autogluon.tabular 1.5.1b20260108__tar.gz → 1.5.1b20260118__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- {autogluon_tabular-1.5.1b20260108/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260118}/PKG-INFO +23 -23
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/__init__.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/config_helper.py +18 -6
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/feature_generator_presets.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/presets_configs.py +38 -14
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +775 -0
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +422 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/learner/abstract_learner.py +160 -40
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/learner/default_learner.py +78 -22
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/automm/automm_model.py +12 -3
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/automm/ft_transformer.py +5 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/callbacks.py +2 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/catboost_model.py +93 -29
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/ebm/ebm_model.py +8 -13
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/callbacks.py +20 -3
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/knn/knn_model.py +41 -8
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/callbacks.py +32 -9
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/lgb_model.py +150 -34
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +10 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/lr_model.py +40 -10
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/__init__.py +1 -0
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -0
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/data/collator.py +50 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/mitra_model.py +16 -11
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/rf_model.py +45 -12
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/rf_quantile.py +4 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +6 -18
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabm/tabm_model.py +8 -4
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +38 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +21 -0
- autogluon_tabular-1.5.1b20260118/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +11 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +128 -34
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +40 -23
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/callbacks.py +9 -3
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xt/xt_model.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/predictor/predictor.py +408 -127
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/registry/_ag_model_registry.py +4 -5
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/registry/_model_registry.py +1 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/testing/fit_helper.py +55 -15
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/testing/generate_datasets.py +1 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/testing/model_fit_helper.py +10 -4
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/abstract_trainer.py +644 -230
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/auto_trainer.py +19 -8
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/model_presets/presets.py +33 -9
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118/src/autogluon.tabular.egg-info}/PKG-INFO +23 -23
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/requires.txt +22 -22
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/tests/test_check_style.py +1 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +0 -2
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +0 -2
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -6
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -46
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -46
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -32
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -22
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/README.md +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/setup.cfg +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/setup.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/__init__.py +2 -2
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/abstract/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabdpt/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabprep/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/registry/__init__.py +1 -1
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260108 → autogluon_tabular-1.5.1b20260118}/src/autogluon.tabular.egg-info/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.5.
|
|
3
|
+
Version: 1.5.1b20260118
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.5.
|
|
44
|
-
Requires-Dist: autogluon.features==1.5.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260118
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260118
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
77
|
Provides-Extra: tabicl
|
|
78
78
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
79
79
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.5.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260118; extra == "ray"
|
|
81
81
|
Provides-Extra: skex
|
|
82
82
|
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
83
83
|
Provides-Extra: imodels
|
|
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
|
|
|
89
89
|
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
90
|
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
91
91
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
93
92
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
93
|
+
Requires-Dist: loguru; extra == "all"
|
|
94
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
94
95
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
96
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
95
97
|
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
96
98
|
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
97
|
-
Requires-Dist: loguru; extra == "all"
|
|
98
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
99
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
100
|
-
Requires-Dist: einx; extra == "all"
|
|
101
|
-
Requires-Dist: transformers; extra == "all"
|
|
102
99
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
103
|
-
Requires-Dist:
|
|
100
|
+
Requires-Dist: transformers; extra == "all"
|
|
101
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260118; extra == "all"
|
|
102
|
+
Requires-Dist: einx; extra == "all"
|
|
104
103
|
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
104
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
107
106
|
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
108
|
-
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
109
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
110
|
-
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
111
107
|
Requires-Dist: loguru; extra == "tabarena"
|
|
112
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
113
108
|
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
114
|
-
Requires-Dist:
|
|
115
|
-
Requires-Dist:
|
|
109
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
110
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
116
111
|
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
117
|
-
Requires-Dist:
|
|
118
|
-
Requires-Dist:
|
|
112
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
113
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
114
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260118; extra == "tabarena"
|
|
115
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
116
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
117
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
118
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
119
119
|
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
120
|
-
Requires-Dist:
|
|
120
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
121
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
121
122
|
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
122
|
-
Requires-Dist:
|
|
123
|
-
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
123
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
126
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
# noinspection PyUnresolvedReferences
|
|
2
2
|
from autogluon.common.dataset import TabularDataset
|
|
3
|
+
|
|
3
4
|
# noinspection PyUnresolvedReferences
|
|
4
5
|
from autogluon.common.features.feature_metadata import FeatureMetadata
|
|
5
6
|
from autogluon.common.utils.log_utils import _add_stream_handler
|
|
@@ -125,7 +125,9 @@ class ConfigBuilder:
|
|
|
125
125
|
|
|
126
126
|
if isinstance(presets, list):
|
|
127
127
|
unknown_keys = [k for k in presets if k not in valid_keys]
|
|
128
|
-
assert len(unknown_keys) == 0,
|
|
128
|
+
assert len(unknown_keys) == 0, (
|
|
129
|
+
f"The following presets are not recognized: {unknown_keys} - use one of the valid presets: {valid_keys}"
|
|
130
|
+
)
|
|
129
131
|
|
|
130
132
|
self.config["presets"] = presets
|
|
131
133
|
return self
|
|
@@ -144,12 +146,18 @@ class ConfigBuilder:
|
|
|
144
146
|
valid_keys = self._valid_keys()
|
|
145
147
|
valid_str_values = list(hyperparameter_config_dict.keys())
|
|
146
148
|
if isinstance(hyperparameters, str):
|
|
147
|
-
assert hyperparameters in hyperparameter_config_dict,
|
|
149
|
+
assert hyperparameters in hyperparameter_config_dict, (
|
|
150
|
+
f"{hyperparameters} is not one of the valid presets {valid_str_values}"
|
|
151
|
+
)
|
|
148
152
|
elif isinstance(hyperparameters, dict):
|
|
149
153
|
unknown_keys = [k for k in hyperparameters.keys() if isinstance(k, str) and (k not in valid_keys)]
|
|
150
|
-
assert len(unknown_keys) == 0,
|
|
154
|
+
assert len(unknown_keys) == 0, (
|
|
155
|
+
f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
|
|
156
|
+
)
|
|
151
157
|
else:
|
|
152
|
-
raise ValueError(
|
|
158
|
+
raise ValueError(
|
|
159
|
+
f"hyperparameters must be either str: {valid_str_values} or dict with keys of {valid_keys}"
|
|
160
|
+
)
|
|
153
161
|
self.config["hyperparameters"] = hyperparameters
|
|
154
162
|
return self
|
|
155
163
|
|
|
@@ -230,7 +238,9 @@ class ConfigBuilder:
|
|
|
230
238
|
"""
|
|
231
239
|
valid_str_values = scheduler_factory._scheduler_presets.keys()
|
|
232
240
|
if isinstance(hyperparameter_tune_kwargs, str):
|
|
233
|
-
assert hyperparameter_tune_kwargs in valid_str_values,
|
|
241
|
+
assert hyperparameter_tune_kwargs in valid_str_values, (
|
|
242
|
+
f"{hyperparameter_tune_kwargs} string must be one of {valid_str_values}"
|
|
243
|
+
)
|
|
234
244
|
elif not isinstance(hyperparameter_tune_kwargs, dict):
|
|
235
245
|
raise ValueError(f"hyperparameter_tune_kwargs must be either str: {valid_str_values} or dict")
|
|
236
246
|
self.config["hyperparameter_tune_kwargs"] = hyperparameter_tune_kwargs
|
|
@@ -294,7 +304,9 @@ class ConfigBuilder:
|
|
|
294
304
|
models = [models]
|
|
295
305
|
|
|
296
306
|
unknown_keys = [k for k in models if isinstance(k, str) and (k not in valid_keys)]
|
|
297
|
-
assert len(unknown_keys) == 0,
|
|
307
|
+
assert len(unknown_keys) == 0, (
|
|
308
|
+
f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
|
|
309
|
+
)
|
|
298
310
|
|
|
299
311
|
models = [m for m in valid_keys if m not in models]
|
|
300
312
|
self.config["excluded_model_types"] = models
|
|
@@ -18,7 +18,9 @@ def get_default_feature_generator(feature_generator, feature_metadata=None, init
|
|
|
18
18
|
elif feature_generator == "interpretable":
|
|
19
19
|
feature_generator = AutoMLInterpretablePipelineFeatureGenerator(**init_kwargs)
|
|
20
20
|
else:
|
|
21
|
-
raise ValueError(
|
|
21
|
+
raise ValueError(
|
|
22
|
+
f"Unknown feature_generator preset: '{feature_generator}', valid presets: {['auto', 'interpretable']}"
|
|
23
|
+
)
|
|
22
24
|
if feature_metadata is not None:
|
|
23
25
|
if feature_generator.feature_metadata_in is None and not feature_generator.is_fit():
|
|
24
26
|
feature_generator.feature_metadata_in = copy.deepcopy(feature_metadata)
|
|
@@ -27,12 +27,18 @@ hyperparameter_config_dict = dict(
|
|
|
27
27
|
"RF": [
|
|
28
28
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
29
29
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
30
|
-
{
|
|
30
|
+
{
|
|
31
|
+
"criterion": "squared_error",
|
|
32
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
33
|
+
},
|
|
31
34
|
],
|
|
32
35
|
"XT": [
|
|
33
36
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
34
37
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
35
|
-
{
|
|
38
|
+
{
|
|
39
|
+
"criterion": "squared_error",
|
|
40
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
41
|
+
},
|
|
36
42
|
],
|
|
37
43
|
},
|
|
38
44
|
# Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
|
|
@@ -53,14 +59,38 @@ hyperparameter_config_dict = dict(
|
|
|
53
59
|
"XGB": {},
|
|
54
60
|
"FASTAI": {},
|
|
55
61
|
"RF": [
|
|
56
|
-
{
|
|
57
|
-
|
|
58
|
-
|
|
62
|
+
{
|
|
63
|
+
"criterion": "gini",
|
|
64
|
+
"max_depth": 15,
|
|
65
|
+
"ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
|
|
66
|
+
},
|
|
67
|
+
{
|
|
68
|
+
"criterion": "entropy",
|
|
69
|
+
"max_depth": 15,
|
|
70
|
+
"ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
|
|
71
|
+
},
|
|
72
|
+
{
|
|
73
|
+
"criterion": "squared_error",
|
|
74
|
+
"max_depth": 15,
|
|
75
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
76
|
+
},
|
|
59
77
|
],
|
|
60
78
|
"XT": [
|
|
61
|
-
{
|
|
62
|
-
|
|
63
|
-
|
|
79
|
+
{
|
|
80
|
+
"criterion": "gini",
|
|
81
|
+
"max_depth": 15,
|
|
82
|
+
"ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
|
|
83
|
+
},
|
|
84
|
+
{
|
|
85
|
+
"criterion": "entropy",
|
|
86
|
+
"max_depth": 15,
|
|
87
|
+
"ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
|
|
88
|
+
},
|
|
89
|
+
{
|
|
90
|
+
"criterion": "squared_error",
|
|
91
|
+
"max_depth": 15,
|
|
92
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
93
|
+
},
|
|
64
94
|
],
|
|
65
95
|
},
|
|
66
96
|
# Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
|
|
@@ -137,6 +167,7 @@ hyperparameter_config_dict["experimental_2024"] = {"TABPFNMIX": tabpfnmix_defaul
|
|
|
137
167
|
hyperparameter_config_dict["experimental_2024"].update(hyperparameter_config_dict["zeroshot_2023"])
|
|
138
168
|
hyperparameter_config_dict["experimental"] = hyperparameter_config_dict["experimental_2024"]
|
|
139
169
|
|
|
170
|
+
|
|
140
171
|
def get_hyperparameter_config_options():
|
|
141
172
|
return list(hyperparameter_config_dict.keys())
|
|
142
173
|
|
|
@@ -144,5 +175,7 @@ def get_hyperparameter_config_options():
|
|
|
144
175
|
def get_hyperparameter_config(config_name):
|
|
145
176
|
config_options = get_hyperparameter_config_options()
|
|
146
177
|
if config_name not in config_options:
|
|
147
|
-
raise ValueError(
|
|
178
|
+
raise ValueError(
|
|
179
|
+
f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead."
|
|
180
|
+
)
|
|
148
181
|
return copy.deepcopy(hyperparameter_config_dict[config_name])
|
|
@@ -9,14 +9,18 @@ tabular_presets_dict = dict(
|
|
|
9
9
|
"hyperparameters": "zeroshot",
|
|
10
10
|
"time_limit": 3600,
|
|
11
11
|
},
|
|
12
|
-
|
|
13
12
|
best_quality_v150={
|
|
14
13
|
"auto_stack": True,
|
|
15
14
|
"dynamic_stacking": "auto",
|
|
16
15
|
"num_stack_levels": 0,
|
|
17
16
|
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
18
17
|
"time_limit": 3600,
|
|
19
|
-
"callbacks": [
|
|
18
|
+
"callbacks": [
|
|
19
|
+
[
|
|
20
|
+
"EarlyStoppingCountCallback",
|
|
21
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
22
|
+
]
|
|
23
|
+
],
|
|
20
24
|
},
|
|
21
25
|
# High predictive accuracy with fast inference. ~8x faster inference and ~8x lower disk usage than `best_quality`.
|
|
22
26
|
# Recommended for applications that require fast inference speed and/or small model size.
|
|
@@ -30,19 +34,22 @@ tabular_presets_dict = dict(
|
|
|
30
34
|
"set_best_to_refit_full": True,
|
|
31
35
|
"save_bag_folds": False,
|
|
32
36
|
},
|
|
33
|
-
|
|
34
37
|
high_quality_v150={
|
|
35
38
|
"auto_stack": True,
|
|
36
39
|
"dynamic_stacking": "auto",
|
|
37
40
|
"num_stack_levels": 0,
|
|
38
41
|
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
39
42
|
"time_limit": 3600,
|
|
40
|
-
"callbacks": [
|
|
43
|
+
"callbacks": [
|
|
44
|
+
[
|
|
45
|
+
"EarlyStoppingCountCallback",
|
|
46
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
47
|
+
]
|
|
48
|
+
],
|
|
41
49
|
"refit_full": True,
|
|
42
50
|
"set_best_to_refit_full": True,
|
|
43
51
|
"save_bag_folds": False,
|
|
44
52
|
},
|
|
45
|
-
|
|
46
53
|
# Good predictive accuracy with very fast inference. ~4x faster training, ~8x faster inference and ~8x lower disk usage than `high_quality`.
|
|
47
54
|
# Recommended for applications that require very fast inference speed.
|
|
48
55
|
# Aliases: good
|
|
@@ -68,7 +75,13 @@ tabular_presets_dict = dict(
|
|
|
68
75
|
optimize_for_deployment={"keep_only_best": True, "save_space": True},
|
|
69
76
|
# Disables automated feature generation when text features are detected.
|
|
70
77
|
# This is useful to determine how beneficial text features are to the end result, as well as to ensure features are not mistaken for text when they are not.
|
|
71
|
-
ignore_text={
|
|
78
|
+
ignore_text={
|
|
79
|
+
"_feature_generator_kwargs": {
|
|
80
|
+
"enable_text_ngram_features": False,
|
|
81
|
+
"enable_text_special_features": False,
|
|
82
|
+
"enable_raw_text_features": False,
|
|
83
|
+
}
|
|
84
|
+
},
|
|
72
85
|
ignore_text_ngrams={"_feature_generator_kwargs": {"enable_text_ngram_features": False}},
|
|
73
86
|
# Fit only interpretable models.
|
|
74
87
|
interpretable={
|
|
@@ -86,14 +99,24 @@ tabular_presets_dict = dict(
|
|
|
86
99
|
best_quality_v082={"auto_stack": True},
|
|
87
100
|
# High predictive accuracy with fast inference. ~10x-200x faster inference and ~10x-200x lower disk usage than `best_quality`.
|
|
88
101
|
# Recommended for applications that require reasonable inference speed and/or model size.
|
|
89
|
-
high_quality_v082={
|
|
102
|
+
high_quality_v082={
|
|
103
|
+
"auto_stack": True,
|
|
104
|
+
"refit_full": True,
|
|
105
|
+
"set_best_to_refit_full": True,
|
|
106
|
+
"save_bag_folds": False,
|
|
107
|
+
},
|
|
90
108
|
# Good predictive accuracy with very fast inference. ~4x faster inference and ~4x lower disk usage than `high_quality`.
|
|
91
109
|
# Recommended for applications that require fast inference speed.
|
|
92
|
-
good_quality_v082={
|
|
110
|
+
good_quality_v082={
|
|
111
|
+
"auto_stack": True,
|
|
112
|
+
"refit_full": True,
|
|
113
|
+
"set_best_to_refit_full": True,
|
|
114
|
+
"save_bag_folds": False,
|
|
115
|
+
"hyperparameters": "light",
|
|
116
|
+
},
|
|
93
117
|
# ------------------------------------------
|
|
94
118
|
# Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
|
|
95
119
|
# Experimental presets can be removed or changed without warning.
|
|
96
|
-
|
|
97
120
|
# [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
|
|
98
121
|
# This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
|
|
99
122
|
# Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
|
|
@@ -110,9 +133,13 @@ tabular_presets_dict = dict(
|
|
|
110
133
|
"num_stack_levels": 0,
|
|
111
134
|
"hyperparameters": "zeroshot_2025_12_18_gpu",
|
|
112
135
|
"time_limit": 3600,
|
|
113
|
-
"callbacks": [
|
|
136
|
+
"callbacks": [
|
|
137
|
+
[
|
|
138
|
+
"EarlyStoppingCountCallback",
|
|
139
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
140
|
+
]
|
|
141
|
+
],
|
|
114
142
|
},
|
|
115
|
-
|
|
116
143
|
extreme_quality_v140={
|
|
117
144
|
"auto_stack": True,
|
|
118
145
|
"dynamic_stacking": "auto",
|
|
@@ -121,7 +148,6 @@ tabular_presets_dict = dict(
|
|
|
121
148
|
"hyperparameters": None,
|
|
122
149
|
"time_limit": 3600,
|
|
123
150
|
},
|
|
124
|
-
|
|
125
151
|
# Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
|
|
126
152
|
# Uses tabular foundation models: TabPFNv2, TabICL, Mitra
|
|
127
153
|
# Uses deep learning model: TabM
|
|
@@ -136,7 +162,6 @@ tabular_presets_dict = dict(
|
|
|
136
162
|
"hyperparameters": "zeroshot_2025_tabfm",
|
|
137
163
|
"time_limit": 3600,
|
|
138
164
|
},
|
|
139
|
-
|
|
140
165
|
# DOES NOT SUPPORT GPU.
|
|
141
166
|
experimental_quality_v120={
|
|
142
167
|
"auto_stack": True,
|
|
@@ -147,7 +172,6 @@ tabular_presets_dict = dict(
|
|
|
147
172
|
"num_gpus": 0,
|
|
148
173
|
"time_limit": 3600,
|
|
149
174
|
},
|
|
150
|
-
|
|
151
175
|
# ------------------------------------------
|
|
152
176
|
# ------------------------------------------
|
|
153
177
|
# ------------------------------------------
|
|
@@ -773,24 +773,94 @@ hyperparameter_portfolio_zeroshot_2023 = {
|
|
|
773
773
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
774
774
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
775
775
|
{"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
776
|
-
{
|
|
777
|
-
|
|
778
|
-
|
|
779
|
-
|
|
780
|
-
|
|
781
|
-
|
|
782
|
-
{
|
|
776
|
+
{
|
|
777
|
+
"max_features": 0.75,
|
|
778
|
+
"max_leaf_nodes": 37308,
|
|
779
|
+
"min_samples_leaf": 1,
|
|
780
|
+
"ag_args": {"name_suffix": "_r195", "priority": -13},
|
|
781
|
+
},
|
|
782
|
+
{
|
|
783
|
+
"max_features": 0.75,
|
|
784
|
+
"max_leaf_nodes": 28310,
|
|
785
|
+
"min_samples_leaf": 2,
|
|
786
|
+
"ag_args": {"name_suffix": "_r39", "priority": -32},
|
|
787
|
+
},
|
|
788
|
+
{
|
|
789
|
+
"max_features": 1.0,
|
|
790
|
+
"max_leaf_nodes": 38572,
|
|
791
|
+
"min_samples_leaf": 5,
|
|
792
|
+
"ag_args": {"name_suffix": "_r127", "priority": -45},
|
|
793
|
+
},
|
|
794
|
+
{
|
|
795
|
+
"max_features": 0.75,
|
|
796
|
+
"max_leaf_nodes": 18242,
|
|
797
|
+
"min_samples_leaf": 40,
|
|
798
|
+
"ag_args": {"name_suffix": "_r34", "priority": -47},
|
|
799
|
+
},
|
|
800
|
+
{
|
|
801
|
+
"max_features": "log2",
|
|
802
|
+
"max_leaf_nodes": 42644,
|
|
803
|
+
"min_samples_leaf": 1,
|
|
804
|
+
"ag_args": {"name_suffix": "_r166", "priority": -63},
|
|
805
|
+
},
|
|
806
|
+
{
|
|
807
|
+
"max_features": 0.75,
|
|
808
|
+
"max_leaf_nodes": 36230,
|
|
809
|
+
"min_samples_leaf": 3,
|
|
810
|
+
"ag_args": {"name_suffix": "_r15", "priority": -68},
|
|
811
|
+
},
|
|
812
|
+
{
|
|
813
|
+
"max_features": 1.0,
|
|
814
|
+
"max_leaf_nodes": 48136,
|
|
815
|
+
"min_samples_leaf": 1,
|
|
816
|
+
"ag_args": {"name_suffix": "_r16", "priority": -81},
|
|
817
|
+
},
|
|
783
818
|
],
|
|
784
819
|
"XT": [
|
|
785
820
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
786
821
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
787
822
|
{"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
788
|
-
{
|
|
789
|
-
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
|
|
793
|
-
|
|
794
|
-
{
|
|
823
|
+
{
|
|
824
|
+
"max_features": 0.75,
|
|
825
|
+
"max_leaf_nodes": 18392,
|
|
826
|
+
"min_samples_leaf": 1,
|
|
827
|
+
"ag_args": {"name_suffix": "_r42", "priority": -9},
|
|
828
|
+
},
|
|
829
|
+
{
|
|
830
|
+
"max_features": 1.0,
|
|
831
|
+
"max_leaf_nodes": 12845,
|
|
832
|
+
"min_samples_leaf": 4,
|
|
833
|
+
"ag_args": {"name_suffix": "_r172", "priority": -23},
|
|
834
|
+
},
|
|
835
|
+
{
|
|
836
|
+
"max_features": "sqrt",
|
|
837
|
+
"max_leaf_nodes": 28532,
|
|
838
|
+
"min_samples_leaf": 1,
|
|
839
|
+
"ag_args": {"name_suffix": "_r49", "priority": -43},
|
|
840
|
+
},
|
|
841
|
+
{
|
|
842
|
+
"max_features": 1.0,
|
|
843
|
+
"max_leaf_nodes": 19935,
|
|
844
|
+
"min_samples_leaf": 20,
|
|
845
|
+
"ag_args": {"name_suffix": "_r4", "priority": -53},
|
|
846
|
+
},
|
|
847
|
+
{
|
|
848
|
+
"max_features": 0.75,
|
|
849
|
+
"max_leaf_nodes": 29813,
|
|
850
|
+
"min_samples_leaf": 4,
|
|
851
|
+
"ag_args": {"name_suffix": "_r178", "priority": -62},
|
|
852
|
+
},
|
|
853
|
+
{
|
|
854
|
+
"max_features": 1.0,
|
|
855
|
+
"max_leaf_nodes": 40459,
|
|
856
|
+
"min_samples_leaf": 1,
|
|
857
|
+
"ag_args": {"name_suffix": "_r197", "priority": -78},
|
|
858
|
+
},
|
|
859
|
+
{
|
|
860
|
+
"max_features": "sqrt",
|
|
861
|
+
"max_leaf_nodes": 29702,
|
|
862
|
+
"min_samples_leaf": 2,
|
|
863
|
+
"ag_args": {"name_suffix": "_r126", "priority": -86},
|
|
864
|
+
},
|
|
795
865
|
],
|
|
796
866
|
}
|