a regular frequency with `convert_frequency`."
33
+ )
34
+
35
+ def to_regular_index(self, *args, **kwargs) -> TimeSeriesDataFrame:
36
+ raise ValueError(
37
+ "`TimeSeriesDataFrame.to_regular_index` has been deprecated. "
38
+ "Please use `TimeSeriesDataFrame.convert_frequency` instead."
39
+ )
40
+
41
+
42
+ class TimeSeriesDataFrame(pd.DataFrame, TimeSeriesDataFrameDeprecatedMixin):
27
43
  """A collection of univariate time series, where each row is identified by an (``item_id``, ``timestamp``) pair.
28
44
 
29
45
  For example, a time series data frame could represent the daily sales of a collection of products, where each
@@ -47,7 +63,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
47
63
  7 2 2019-01-02 7
48
64
  8 2 2019-01-03 8
49
65
 
50
- You can also use :meth:`~autogluon.timeseries.TimeSeriesDataFrame.from_data_frame` for loading data in such format.
66
+ You can also use :meth:`~autogluon.timeseries.TimeSeriesDataFrame.from_data_frame` for loading data in such format.
51
67
 
52
68
  2. Path to a data file in CSV or Parquet format. The file must contain columns ``item_id`` and ``timestamp``, as well as columns with time series values. This is similar to Option 1 above (pandas DataFrame format without multi-index). Both remote (e.g., S3) and local paths are accepted. You can also use :meth:`~autogluon.timeseries.TimeSeriesDataFrame.from_path` for loading data in such format.
53
69
 
@@ -73,7 +89,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
73
89
  {"target": [6, 7, 8], "start": pd.Period("01-01-2019", freq='D')}
74
90
  ]
75
91
 
76
- You can also use :meth:`~autogluon.timeseries.TimeSeriesDataFrame.from_iterable_dataset` for loading data in such format.
92
+ You can also use :meth:`~autogluon.timeseries.TimeSeriesDataFrame.from_iterable_dataset` for loading data in such format.
77
93
 
78
94
  static_features : pd.DataFrame, str or pathlib.Path, optional
79
95
  An optional data frame describing the metadata of each individual time series that does not change with time.
@@ -119,8 +135,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
119
135
  freq : str
120
136
  A pandas-compatible string describing the frequency of the time series. For example ``"D"`` for daily data,
121
137
  ``"H"`` for hourly data, etc. This attribute is determined automatically based on the timestamps. For the full
122
- list of possible values, see
123
- https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases
138
+ list of possible values, see `pandas documentation <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
124
139
  num_items : int
125
140
  Number of items (time series) in the data set.
126
141
  item_ids : pd.Index
@@ -375,8 +390,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
375
390
  """Construct a ``TimeSeriesDataFrame`` from an Iterable of dictionaries each of which
376
391
  represent a single time series.
377
392
 
378
- This function also offers compatibility with GluonTS data sets, see
379
- https://ts.gluon.ai/stable/api/gluonts/gluonts.dataset.common.html#gluonts.dataset.common.ListDataset.
393
+ This function also offers compatibility with GluonTS `ListDataset format <https://ts.gluon.ai/stable/api/gluonts/gluonts.dataset.common.html#gluonts.dataset.common.ListDataset>`_.
380
394
 
381
395
  Parameters
382
396
  ----------
@@ -493,6 +507,17 @@ class TimeSeriesDataFrame(pd.DataFrame):
493
507
  return self.groupby(level=ITEMID, sort=False).size()
494
508
 
495
509
  def copy(self: TimeSeriesDataFrame, deep: bool = True) -> pd.DataFrame: # noqa
510
+ """Make a copy of the TimeSeriesDataFrame.
511
+
512
+ When ``deep=True`` (default), a new object will be created with a copy of the calling object's data and
513
+ indices. Modifications to the data or indices of the copy will not be reflected in the original object.
514
+
515
+ When ``deep=False``, a new object will be created without copying the calling object's data or index (only
516
+ references to the data and index are copied). Any changes to the data of the original will be reflected in the
517
+ shallow copy (and vice versa).
518
+
519
+ For more details, see `pandas documentation <https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.copy.html>`_.
520
+ """
496
521
  obj = super().copy(deep=deep)
497
522
 
498
523
  # also perform a deep copy for static features
@@ -868,7 +893,7 @@ class TimeSeriesDataFrame(pd.DataFrame):
868
893
  Parameters
869
894
  ----------
870
895
  freq : Union[str, pd.DateOffset]
871
- Frequency to which the data should be converted. See [pandas frequency aliases](https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases)
896
+ Frequency to which the data should be converted. See `pandas frequency aliases <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_
872
897
  for supported values.
873
898
  agg_numeric : {"max", "min", "sum", "mean", "median", "first", "last"}, default = "mean"
874
899
  Aggregation method applied to numeric columns.
@@ -975,15 +1000,3 @@ class TimeSeriesDataFrame(pd.DataFrame):
975
1000
  # This hides method from IPython autocomplete, but not VSCode autocomplete
976
1001
  deprecated = ["get_reindexed_view", "to_regular_index"]
977
1002
  return [d for d in super().__dir__() if d not in deprecated]
978
-
979
- def get_reindexed_view(self, *args, **kwargs) -> TimeSeriesDataFrame:
980
- raise ValueError(
981
- "`TimeSeriesDataFrame.get_reindexed_view` has been deprecated. If your data has irregular timestamps, "
982
- "please convert it to a regular frequency with `convert_frequency`."
983
- )
984
-
985
- def to_regular_index(self, *args, **kwargs) -> TimeSeriesDataFrame:
986
- raise ValueError(
987
- "`TimeSeriesDataFrame.to_regular_index` has been deprecated. "
988
- "Please use `TimeSeriesDataFrame.convert_frequency` instead."
989
- )
@@ -26,7 +26,23 @@ from autogluon.timeseries.trainer import AbstractTimeSeriesTrainer
26
26
  logger = logging.getLogger(__name__)
27
27
 
28
28
 
29
- class TimeSeriesPredictor:
29
+ class TimeSeriesPredictorDeprecatedMixin:
30
+ """Contains deprecated methods from TimeSeriesPredictor that shouldn't show up in API documentation."""
31
+
32
+ @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="evaluate")
33
+ def score(self, *args, **kwargs):
34
+ return self.evaluate(*args, **kwargs)
35
+
36
+ @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_best")
37
+ def get_model_best(self) -> str:
38
+ return self.model_best
39
+
40
+ @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names")
41
+ def get_model_names(self) -> str:
42
+ return self.model_names()
43
+
44
+
45
+ class TimeSeriesPredictor(TimeSeriesPredictorDeprecatedMixin):
30
46
  """AutoGluon ``TimeSeriesPredictor`` predicts future values of multiple related time series.
31
47
 
32
48
  ``TimeSeriesPredictor`` provides probabilistic (quantile) multi-step-ahead forecasts for univariate time series.
@@ -937,7 +953,8 @@ class TimeSeriesPredictor:
937
953
  * ``score_test``: The test score of the model on ``data``, if provided. Computed according to ``eval_metric``.
938
954
  * ``score_val``: The validation score of the model using the internal validation data. Computed according to ``eval_metric``.
939
955
 
940
- **NOTE:** Metrics scores are always shown in 'higher is better' format.
956
+ .. note::
957
+ Metrics scores are always shown in 'higher is better' format.
941
958
  This means that metrics such as MASE or MAPE will be multiplied by -1, so their values will be negative.
942
959
  This is necessary to avoid the user needing to know the metric to understand if higher is better when
943
960
  looking at leaderboard.
@@ -1107,15 +1124,3 @@ class TimeSeriesPredictor:
1107
1124
  # This hides method from IPython autocomplete, but not VSCode autocomplete
1108
1125
  deprecated = ["score", "get_model_best", "get_model_names"]
1109
1126
  return [d for d in super().__dir__() if d not in deprecated]
1110
-
1111
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="evaluate")
1112
- def score(self, *args, **kwargs):
1113
- return self.evaluate(*args, **kwargs)
1114
-
1115
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_best")
1116
- def get_model_best(self) -> str:
1117
- return self.model_best
1118
-
1119
- @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names")
1120
- def get_model_names(self) -> List[str]:
1121
- return self.model_names()
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '1.0.1b20231201'
2
+ __version__ = '1.0.1b20231203'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 1.0.1b20231201
3
+ Version: 1.0.1b20231203
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -14,9 +14,9 @@ utilsforecast<0.0.11,>=0.0.10
14
14
  tqdm<5,>=4.38
15
15
  orjson~=3.9
16
16
  tensorboard<3,>=2.9
17
- autogluon.core[raytune]==1.0.1b20231201
18
- autogluon.common==1.0.1b20231201
19
- autogluon.tabular[catboost,lightgbm,xgboost]==1.0.1b20231201
17
+ autogluon.core[raytune]==1.0.1b20231203
18
+ autogluon.common==1.0.1b20231203
19
+ autogluon.tabular[catboost,lightgbm,xgboost]==1.0.1b20231203
20
20
 
21
21
  [all]
22
22