autogluon.timeseries 0.8.3b20230823__tar.gz → 0.8.3b20230824__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.timeseries might be problematic. Click here for more details.

Files changed (52) hide show
  1. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/PKG-INFO +1 -1
  2. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/setup.py +1 -3
  3. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/autogluon_tabular/mlforecast.py +1 -1
  4. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/abstract_local_model.py +1 -2
  5. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/statsmodels.py +0 -2
  6. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/multi_window/multi_window_model.py +0 -1
  7. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/presets.py +3 -3
  8. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/splitter.py +2 -2
  9. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/trainer/abstract_trainer.py +4 -5
  10. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/version.py +1 -1
  11. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/PKG-INFO +1 -1
  12. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/requires.txt +4 -4
  13. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/setup.cfg +0 -0
  14. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/__init__.py +0 -0
  15. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/configs/__init__.py +0 -0
  16. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/configs/presets_configs.py +0 -0
  17. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/dataset/__init__.py +0 -0
  18. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/dataset/ts_dataframe.py +0 -0
  19. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/evaluator.py +0 -0
  20. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/learner.py +0 -0
  21. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/__init__.py +0 -0
  22. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/abstract/__init__.py +0 -0
  23. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/abstract/abstract_timeseries_model.py +0 -0
  24. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/abstract/model_trial.py +0 -0
  25. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/autogluon_tabular/__init__.py +0 -0
  26. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/autogluon_tabular/direct_tabular.py +0 -0
  27. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/autogluon_tabular/utils.py +0 -0
  28. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/ensemble/__init__.py +0 -0
  29. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/ensemble/abstract_timeseries_ensemble.py +0 -0
  30. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/ensemble/greedy_ensemble.py +0 -0
  31. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/gluonts/__init__.py +0 -0
  32. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/gluonts/abstract_gluonts.py +0 -0
  33. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/gluonts/torch/__init__.py +0 -0
  34. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/gluonts/torch/models.py +0 -0
  35. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/__init__.py +0 -0
  36. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/naive.py +0 -0
  37. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/npts.py +0 -0
  38. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/local/statsforecast.py +0 -0
  39. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/models/multi_window/__init__.py +0 -0
  40. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/predictor.py +0 -0
  41. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/trainer/__init__.py +0 -0
  42. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/trainer/auto_trainer.py +0 -0
  43. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/utils/__init__.py +0 -0
  44. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/utils/features.py +0 -0
  45. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/utils/forecast.py +0 -0
  46. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/utils/seasonality.py +0 -0
  47. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon/timeseries/utils/warning_filters.py +0 -0
  48. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/SOURCES.txt +0 -0
  49. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/dependency_links.txt +0 -0
  50. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/namespace_packages.txt +0 -0
  51. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/top_level.txt +0 -0
  52. {autogluon.timeseries-0.8.3b20230823 → autogluon.timeseries-0.8.3b20230824}/src/autogluon.timeseries.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 0.8.3b20230823
3
+ Version: 0.8.3b20230824
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -4,9 +4,7 @@ import importlib.util
4
4
  ###########################
5
5
  # This code block is a HACK (!), but is necessary to avoid code duplication. Do NOT alter these lines.
6
6
  import os
7
- import warnings
8
7
 
9
- from packaging.version import parse as vparse
10
8
  from setuptools import setup
11
9
 
12
10
  filepath = os.path.abspath(os.path.dirname(__file__))
@@ -45,7 +43,7 @@ install_requires = [
45
43
  extras_require = {
46
44
  "tests": [
47
45
  "pytest",
48
- "flake8>=4.0,<5",
46
+ "ruff>=0.0.285",
49
47
  "flaky>=3.7,<4",
50
48
  "pytest-timeout>=2.1,<3",
51
49
  "isort>=5.10",
@@ -244,7 +244,7 @@ class RecursiveTabularModel(AbstractTimeSeriesModel):
244
244
  if strategy == "items":
245
245
  item_ids = data.item_ids
246
246
  num_items_to_keep = math.ceil(len(item_ids) * max_num_rows / len(data))
247
- items_to_keep = np.random.choice(item_ids, num_items_to_keep, replace=False)
247
+ items_to_keep = np.random.choice(item_ids, num_items_to_keep, replace=False) # noqa: F841
248
248
  logger.debug(
249
249
  f"\tRandomly selected {num_items_to_keep} ({num_items_to_keep / len(item_ids):.1%}) time series "
250
250
  "to limit peak memory usage"
@@ -9,7 +9,6 @@ from joblib import Parallel, delayed
9
9
  from scipy.stats import norm
10
10
 
11
11
  from autogluon.core.utils.exceptions import TimeLimitExceeded
12
- from autogluon.timeseries.dataset import TimeSeriesDataFrame
13
12
  from autogluon.timeseries.dataset.ts_dataframe import ITEMID, TimeSeriesDataFrame
14
13
  from autogluon.timeseries.models.abstract import AbstractTimeSeriesModel
15
14
  from autogluon.timeseries.utils.forecast import get_forecast_horizon_index_ts_dataframe
@@ -168,7 +167,7 @@ class AbstractLocalModel(AbstractTimeSeriesModel):
168
167
  local_model_args=self._local_model_args.copy(),
169
168
  )
170
169
  model_failed = False
171
- except:
170
+ except Exception:
172
171
  if self.use_fallback_model:
173
172
  result = seasonal_naive_forecast(
174
173
  target=time_series.values.ravel(),
@@ -16,8 +16,6 @@ warnings.simplefilter("ignore", ModelWarning)
16
16
  warnings.simplefilter("ignore", ConvergenceWarning)
17
17
  warnings.simplefilter("ignore", ValueWarning)
18
18
 
19
- from .abstract_local_model import AbstractLocalModel
20
-
21
19
 
22
20
  def get_quantiles_from_statsmodels(coverage_fn: Callable, quantile_levels: List[float]) -> List[pd.Series]:
23
21
  """Obtain quantile forecasts using a fitted Statsmodels model.
@@ -3,7 +3,6 @@ import inspect
3
3
  import logging
4
4
  import os
5
5
  import time
6
- from pathlib import Path
7
6
  from typing import Dict, Optional, Type, Union
8
7
 
9
8
  import numpy as np
@@ -309,9 +309,9 @@ def verify_contains_at_least_one_searchspace(hyperparameters: Dict[str, List[Mod
309
309
  return
310
310
 
311
311
  raise ValueError(
312
- f"Hyperparameter tuning specified, but no model contains a hyperparameter search space. "
313
- f"Please disable hyperparameter tuning with `hyperparameter_tune_kwargs=None` or provide a search space "
314
- f"for at least one model."
312
+ "Hyperparameter tuning specified, but no model contains a hyperparameter search space. "
313
+ "Please disable hyperparameter tuning with `hyperparameter_tune_kwargs=None` or provide a search space "
314
+ "for at least one model."
315
315
  )
316
316
 
317
317
 
@@ -3,7 +3,7 @@ from typing import Tuple, Union
3
3
 
4
4
  import pandas as pd
5
5
 
6
- from .dataset.ts_dataframe import ITEMID, TIMESTAMP, TimeSeriesDataFrame
6
+ from .dataset.ts_dataframe import TimeSeriesDataFrame
7
7
 
8
8
  logger = logging.getLogger(__name__)
9
9
 
@@ -169,7 +169,7 @@ class MultiWindowSplitter(AbstractTimeSeriesSplitter):
169
169
  long_enough = num_timesteps_per_item > 2 * prediction_length
170
170
  # Convert boolean indicator into item_id index
171
171
  can_be_split = item_index[long_enough]
172
- cannot_be_split = item_index[~long_enough]
172
+ cannot_be_split = item_index[~long_enough] # noqa: F841
173
173
 
174
174
  train_dataframes.append(ts_dataframe.query("item_id in @cannot_be_split"))
175
175
  if static_features_available:
@@ -12,7 +12,6 @@ import pandas as pd
12
12
  from tqdm import tqdm
13
13
 
14
14
  from autogluon.common.utils.log_utils import set_logger_verbosity
15
- from autogluon.common.utils.path_converter import PathConverter
16
15
  from autogluon.common.utils.utils import hash_pandas_df
17
16
  from autogluon.core.models import AbstractModel
18
17
  from autogluon.core.utils.exceptions import TimeLimitExceeded
@@ -382,7 +381,7 @@ class AbstractTimeSeriesTrainer(SimpleAbstractTrainer):
382
381
  def get_model_names(self, level: Optional[int] = None, **kwargs) -> List[str]:
383
382
  """Get model names that are registered in the model graph"""
384
383
  if level is not None:
385
- return list(node for node, l in self._get_model_levels().items() if l == level)
384
+ return list(node for node, l in self._get_model_levels().items() if l == level) # noqa: E741
386
385
  return list(self.model_graph.nodes)
387
386
 
388
387
  def _train_single(
@@ -946,7 +945,7 @@ class AbstractTimeSeriesTrainer(SimpleAbstractTrainer):
946
945
  model_pred_dict=model_pred_dict,
947
946
  )
948
947
  pred_time_dict_marginal[model_name] = time.time() - predict_start_time
949
- except Exception as e:
948
+ except Exception:
950
949
  failed_models.append(model_name)
951
950
  logger.error(f"Model {model_name} failed to predict with the following exception:")
952
951
  logger.error(traceback.format_exc())
@@ -1000,7 +999,7 @@ class AbstractTimeSeriesTrainer(SimpleAbstractTrainer):
1000
999
  return model_pred_dict, pred_time_dict
1001
1000
  else:
1002
1001
  logger.warning(f"Found corrupted cached predictions in {self._cached_predictions_path}")
1003
- logger.debug(f"Found no cached predictions")
1002
+ logger.debug("Found no cached predictions")
1004
1003
  return {}, {}
1005
1004
 
1006
1005
  def _save_cached_pred_dicts(
@@ -1008,7 +1007,7 @@ class AbstractTimeSeriesTrainer(SimpleAbstractTrainer):
1008
1007
  ) -> None:
1009
1008
  # TODO: Save separate file for each dataset if _cached_predictions file grows large?
1010
1009
  if self._cached_predictions_path.exists():
1011
- logger.debug(f"Extending existing cached predictions")
1010
+ logger.debug("Extending existing cached predictions")
1012
1011
  cached_predictions = load_pkl.load(str(self._cached_predictions_path))
1013
1012
  else:
1014
1013
  cached_predictions = {}
@@ -1,3 +1,3 @@
1
1
  """This is the autogluon version file."""
2
- __version__ = '0.8.3b20230823'
2
+ __version__ = '0.8.3b20230824'
3
3
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.timeseries
3
- Version: 0.8.3b20230823
3
+ Version: 0.8.3b20230824
4
4
  Summary: AutoML for Image, Text, and Tabular Data
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -11,15 +11,15 @@ statsforecast<1.5,>=1.4.0
11
11
  mlforecast<0.7.4,>=0.7.0
12
12
  tqdm<5,>=4.38
13
13
  ujson<6,>=5
14
- autogluon.core[raytune]==0.8.3b20230823
15
- autogluon.common==0.8.3b20230823
16
- autogluon.tabular[catboost,lightgbm,xgboost]==0.8.3b20230823
14
+ autogluon.core[raytune]==0.8.3b20230824
15
+ autogluon.common==0.8.3b20230824
16
+ autogluon.tabular[catboost,lightgbm,xgboost]==0.8.3b20230824
17
17
 
18
18
  [all]
19
19
 
20
20
  [tests]
21
21
  pytest
22
- flake8<5,>=4.0
22
+ ruff>=0.0.285
23
23
  flaky<4,>=3.7
24
24
  pytest-timeout<3,>=2.1
25
25
  isort>=5.10