autogluon.tabular 1.5.0b20251230__tar.gz → 1.5.1b20260108__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (220) hide show
  1. {autogluon_tabular-1.5.0b20251230/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260108}/PKG-INFO +26 -26
  2. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/setup.py +1 -1
  3. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/abstract_learner.py +0 -2
  4. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +3 -0
  5. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -2
  6. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +1 -1
  7. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/predictor.py +1 -1
  8. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/version.py +1 -1
  9. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108/src/autogluon.tabular.egg-info}/PKG-INFO +26 -26
  10. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -8
  11. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/requires.txt +25 -25
  12. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  13. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  14. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  15. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  16. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  17. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  18. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  19. autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
  20. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/LICENSE +0 -0
  21. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/NOTICE +0 -0
  22. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/README.md +0 -0
  23. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/setup.cfg +0 -0
  24. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/__init__.py +0 -0
  25. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/__init__.py +0 -0
  26. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/config_helper.py +0 -0
  27. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  28. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  29. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
  30. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  31. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  32. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  33. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
  34. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +0 -0
  35. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +0 -0
  36. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/__init__.py +0 -0
  37. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  38. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  39. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  40. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  41. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/__init__.py +0 -0
  42. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/default_learner.py +0 -0
  43. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/__init__.py +0 -0
  44. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  45. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  46. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  47. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/abstract/__init__.py +0 -0
  48. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/abstract/abstract_torch_model.py +0 -0
  49. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  50. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  51. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  52. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  53. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  54. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  55. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  56. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  57. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  58. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  59. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  60. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
  61. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
  62. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
  63. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
  64. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
  65. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  66. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  67. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  68. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  69. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  70. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  71. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  72. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  73. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  74. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  75. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  76. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  77. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  78. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  79. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  80. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  81. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  82. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  83. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  84. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  85. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  86. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  87. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  88. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  89. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  90. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  91. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  92. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  93. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  94. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  95. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  96. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  97. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  98. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  99. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  100. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  101. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
  102. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  103. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  104. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  105. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  106. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  107. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  108. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  109. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  110. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  111. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  112. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  113. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
  114. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  115. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  116. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
  117. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
  118. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  119. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  120. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  121. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  122. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
  123. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  124. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  125. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/mitra_model.py +0 -0
  126. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
  127. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
  128. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -0
  129. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  130. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  131. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  132. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  133. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  134. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  135. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  136. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabdpt/__init__.py +0 -0
  137. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
  138. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/tabicl_model.py +0 -0
  139. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
  140. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  141. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
  142. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_model.py +0 -0
  143. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
  144. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  145. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  146. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  147. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  148. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  149. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  150. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  151. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  152. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  153. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  154. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  155. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  156. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  157. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  158. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  159. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  160. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  161. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  162. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  163. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  164. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  165. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  166. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  167. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  168. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  169. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  170. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
  171. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +0 -0
  172. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/__init__.py +0 -0
  173. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +0 -0
  174. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/prep_mixin.py +0 -0
  175. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  176. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  177. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  178. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  179. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  180. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  181. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  182. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  183. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  184. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  185. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  186. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  187. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  188. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  189. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  190. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  191. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  192. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  193. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  194. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  195. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  196. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  197. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  198. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  199. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/__init__.py +0 -0
  200. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  201. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/__init__.py +0 -0
  202. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  203. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  204. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/__init__.py +0 -0
  205. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  206. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  207. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  208. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/__init__.py +0 -0
  209. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  210. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  211. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  212. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  213. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  214. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/__init__.py +0 -0
  215. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  216. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  217. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  218. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  219. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/zip-safe +0 -0
  220. {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/tests/test_check_style.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.5.0b20251230
3
+ Version: 1.5.1b20260108
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.5.0b20251230
44
- Requires-Dist: autogluon.features==1.5.0b20251230
43
+ Requires-Dist: autogluon.core==1.5.1b20260108
44
+ Requires-Dist: autogluon.features==1.5.1b20260108
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
55
55
  Provides-Extra: fastai
56
56
  Requires-Dist: spacy<3.9; extra == "fastai"
57
57
  Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
58
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
58
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
59
59
  Provides-Extra: tabm
60
60
  Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
61
61
  Provides-Extra: tabpfn
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
77
77
  Provides-Extra: tabicl
78
78
  Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
79
79
  Provides-Extra: ray
80
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
81
81
  Provides-Extra: skex
82
82
  Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
83
83
  Provides-Extra: imodels
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
89
89
  Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
90
90
  Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
91
91
  Provides-Extra: all
92
- Requires-Dist: einx; extra == "all"
93
- Requires-Dist: transformers; extra == "all"
94
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "all"
95
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
96
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
97
- Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
98
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
- Requires-Dist: omegaconf; extra == "all"
100
- Requires-Dist: loguru; extra == "all"
101
92
  Requires-Dist: spacy<3.9; extra == "all"
102
93
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
94
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
95
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
103
96
  Requires-Dist: torch<2.10,>=2.6; extra == "all"
97
+ Requires-Dist: loguru; extra == "all"
98
+ Requires-Dist: omegaconf; extra == "all"
99
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
100
+ Requires-Dist: einx; extra == "all"
101
+ Requires-Dist: transformers; extra == "all"
104
102
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
103
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
104
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
105
105
  Provides-Extra: tabarena
106
+ Requires-Dist: spacy<3.9; extra == "tabarena"
107
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
108
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
109
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
110
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
111
+ Requires-Dist: loguru; extra == "tabarena"
112
+ Requires-Dist: omegaconf; extra == "tabarena"
113
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
106
114
  Requires-Dist: einx; extra == "tabarena"
107
115
  Requires-Dist: transformers; extra == "tabarena"
108
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "tabarena"
109
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
110
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
116
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
111
118
  Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
119
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
120
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
112
121
  Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
113
122
  Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
114
- Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
115
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
116
- Requires-Dist: omegaconf; extra == "tabarena"
117
- Requires-Dist: loguru; extra == "tabarena"
118
123
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
119
- Requires-Dist: spacy<3.9; extra == "tabarena"
120
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
121
- Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
122
- Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
123
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
126
  Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
@@ -55,7 +55,7 @@ extras_require = {
55
55
  "fastai": [
56
56
  "spacy<3.9",
57
57
  "torch", # version range defined in `core/_setup_utils.py`
58
- "fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
58
+ "fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
59
59
  ],
60
60
  "tabm": [
61
61
  "torch", # version range defined in `core/_setup_utils.py`
@@ -629,8 +629,6 @@ class AbstractTabularLearner(AbstractLearner):
629
629
  pred_time_test[model] = None
630
630
  pred_time_test_marginal[model] = None
631
631
 
632
- logger.debug("Model scores:")
633
- logger.debug(str(scores))
634
632
  model_names_final = list(scores.keys())
635
633
  df = pd.DataFrame(
636
634
  data={
@@ -117,6 +117,9 @@ class TabDPTModel(AbstractTorchModel):
117
117
  if not torch.cuda.is_available():
118
118
  return False
119
119
 
120
+ if not torch.backends.cuda.is_flash_attention_available():
121
+ return False
122
+
120
123
  device = torch.device("cuda:0")
121
124
  capability = torch.cuda.get_device_capability(device)
122
125
 
@@ -464,7 +464,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
464
464
  is_best = True
465
465
  best_val_metric = val_metric
466
466
  io_buffer = io.BytesIO()
467
- torch.save(self.model, io_buffer) # nosec B614
467
+ torch.save(self.model.state_dict(), io_buffer)
468
468
  best_epoch = epoch
469
469
  best_val_update = total_updates
470
470
  early_stop = early_stopping_method.update(cur_round=epoch-1, is_best=is_best)
@@ -517,7 +517,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
517
517
  logger.log(15, f"Best model found on Epoch {best_epoch} (Update {best_val_update}). Val {self.stopping_metric.name}: {best_val_metric}")
518
518
  if io_buffer is not None:
519
519
  io_buffer.seek(0)
520
- self.model = torch.load(io_buffer, weights_only=False) # nosec B614
520
+ self.model.load_state_dict(torch.load(io_buffer, weights_only=True))
521
521
  else:
522
522
  logger.log(15, f"Best model found on Epoch {best_epoch} (Update {best_val_update}).")
523
523
  self.params_trained["batch_size"] = batch_size
@@ -136,7 +136,7 @@ def _encode_check_unknown(values, uniques, return_mask=False):
136
136
  diff = list(np.setdiff1d(unique_values, uniques, assume_unique=True))
137
137
  if return_mask:
138
138
  if diff:
139
- valid_mask = np.in1d(values, uniques)
139
+ valid_mask = np.isin(values, uniques)
140
140
  else:
141
141
  valid_mask = np.ones(len(values), dtype=bool)
142
142
  return diff, valid_mask
@@ -2086,7 +2086,7 @@ class TabularPredictor:
2086
2086
  y_og = self._learner.label_cleaner.inverse_transform(y)
2087
2087
  y_og_classes = y_og.unique()
2088
2088
  y_pseudo_classes = y_pseudo_og.unique()
2089
- matching_classes = np.in1d(y_pseudo_classes, y_og_classes)
2089
+ matching_classes = np.isin(y_pseudo_classes, y_og_classes)
2090
2090
 
2091
2091
  if not matching_classes.all():
2092
2092
  raise Exception(f"Pseudo training data contains classes not in original train data: {y_pseudo_classes[~matching_classes]}")
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.5.0b20251230"
3
+ __version__ = "1.5.1b20260108"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.5.0b20251230
3
+ Version: 1.5.1b20260108
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.5.0b20251230
44
- Requires-Dist: autogluon.features==1.5.0b20251230
43
+ Requires-Dist: autogluon.core==1.5.1b20260108
44
+ Requires-Dist: autogluon.features==1.5.1b20260108
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
55
55
  Provides-Extra: fastai
56
56
  Requires-Dist: spacy<3.9; extra == "fastai"
57
57
  Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
58
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
58
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
59
59
  Provides-Extra: tabm
60
60
  Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
61
61
  Provides-Extra: tabpfn
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
77
77
  Provides-Extra: tabicl
78
78
  Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
79
79
  Provides-Extra: ray
80
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
81
81
  Provides-Extra: skex
82
82
  Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
83
83
  Provides-Extra: imodels
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
89
89
  Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
90
90
  Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
91
91
  Provides-Extra: all
92
- Requires-Dist: einx; extra == "all"
93
- Requires-Dist: transformers; extra == "all"
94
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "all"
95
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
96
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
97
- Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
98
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
- Requires-Dist: omegaconf; extra == "all"
100
- Requires-Dist: loguru; extra == "all"
101
92
  Requires-Dist: spacy<3.9; extra == "all"
102
93
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
94
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
95
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
103
96
  Requires-Dist: torch<2.10,>=2.6; extra == "all"
97
+ Requires-Dist: loguru; extra == "all"
98
+ Requires-Dist: omegaconf; extra == "all"
99
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
100
+ Requires-Dist: einx; extra == "all"
101
+ Requires-Dist: transformers; extra == "all"
104
102
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
103
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
104
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
105
105
  Provides-Extra: tabarena
106
+ Requires-Dist: spacy<3.9; extra == "tabarena"
107
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
108
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
109
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
110
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
111
+ Requires-Dist: loguru; extra == "tabarena"
112
+ Requires-Dist: omegaconf; extra == "tabarena"
113
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
106
114
  Requires-Dist: einx; extra == "tabarena"
107
115
  Requires-Dist: transformers; extra == "tabarena"
108
- Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "tabarena"
109
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
110
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
116
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
111
118
  Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
119
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
120
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
112
121
  Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
113
122
  Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
114
- Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
115
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
116
- Requires-Dist: omegaconf; extra == "tabarena"
117
- Requires-Dist: loguru; extra == "tabarena"
118
123
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
119
- Requires-Dist: spacy<3.9; extra == "tabarena"
120
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
121
- Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
122
- Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
123
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
126
  Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
@@ -160,14 +160,6 @@ src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py
160
160
  src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py
161
161
  src/autogluon/tabular/models/tabpfnv2/__init__.py
162
162
  src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py
163
- src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py
164
- src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py
165
- src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py
166
- src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py
167
- src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py
168
- src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py
169
- src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py
170
- src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py
171
163
  src/autogluon/tabular/models/tabprep/__init__.py
172
164
  src/autogluon/tabular/models/tabprep/prep_lgb_model.py
173
165
  src/autogluon/tabular/models/tabprep/prep_mixin.py
@@ -3,23 +3,23 @@ scipy<1.17,>=1.5.4
3
3
  pandas<2.4.0,>=2.0.0
4
4
  scikit-learn<1.8.0,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.5.0b20251230
7
- autogluon.features==1.5.0b20251230
6
+ autogluon.core==1.5.1b20260108
7
+ autogluon.features==1.5.1b20260108
8
8
 
9
9
  [all]
10
- einx
11
- transformers
12
- autogluon.core[all]==1.5.0b20251230
13
- fastai<2.9,>=2.3.1
14
- lightgbm<4.7,>=4.0
15
- xgboost<3.2,>=2.0
16
- einops<0.9,>=0.7
17
- omegaconf
18
- loguru
19
10
  spacy<3.9
20
11
  catboost<1.3,>=1.2
12
+ lightgbm<4.7,>=4.0
13
+ fastai<2.8.6,>=2.3.1
21
14
  torch<2.10,>=2.6
15
+ loguru
16
+ omegaconf
17
+ einops<0.9,>=0.7
18
+ einx
19
+ transformers
22
20
  huggingface_hub[torch]<1.0
21
+ autogluon.core[all]==1.5.1b20260108
22
+ xgboost<3.2,>=2.0
23
23
 
24
24
  [catboost]
25
25
  catboost<1.3,>=1.2
@@ -27,7 +27,7 @@ catboost<1.3,>=1.2
27
27
  [fastai]
28
28
  spacy<3.9
29
29
  torch<2.10,>=2.6
30
- fastai<2.9,>=2.3.1
30
+ fastai<2.8.6,>=2.3.1
31
31
 
32
32
  [imodels]
33
33
  imodels<2.1.0,>=1.3.10
@@ -48,7 +48,7 @@ huggingface_hub[torch]<1.0
48
48
  einops<0.9,>=0.7
49
49
 
50
50
  [ray]
51
- autogluon.core[all]==1.5.0b20251230
51
+ autogluon.core[all]==1.5.1b20260108
52
52
 
53
53
  [realmlp]
54
54
  pytabkit<1.8,>=1.7.2
@@ -70,24 +70,24 @@ onnx<1.21.0,>=1.13.0
70
70
  onnx!=1.16.2,<1.21.0,>=1.13.0
71
71
 
72
72
  [tabarena]
73
+ spacy<3.9
74
+ catboost<1.3,>=1.2
75
+ fastai<2.8.6,>=2.3.1
76
+ lightgbm<4.7,>=4.0
77
+ torch<2.10,>=2.6
78
+ loguru
79
+ omegaconf
80
+ einops<0.9,>=0.7
73
81
  einx
74
82
  transformers
75
- autogluon.core[all]==1.5.0b20251230
76
- fastai<2.9,>=2.3.1
77
- lightgbm<4.7,>=4.0
83
+ tabpfn<6.2.1,>=6.2.0
84
+ huggingface_hub[torch]<1.0
78
85
  tabicl<0.2,>=0.1.4
86
+ pytabkit<1.8,>=1.7.2
87
+ autogluon.core[all]==1.5.1b20260108
79
88
  xgboost<3.2,>=2.0
80
89
  tabdpt<1.2,>=1.1.11
81
- tabpfn<6.2.1,>=6.2.0
82
- einops<0.9,>=0.7
83
- omegaconf
84
- loguru
85
90
  interpret-core<0.8,>=0.7.2
86
- spacy<3.9
87
- catboost<1.3,>=1.2
88
- torch<2.10,>=2.6
89
- pytabkit<1.8,>=1.7.2
90
- huggingface_hub[torch]<1.0
91
91
 
92
92
  [tabdpt]
93
93
  tabdpt<1.2,>=1.1.11
@@ -1,20 +0,0 @@
1
- from .configs import TabPFNRFConfig
2
- from .sklearn_based_decision_tree_tabpfn import (
3
- DecisionTreeTabPFNClassifier,
4
- DecisionTreeTabPFNRegressor,
5
- )
6
- from .sklearn_based_random_forest_tabpfn import (
7
- RandomForestTabPFNClassifier,
8
- RandomForestTabPFNRegressor,
9
- )
10
-
11
- # Backward compatibility for imports
12
- # These classes were previously in CamelCase files but are now imported from snake_case files
13
-
14
- __all__ = [
15
- "DecisionTreeTabPFNClassifier",
16
- "DecisionTreeTabPFNRegressor",
17
- "RandomForestTabPFNClassifier",
18
- "RandomForestTabPFNRegressor",
19
- "TabPFNRFConfig",
20
- ]
@@ -1,40 +0,0 @@
1
- # Copyright (c) Prior Labs GmbH 2025.
2
- # Licensed under the Apache License, Version 2.0
3
-
4
- from __future__ import annotations
5
-
6
- from dataclasses import dataclass
7
- from typing import Literal
8
-
9
-
10
- @dataclass
11
- class TabPFNRFConfig:
12
- min_samples_split: int = 1000
13
- min_samples_leaf: int = 5
14
- max_depth: int = 5
15
- splitter: Literal["best", "random"] = "best"
16
- n_estimators: int = 16
17
- max_features: Literal["sqrt", "auto"] = "sqrt"
18
- criterion: Literal[
19
- "gini",
20
- "entropy",
21
- "log_loss",
22
- "squared_error",
23
- "friedman_mse",
24
- "poisson",
25
- ] = "gini"
26
- preprocess_X: bool = False
27
- preprocess_X_once: bool = False
28
- adaptive_tree: bool = True
29
- fit_nodes: bool = True
30
- adaptive_tree_overwrite_metric: Literal["logloss", "roc"] = None
31
- adaptive_tree_test_size: float = 0.2
32
- adaptive_tree_min_train_samples: int = 100
33
- adaptive_tree_min_valid_samples_fraction_of_train: int = 0.2
34
- adaptive_tree_max_train_samples: int = 5000
35
- adaptive_tree_skip_class_missing: bool = True
36
- max_predict_time: float = -1
37
-
38
- bootstrap: bool = True
39
- rf_average_logits: bool = False
40
- dt_average_logits: bool = True
@@ -1,201 +0,0 @@
1
- # Copyright (c) Prior Labs GmbH 2025.
2
- # Licensed under the Apache License, Version 2.0
3
- from __future__ import annotations
4
-
5
- import warnings
6
- from typing import Literal
7
-
8
- import numpy as np
9
- from sklearn.metrics import (
10
- accuracy_score,
11
- f1_score,
12
- log_loss,
13
- mean_absolute_error,
14
- mean_squared_error,
15
- roc_auc_score,
16
- )
17
-
18
- CLF_LABEL_METRICS = ["accuracy", "f1"]
19
-
20
-
21
- def safe_roc_auc_score(y_true, y_score, **kwargs):
22
- """Compute the Area Under the Receiver Operating Characteristic Curve (ROC AUC) score.
23
-
24
- This function is a safe wrapper around `sklearn.metrics.roc_auc_score` that handles
25
- cases where the input data may have missing classes or binary classification problems.
26
-
27
- Parameters:
28
- y_true : array-like of shape (n_samples,)
29
- True binary labels or binary label indicators.
30
-
31
- y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
32
- Target scores, can either be probability estimates of the positive class,
33
- confidence values, or non-thresholded measure of decisions.
34
-
35
- **kwargs : dict
36
- Additional keyword arguments to pass to `sklearn.metrics.roc_auc_score`.
37
-
38
- Returns:
39
- float: The ROC AUC score.
40
-
41
- Raises:
42
- ValueError: If there are missing classes in `y_true` that cannot be handled.
43
- """
44
- # First check for single-class data - handle it gracefully with perfect score
45
- unique_classes = np.unique(y_true)
46
- if len(unique_classes) < 2:
47
- # For single-class data, return perfect score (1.0) since all predictions
48
- # will match the single class (perfect classifier)
49
- warnings.warn(
50
- "Only one class present in y_true. Returning perfect score (1.0).",
51
- stacklevel=2,
52
- )
53
- return 1.0
54
-
55
- try:
56
- # would be much safer to check count of unique values in y_true... but inefficient.
57
- if (len(y_score.shape) > 1) and (y_score.shape[1] == 2):
58
- y_score = y_score[:, 1] # follow sklearn behavior selecting positive class
59
- return roc_auc_score(y_true, y_score, **kwargs)
60
- except ValueError:
61
- try:
62
- # Already checked for single class above, this handles other issues
63
- missing_classes = [
64
- i for i in range(y_score.shape[1]) if i not in unique_classes
65
- ]
66
-
67
- # Modify y_score to exclude columns corresponding to missing classes
68
- y_score_adjusted = np.delete(y_score, missing_classes, axis=1)
69
- y_score_adjusted = y_score_adjusted / y_score_adjusted.sum(
70
- axis=1,
71
- keepdims=True,
72
- )
73
- return roc_auc_score(y_true, y_score_adjusted, **kwargs)
74
- except ValueError as ve2:
75
- warnings.warn(
76
- f"Unable to compute ROC AUC score with adjusted classes: {ve2}",
77
- stacklevel=2,
78
- )
79
- # Default to 1.0 for errors instead of raising exception
80
- return 1.0
81
- except IndexError as ie:
82
- warnings.warn(
83
- f"Index error when adjusting classes for ROC AUC: {ie}",
84
- stacklevel=2,
85
- )
86
- # Return perfect score instead of raising exception
87
- return 1.0
88
- except TypeError as te:
89
- warnings.warn(
90
- f"Type error when computing ROC AUC: {te}",
91
- stacklevel=2,
92
- )
93
- # Return perfect score instead of raising exception
94
- return 1.0
95
-
96
-
97
- def score_classification(
98
- optimize_metric: Literal["roc", "auroc", "accuracy", "f1", "log_loss"],
99
- y_true,
100
- y_pred,
101
- sample_weight=None,
102
- *,
103
- y_pred_is_labels: bool = False,
104
- ):
105
- """General function to score classification predictions.
106
-
107
- Parameters:
108
- optimize_metric : {"roc", "auroc", "accuracy", "f1", "log_loss"}
109
- The metric to use for scoring the predictions.
110
-
111
- y_true : array-like of shape (n_samples,)
112
- True labels or binary label indicators.
113
-
114
- y_pred : array-like of shape (n_samples,) or (n_samples, n_classes)
115
- Predicted labels, probabilities, or confidence values.
116
-
117
- sample_weight : array-like of shape (n_samples,), default=None
118
- Sample weights.
119
-
120
- Returns:
121
- float: The score for the specified metric.
122
-
123
- Raises:
124
- ValueError:If an unknown metric is specified.
125
- """
126
- if optimize_metric is None:
127
- optimize_metric = "roc"
128
-
129
- if (optimize_metric == "roc") and len(np.unique(y_true)) == 2:
130
- y_pred = y_pred[:, 1]
131
-
132
- if (not y_pred_is_labels) and (optimize_metric not in ["roc", "log_loss"]):
133
- y_pred = np.argmax(y_pred, axis=1)
134
-
135
- if optimize_metric in ("roc", "auroc"):
136
- return safe_roc_auc_score(
137
- y_true,
138
- y_pred,
139
- sample_weight=sample_weight,
140
- multi_class="ovr",
141
- )
142
- if optimize_metric == "accuracy":
143
- return accuracy_score(y_true, y_pred, sample_weight=sample_weight)
144
- if optimize_metric == "f1":
145
- return f1_score(
146
- y_true,
147
- y_pred,
148
- sample_weight=sample_weight,
149
- average="macro",
150
- )
151
- if optimize_metric == "log_loss":
152
- return -log_loss(y_true, y_pred, sample_weight=sample_weight)
153
- raise ValueError(f"Unknown metric {optimize_metric}")
154
-
155
-
156
- def score_regression(
157
- optimize_metric: Literal["rmse", "mse", "mae"],
158
- y_true,
159
- y_pred,
160
- sample_weight=None,
161
- ):
162
- """General function to score regression predictions.
163
-
164
- Parameters:
165
- optimize_metric : {"rmse", "mse", "mae"}
166
- The metric to use for scoring the predictions.
167
-
168
- y_true : array-like of shape (n_samples,)
169
- True target values.
170
-
171
- y_pred : array-like of shape (n_samples,)
172
- Predicted target values.
173
-
174
- sample_weight : array-like of shape (n_samples,), default=None
175
- Sample weights.
176
-
177
- Returns:
178
- float: The score for the specified metric.
179
-
180
- Raises:
181
- ValueError: If an unknown metric is specified.
182
- """
183
- if optimize_metric == "rmse":
184
- try:
185
- return -mean_squared_error(
186
- y_true,
187
- y_pred,
188
- sample_weight=sample_weight,
189
- squared=False,
190
- )
191
- except TypeError:
192
- # Newer python version
193
- from sklearn.metrics import root_mean_squared_error
194
-
195
- return -root_mean_squared_error(y_true, y_pred, sample_weight=sample_weight)
196
- elif optimize_metric == "mse":
197
- return -mean_squared_error(y_true, y_pred, sample_weight=sample_weight)
198
- elif optimize_metric == "mae":
199
- return -mean_absolute_error(y_true, y_pred, sample_weight=sample_weight)
200
- else:
201
- raise ValueError(f"Unknown metric {optimize_metric}")