autogluon.tabular 1.5.0b20251230__tar.gz → 1.5.1b20260108__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- {autogluon_tabular-1.5.0b20251230/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260108}/PKG-INFO +26 -26
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/setup.py +1 -1
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/abstract_learner.py +0 -2
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +3 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -2
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +1 -1
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/predictor.py +1 -1
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108/src/autogluon.tabular.egg-info}/PKG-INFO +26 -26
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -8
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/requires.txt +25 -25
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/LICENSE +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/NOTICE +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/README.md +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/setup.cfg +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/abstract/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/abstract/abstract_torch_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/mitra_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabdpt/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/tabicl_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabprep/prep_mixin.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/fit_helper.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/zip-safe +0 -0
- {autogluon_tabular-1.5.0b20251230 → autogluon_tabular-1.5.1b20260108}/tests/test_check_style.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.5.
|
|
3
|
+
Version: 1.5.1b20260108
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.5.
|
|
44
|
-
Requires-Dist: autogluon.features==1.5.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260108
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260108
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
|
55
55
|
Provides-Extra: fastai
|
|
56
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
57
57
|
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
58
|
-
Requires-Dist: fastai<2.
|
|
58
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
|
|
59
59
|
Provides-Extra: tabm
|
|
60
60
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
61
61
|
Provides-Extra: tabpfn
|
|
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
77
|
Provides-Extra: tabicl
|
|
78
78
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
79
79
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.5.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
|
|
81
81
|
Provides-Extra: skex
|
|
82
82
|
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
83
83
|
Provides-Extra: imodels
|
|
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
|
|
|
89
89
|
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
90
|
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
91
91
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: einx; extra == "all"
|
|
93
|
-
Requires-Dist: transformers; extra == "all"
|
|
94
|
-
Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "all"
|
|
95
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
96
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
97
|
-
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
98
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
100
|
-
Requires-Dist: loguru; extra == "all"
|
|
101
92
|
Requires-Dist: spacy<3.9; extra == "all"
|
|
102
93
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
94
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
95
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
103
96
|
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
97
|
+
Requires-Dist: loguru; extra == "all"
|
|
98
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
99
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
100
|
+
Requires-Dist: einx; extra == "all"
|
|
101
|
+
Requires-Dist: transformers; extra == "all"
|
|
104
102
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
103
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
|
|
104
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
107
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
108
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
109
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
110
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
111
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
112
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
113
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
106
114
|
Requires-Dist: einx; extra == "tabarena"
|
|
107
115
|
Requires-Dist: transformers; extra == "tabarena"
|
|
108
|
-
Requires-Dist:
|
|
109
|
-
Requires-Dist:
|
|
110
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
116
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
117
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
111
118
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
119
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
120
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
|
|
112
121
|
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
113
122
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
114
|
-
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
115
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
116
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
117
|
-
Requires-Dist: loguru; extra == "tabarena"
|
|
118
123
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
119
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
120
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
121
|
-
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
122
|
-
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
123
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
126
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
@@ -55,7 +55,7 @@ extras_require = {
|
|
|
55
55
|
"fastai": [
|
|
56
56
|
"spacy<3.9",
|
|
57
57
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
58
|
-
"fastai>=2.3.1,<2.
|
|
58
|
+
"fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
|
|
59
59
|
],
|
|
60
60
|
"tabm": [
|
|
61
61
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
@@ -629,8 +629,6 @@ class AbstractTabularLearner(AbstractLearner):
|
|
|
629
629
|
pred_time_test[model] = None
|
|
630
630
|
pred_time_test_marginal[model] = None
|
|
631
631
|
|
|
632
|
-
logger.debug("Model scores:")
|
|
633
|
-
logger.debug(str(scores))
|
|
634
632
|
model_names_final = list(scores.keys())
|
|
635
633
|
df = pd.DataFrame(
|
|
636
634
|
data={
|
|
@@ -117,6 +117,9 @@ class TabDPTModel(AbstractTorchModel):
|
|
|
117
117
|
if not torch.cuda.is_available():
|
|
118
118
|
return False
|
|
119
119
|
|
|
120
|
+
if not torch.backends.cuda.is_flash_attention_available():
|
|
121
|
+
return False
|
|
122
|
+
|
|
120
123
|
device = torch.device("cuda:0")
|
|
121
124
|
capability = torch.cuda.get_device_capability(device)
|
|
122
125
|
|
|
@@ -464,7 +464,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
|
464
464
|
is_best = True
|
|
465
465
|
best_val_metric = val_metric
|
|
466
466
|
io_buffer = io.BytesIO()
|
|
467
|
-
torch.save(self.model, io_buffer)
|
|
467
|
+
torch.save(self.model.state_dict(), io_buffer)
|
|
468
468
|
best_epoch = epoch
|
|
469
469
|
best_val_update = total_updates
|
|
470
470
|
early_stop = early_stopping_method.update(cur_round=epoch-1, is_best=is_best)
|
|
@@ -517,7 +517,7 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
|
517
517
|
logger.log(15, f"Best model found on Epoch {best_epoch} (Update {best_val_update}). Val {self.stopping_metric.name}: {best_val_metric}")
|
|
518
518
|
if io_buffer is not None:
|
|
519
519
|
io_buffer.seek(0)
|
|
520
|
-
self.model
|
|
520
|
+
self.model.load_state_dict(torch.load(io_buffer, weights_only=True))
|
|
521
521
|
else:
|
|
522
522
|
logger.log(15, f"Best model found on Epoch {best_epoch} (Update {best_val_update}).")
|
|
523
523
|
self.params_trained["batch_size"] = batch_size
|
|
@@ -136,7 +136,7 @@ def _encode_check_unknown(values, uniques, return_mask=False):
|
|
|
136
136
|
diff = list(np.setdiff1d(unique_values, uniques, assume_unique=True))
|
|
137
137
|
if return_mask:
|
|
138
138
|
if diff:
|
|
139
|
-
valid_mask = np.
|
|
139
|
+
valid_mask = np.isin(values, uniques)
|
|
140
140
|
else:
|
|
141
141
|
valid_mask = np.ones(len(values), dtype=bool)
|
|
142
142
|
return diff, valid_mask
|
|
@@ -2086,7 +2086,7 @@ class TabularPredictor:
|
|
|
2086
2086
|
y_og = self._learner.label_cleaner.inverse_transform(y)
|
|
2087
2087
|
y_og_classes = y_og.unique()
|
|
2088
2088
|
y_pseudo_classes = y_pseudo_og.unique()
|
|
2089
|
-
matching_classes = np.
|
|
2089
|
+
matching_classes = np.isin(y_pseudo_classes, y_og_classes)
|
|
2090
2090
|
|
|
2091
2091
|
if not matching_classes.all():
|
|
2092
2092
|
raise Exception(f"Pseudo training data contains classes not in original train data: {y_pseudo_classes[~matching_classes]}")
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.5.
|
|
3
|
+
Version: 1.5.1b20260108
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.5.
|
|
44
|
-
Requires-Dist: autogluon.features==1.5.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260108
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260108
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -55,7 +55,7 @@ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
|
55
55
|
Provides-Extra: fastai
|
|
56
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
57
57
|
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
58
|
-
Requires-Dist: fastai<2.
|
|
58
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
|
|
59
59
|
Provides-Extra: tabm
|
|
60
60
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
61
61
|
Provides-Extra: tabpfn
|
|
@@ -77,7 +77,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
77
|
Provides-Extra: tabicl
|
|
78
78
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
79
79
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.5.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
|
|
81
81
|
Provides-Extra: skex
|
|
82
82
|
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
83
83
|
Provides-Extra: imodels
|
|
@@ -89,38 +89,38 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
|
|
|
89
89
|
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
90
|
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
91
91
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: einx; extra == "all"
|
|
93
|
-
Requires-Dist: transformers; extra == "all"
|
|
94
|
-
Requires-Dist: autogluon.core[all]==1.5.0b20251230; extra == "all"
|
|
95
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
96
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
97
|
-
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
98
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
100
|
-
Requires-Dist: loguru; extra == "all"
|
|
101
92
|
Requires-Dist: spacy<3.9; extra == "all"
|
|
102
93
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
94
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
95
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
103
96
|
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
97
|
+
Requires-Dist: loguru; extra == "all"
|
|
98
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
99
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
100
|
+
Requires-Dist: einx; extra == "all"
|
|
101
|
+
Requires-Dist: transformers; extra == "all"
|
|
104
102
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
103
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
|
|
104
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
107
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
108
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
109
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
110
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
111
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
112
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
113
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
106
114
|
Requires-Dist: einx; extra == "tabarena"
|
|
107
115
|
Requires-Dist: transformers; extra == "tabarena"
|
|
108
|
-
Requires-Dist:
|
|
109
|
-
Requires-Dist:
|
|
110
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
116
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
117
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
111
118
|
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
119
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
120
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
|
|
112
121
|
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
113
122
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
114
|
-
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
115
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
116
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
117
|
-
Requires-Dist: loguru; extra == "tabarena"
|
|
118
123
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
119
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
120
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
121
|
-
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
122
|
-
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
123
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
126
|
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
@@ -160,14 +160,6 @@ src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py
|
|
|
160
160
|
src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py
|
|
161
161
|
src/autogluon/tabular/models/tabpfnv2/__init__.py
|
|
162
162
|
src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py
|
|
163
|
-
src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py
|
|
164
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py
|
|
165
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py
|
|
166
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py
|
|
167
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py
|
|
168
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py
|
|
169
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py
|
|
170
|
-
src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py
|
|
171
163
|
src/autogluon/tabular/models/tabprep/__init__.py
|
|
172
164
|
src/autogluon/tabular/models/tabprep/prep_lgb_model.py
|
|
173
165
|
src/autogluon/tabular/models/tabprep/prep_mixin.py
|
|
@@ -3,23 +3,23 @@ scipy<1.17,>=1.5.4
|
|
|
3
3
|
pandas<2.4.0,>=2.0.0
|
|
4
4
|
scikit-learn<1.8.0,>=1.4.0
|
|
5
5
|
networkx<4,>=3.0
|
|
6
|
-
autogluon.core==1.5.
|
|
7
|
-
autogluon.features==1.5.
|
|
6
|
+
autogluon.core==1.5.1b20260108
|
|
7
|
+
autogluon.features==1.5.1b20260108
|
|
8
8
|
|
|
9
9
|
[all]
|
|
10
|
-
einx
|
|
11
|
-
transformers
|
|
12
|
-
autogluon.core[all]==1.5.0b20251230
|
|
13
|
-
fastai<2.9,>=2.3.1
|
|
14
|
-
lightgbm<4.7,>=4.0
|
|
15
|
-
xgboost<3.2,>=2.0
|
|
16
|
-
einops<0.9,>=0.7
|
|
17
|
-
omegaconf
|
|
18
|
-
loguru
|
|
19
10
|
spacy<3.9
|
|
20
11
|
catboost<1.3,>=1.2
|
|
12
|
+
lightgbm<4.7,>=4.0
|
|
13
|
+
fastai<2.8.6,>=2.3.1
|
|
21
14
|
torch<2.10,>=2.6
|
|
15
|
+
loguru
|
|
16
|
+
omegaconf
|
|
17
|
+
einops<0.9,>=0.7
|
|
18
|
+
einx
|
|
19
|
+
transformers
|
|
22
20
|
huggingface_hub[torch]<1.0
|
|
21
|
+
autogluon.core[all]==1.5.1b20260108
|
|
22
|
+
xgboost<3.2,>=2.0
|
|
23
23
|
|
|
24
24
|
[catboost]
|
|
25
25
|
catboost<1.3,>=1.2
|
|
@@ -27,7 +27,7 @@ catboost<1.3,>=1.2
|
|
|
27
27
|
[fastai]
|
|
28
28
|
spacy<3.9
|
|
29
29
|
torch<2.10,>=2.6
|
|
30
|
-
fastai<2.
|
|
30
|
+
fastai<2.8.6,>=2.3.1
|
|
31
31
|
|
|
32
32
|
[imodels]
|
|
33
33
|
imodels<2.1.0,>=1.3.10
|
|
@@ -48,7 +48,7 @@ huggingface_hub[torch]<1.0
|
|
|
48
48
|
einops<0.9,>=0.7
|
|
49
49
|
|
|
50
50
|
[ray]
|
|
51
|
-
autogluon.core[all]==1.5.
|
|
51
|
+
autogluon.core[all]==1.5.1b20260108
|
|
52
52
|
|
|
53
53
|
[realmlp]
|
|
54
54
|
pytabkit<1.8,>=1.7.2
|
|
@@ -70,24 +70,24 @@ onnx<1.21.0,>=1.13.0
|
|
|
70
70
|
onnx!=1.16.2,<1.21.0,>=1.13.0
|
|
71
71
|
|
|
72
72
|
[tabarena]
|
|
73
|
+
spacy<3.9
|
|
74
|
+
catboost<1.3,>=1.2
|
|
75
|
+
fastai<2.8.6,>=2.3.1
|
|
76
|
+
lightgbm<4.7,>=4.0
|
|
77
|
+
torch<2.10,>=2.6
|
|
78
|
+
loguru
|
|
79
|
+
omegaconf
|
|
80
|
+
einops<0.9,>=0.7
|
|
73
81
|
einx
|
|
74
82
|
transformers
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
lightgbm<4.7,>=4.0
|
|
83
|
+
tabpfn<6.2.1,>=6.2.0
|
|
84
|
+
huggingface_hub[torch]<1.0
|
|
78
85
|
tabicl<0.2,>=0.1.4
|
|
86
|
+
pytabkit<1.8,>=1.7.2
|
|
87
|
+
autogluon.core[all]==1.5.1b20260108
|
|
79
88
|
xgboost<3.2,>=2.0
|
|
80
89
|
tabdpt<1.2,>=1.1.11
|
|
81
|
-
tabpfn<6.2.1,>=6.2.0
|
|
82
|
-
einops<0.9,>=0.7
|
|
83
|
-
omegaconf
|
|
84
|
-
loguru
|
|
85
90
|
interpret-core<0.8,>=0.7.2
|
|
86
|
-
spacy<3.9
|
|
87
|
-
catboost<1.3,>=1.2
|
|
88
|
-
torch<2.10,>=2.6
|
|
89
|
-
pytabkit<1.8,>=1.7.2
|
|
90
|
-
huggingface_hub[torch]<1.0
|
|
91
91
|
|
|
92
92
|
[tabdpt]
|
|
93
93
|
tabdpt<1.2,>=1.1.11
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
from .configs import TabPFNRFConfig
|
|
2
|
-
from .sklearn_based_decision_tree_tabpfn import (
|
|
3
|
-
DecisionTreeTabPFNClassifier,
|
|
4
|
-
DecisionTreeTabPFNRegressor,
|
|
5
|
-
)
|
|
6
|
-
from .sklearn_based_random_forest_tabpfn import (
|
|
7
|
-
RandomForestTabPFNClassifier,
|
|
8
|
-
RandomForestTabPFNRegressor,
|
|
9
|
-
)
|
|
10
|
-
|
|
11
|
-
# Backward compatibility for imports
|
|
12
|
-
# These classes were previously in CamelCase files but are now imported from snake_case files
|
|
13
|
-
|
|
14
|
-
__all__ = [
|
|
15
|
-
"DecisionTreeTabPFNClassifier",
|
|
16
|
-
"DecisionTreeTabPFNRegressor",
|
|
17
|
-
"RandomForestTabPFNClassifier",
|
|
18
|
-
"RandomForestTabPFNRegressor",
|
|
19
|
-
"TabPFNRFConfig",
|
|
20
|
-
]
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Prior Labs GmbH 2025.
|
|
2
|
-
# Licensed under the Apache License, Version 2.0
|
|
3
|
-
|
|
4
|
-
from __future__ import annotations
|
|
5
|
-
|
|
6
|
-
from dataclasses import dataclass
|
|
7
|
-
from typing import Literal
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
@dataclass
|
|
11
|
-
class TabPFNRFConfig:
|
|
12
|
-
min_samples_split: int = 1000
|
|
13
|
-
min_samples_leaf: int = 5
|
|
14
|
-
max_depth: int = 5
|
|
15
|
-
splitter: Literal["best", "random"] = "best"
|
|
16
|
-
n_estimators: int = 16
|
|
17
|
-
max_features: Literal["sqrt", "auto"] = "sqrt"
|
|
18
|
-
criterion: Literal[
|
|
19
|
-
"gini",
|
|
20
|
-
"entropy",
|
|
21
|
-
"log_loss",
|
|
22
|
-
"squared_error",
|
|
23
|
-
"friedman_mse",
|
|
24
|
-
"poisson",
|
|
25
|
-
] = "gini"
|
|
26
|
-
preprocess_X: bool = False
|
|
27
|
-
preprocess_X_once: bool = False
|
|
28
|
-
adaptive_tree: bool = True
|
|
29
|
-
fit_nodes: bool = True
|
|
30
|
-
adaptive_tree_overwrite_metric: Literal["logloss", "roc"] = None
|
|
31
|
-
adaptive_tree_test_size: float = 0.2
|
|
32
|
-
adaptive_tree_min_train_samples: int = 100
|
|
33
|
-
adaptive_tree_min_valid_samples_fraction_of_train: int = 0.2
|
|
34
|
-
adaptive_tree_max_train_samples: int = 5000
|
|
35
|
-
adaptive_tree_skip_class_missing: bool = True
|
|
36
|
-
max_predict_time: float = -1
|
|
37
|
-
|
|
38
|
-
bootstrap: bool = True
|
|
39
|
-
rf_average_logits: bool = False
|
|
40
|
-
dt_average_logits: bool = True
|
autogluon_tabular-1.5.0b20251230/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py
DELETED
|
@@ -1,201 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Prior Labs GmbH 2025.
|
|
2
|
-
# Licensed under the Apache License, Version 2.0
|
|
3
|
-
from __future__ import annotations
|
|
4
|
-
|
|
5
|
-
import warnings
|
|
6
|
-
from typing import Literal
|
|
7
|
-
|
|
8
|
-
import numpy as np
|
|
9
|
-
from sklearn.metrics import (
|
|
10
|
-
accuracy_score,
|
|
11
|
-
f1_score,
|
|
12
|
-
log_loss,
|
|
13
|
-
mean_absolute_error,
|
|
14
|
-
mean_squared_error,
|
|
15
|
-
roc_auc_score,
|
|
16
|
-
)
|
|
17
|
-
|
|
18
|
-
CLF_LABEL_METRICS = ["accuracy", "f1"]
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
def safe_roc_auc_score(y_true, y_score, **kwargs):
|
|
22
|
-
"""Compute the Area Under the Receiver Operating Characteristic Curve (ROC AUC) score.
|
|
23
|
-
|
|
24
|
-
This function is a safe wrapper around `sklearn.metrics.roc_auc_score` that handles
|
|
25
|
-
cases where the input data may have missing classes or binary classification problems.
|
|
26
|
-
|
|
27
|
-
Parameters:
|
|
28
|
-
y_true : array-like of shape (n_samples,)
|
|
29
|
-
True binary labels or binary label indicators.
|
|
30
|
-
|
|
31
|
-
y_score : array-like of shape (n_samples,) or (n_samples, n_classes)
|
|
32
|
-
Target scores, can either be probability estimates of the positive class,
|
|
33
|
-
confidence values, or non-thresholded measure of decisions.
|
|
34
|
-
|
|
35
|
-
**kwargs : dict
|
|
36
|
-
Additional keyword arguments to pass to `sklearn.metrics.roc_auc_score`.
|
|
37
|
-
|
|
38
|
-
Returns:
|
|
39
|
-
float: The ROC AUC score.
|
|
40
|
-
|
|
41
|
-
Raises:
|
|
42
|
-
ValueError: If there are missing classes in `y_true` that cannot be handled.
|
|
43
|
-
"""
|
|
44
|
-
# First check for single-class data - handle it gracefully with perfect score
|
|
45
|
-
unique_classes = np.unique(y_true)
|
|
46
|
-
if len(unique_classes) < 2:
|
|
47
|
-
# For single-class data, return perfect score (1.0) since all predictions
|
|
48
|
-
# will match the single class (perfect classifier)
|
|
49
|
-
warnings.warn(
|
|
50
|
-
"Only one class present in y_true. Returning perfect score (1.0).",
|
|
51
|
-
stacklevel=2,
|
|
52
|
-
)
|
|
53
|
-
return 1.0
|
|
54
|
-
|
|
55
|
-
try:
|
|
56
|
-
# would be much safer to check count of unique values in y_true... but inefficient.
|
|
57
|
-
if (len(y_score.shape) > 1) and (y_score.shape[1] == 2):
|
|
58
|
-
y_score = y_score[:, 1] # follow sklearn behavior selecting positive class
|
|
59
|
-
return roc_auc_score(y_true, y_score, **kwargs)
|
|
60
|
-
except ValueError:
|
|
61
|
-
try:
|
|
62
|
-
# Already checked for single class above, this handles other issues
|
|
63
|
-
missing_classes = [
|
|
64
|
-
i for i in range(y_score.shape[1]) if i not in unique_classes
|
|
65
|
-
]
|
|
66
|
-
|
|
67
|
-
# Modify y_score to exclude columns corresponding to missing classes
|
|
68
|
-
y_score_adjusted = np.delete(y_score, missing_classes, axis=1)
|
|
69
|
-
y_score_adjusted = y_score_adjusted / y_score_adjusted.sum(
|
|
70
|
-
axis=1,
|
|
71
|
-
keepdims=True,
|
|
72
|
-
)
|
|
73
|
-
return roc_auc_score(y_true, y_score_adjusted, **kwargs)
|
|
74
|
-
except ValueError as ve2:
|
|
75
|
-
warnings.warn(
|
|
76
|
-
f"Unable to compute ROC AUC score with adjusted classes: {ve2}",
|
|
77
|
-
stacklevel=2,
|
|
78
|
-
)
|
|
79
|
-
# Default to 1.0 for errors instead of raising exception
|
|
80
|
-
return 1.0
|
|
81
|
-
except IndexError as ie:
|
|
82
|
-
warnings.warn(
|
|
83
|
-
f"Index error when adjusting classes for ROC AUC: {ie}",
|
|
84
|
-
stacklevel=2,
|
|
85
|
-
)
|
|
86
|
-
# Return perfect score instead of raising exception
|
|
87
|
-
return 1.0
|
|
88
|
-
except TypeError as te:
|
|
89
|
-
warnings.warn(
|
|
90
|
-
f"Type error when computing ROC AUC: {te}",
|
|
91
|
-
stacklevel=2,
|
|
92
|
-
)
|
|
93
|
-
# Return perfect score instead of raising exception
|
|
94
|
-
return 1.0
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
def score_classification(
|
|
98
|
-
optimize_metric: Literal["roc", "auroc", "accuracy", "f1", "log_loss"],
|
|
99
|
-
y_true,
|
|
100
|
-
y_pred,
|
|
101
|
-
sample_weight=None,
|
|
102
|
-
*,
|
|
103
|
-
y_pred_is_labels: bool = False,
|
|
104
|
-
):
|
|
105
|
-
"""General function to score classification predictions.
|
|
106
|
-
|
|
107
|
-
Parameters:
|
|
108
|
-
optimize_metric : {"roc", "auroc", "accuracy", "f1", "log_loss"}
|
|
109
|
-
The metric to use for scoring the predictions.
|
|
110
|
-
|
|
111
|
-
y_true : array-like of shape (n_samples,)
|
|
112
|
-
True labels or binary label indicators.
|
|
113
|
-
|
|
114
|
-
y_pred : array-like of shape (n_samples,) or (n_samples, n_classes)
|
|
115
|
-
Predicted labels, probabilities, or confidence values.
|
|
116
|
-
|
|
117
|
-
sample_weight : array-like of shape (n_samples,), default=None
|
|
118
|
-
Sample weights.
|
|
119
|
-
|
|
120
|
-
Returns:
|
|
121
|
-
float: The score for the specified metric.
|
|
122
|
-
|
|
123
|
-
Raises:
|
|
124
|
-
ValueError:If an unknown metric is specified.
|
|
125
|
-
"""
|
|
126
|
-
if optimize_metric is None:
|
|
127
|
-
optimize_metric = "roc"
|
|
128
|
-
|
|
129
|
-
if (optimize_metric == "roc") and len(np.unique(y_true)) == 2:
|
|
130
|
-
y_pred = y_pred[:, 1]
|
|
131
|
-
|
|
132
|
-
if (not y_pred_is_labels) and (optimize_metric not in ["roc", "log_loss"]):
|
|
133
|
-
y_pred = np.argmax(y_pred, axis=1)
|
|
134
|
-
|
|
135
|
-
if optimize_metric in ("roc", "auroc"):
|
|
136
|
-
return safe_roc_auc_score(
|
|
137
|
-
y_true,
|
|
138
|
-
y_pred,
|
|
139
|
-
sample_weight=sample_weight,
|
|
140
|
-
multi_class="ovr",
|
|
141
|
-
)
|
|
142
|
-
if optimize_metric == "accuracy":
|
|
143
|
-
return accuracy_score(y_true, y_pred, sample_weight=sample_weight)
|
|
144
|
-
if optimize_metric == "f1":
|
|
145
|
-
return f1_score(
|
|
146
|
-
y_true,
|
|
147
|
-
y_pred,
|
|
148
|
-
sample_weight=sample_weight,
|
|
149
|
-
average="macro",
|
|
150
|
-
)
|
|
151
|
-
if optimize_metric == "log_loss":
|
|
152
|
-
return -log_loss(y_true, y_pred, sample_weight=sample_weight)
|
|
153
|
-
raise ValueError(f"Unknown metric {optimize_metric}")
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
def score_regression(
|
|
157
|
-
optimize_metric: Literal["rmse", "mse", "mae"],
|
|
158
|
-
y_true,
|
|
159
|
-
y_pred,
|
|
160
|
-
sample_weight=None,
|
|
161
|
-
):
|
|
162
|
-
"""General function to score regression predictions.
|
|
163
|
-
|
|
164
|
-
Parameters:
|
|
165
|
-
optimize_metric : {"rmse", "mse", "mae"}
|
|
166
|
-
The metric to use for scoring the predictions.
|
|
167
|
-
|
|
168
|
-
y_true : array-like of shape (n_samples,)
|
|
169
|
-
True target values.
|
|
170
|
-
|
|
171
|
-
y_pred : array-like of shape (n_samples,)
|
|
172
|
-
Predicted target values.
|
|
173
|
-
|
|
174
|
-
sample_weight : array-like of shape (n_samples,), default=None
|
|
175
|
-
Sample weights.
|
|
176
|
-
|
|
177
|
-
Returns:
|
|
178
|
-
float: The score for the specified metric.
|
|
179
|
-
|
|
180
|
-
Raises:
|
|
181
|
-
ValueError: If an unknown metric is specified.
|
|
182
|
-
"""
|
|
183
|
-
if optimize_metric == "rmse":
|
|
184
|
-
try:
|
|
185
|
-
return -mean_squared_error(
|
|
186
|
-
y_true,
|
|
187
|
-
y_pred,
|
|
188
|
-
sample_weight=sample_weight,
|
|
189
|
-
squared=False,
|
|
190
|
-
)
|
|
191
|
-
except TypeError:
|
|
192
|
-
# Newer python version
|
|
193
|
-
from sklearn.metrics import root_mean_squared_error
|
|
194
|
-
|
|
195
|
-
return -root_mean_squared_error(y_true, y_pred, sample_weight=sample_weight)
|
|
196
|
-
elif optimize_metric == "mse":
|
|
197
|
-
return -mean_squared_error(y_true, y_pred, sample_weight=sample_weight)
|
|
198
|
-
elif optimize_metric == "mae":
|
|
199
|
-
return -mean_absolute_error(y_true, y_pred, sample_weight=sample_weight)
|
|
200
|
-
else:
|
|
201
|
-
raise ValueError(f"Unknown metric {optimize_metric}")
|