autogluon.tabular 1.4.1b20251216__tar.gz → 1.5.1b20260108__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- {autogluon_tabular-1.4.1b20251216/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260108}/PKG-INFO +40 -39
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/setup.py +11 -7
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/hyperparameter_configs.py +4 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/presets_configs.py +39 -2
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +2 -44
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +2 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +2 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/abstract_learner.py +0 -2
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/__init__.py +3 -1
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/abstract/abstract_torch_model.py +148 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_model.py +1 -1
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +5 -1
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_model.py +58 -8
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_utils.py +2 -2
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +14 -1
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/mitra_model.py +53 -22
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/realmlp_model.py +8 -2
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +256 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/tabicl_model.py +15 -2
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_model.py +23 -79
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +451 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep/prep_mixin.py +220 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -3
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +1 -1
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +12 -4
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_model.py +2 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/predictor.py +48 -19
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_ag_model_registry.py +8 -2
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/fit_helper.py +33 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/abstract_trainer.py +36 -6
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/auto_trainer.py +1 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108/src/autogluon.tabular.egg-info}/PKG-INFO +40 -39
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/SOURCES.txt +10 -8
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/requires.txt +40 -38
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -388
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/LICENSE +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/NOTICE +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/README.md +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/setup.cfg +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/automm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/abstract}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/catboost → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/automm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/catboost/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/catboost}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/ebm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/catboost/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/ebm/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/ebm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fastainn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/ebm/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fastainn/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fastainn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fasttext → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fastainn/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fasttext/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fasttext}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/image_prediction → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fasttext/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/imodels → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/image_prediction}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/knn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/imodels}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lgb → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/knn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lgb/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lgb}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lr → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lgb/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lr/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lr}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/mitra → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lr/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/realmlp → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/rf → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/realmlp}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/rf/compilers → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/rf}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabicl → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/rf/compilers}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabdpt}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabicl}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/config → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/core → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/data → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/config}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/models → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/core}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/data}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/results → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/models}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2 → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/results}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/compilers → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnv2}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/torch → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/utils → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/compilers}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/text_prediction → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xgboost → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/torch}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xgboost/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/utils}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xt → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/text_prediction}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/trainer/model_presets → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xgboost}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/tuning → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xgboost/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/zip-safe +0 -0
- {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/tests/test_check_style.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.1b20260108
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,27 +40,28 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.
|
|
44
|
-
Requires-Dist: autogluon.features==1.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260108
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260108
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
48
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
49
48
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
50
49
|
Provides-Extra: xgboost
|
|
51
|
-
Requires-Dist: xgboost<3.
|
|
50
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
|
|
52
51
|
Provides-Extra: realmlp
|
|
53
|
-
Requires-Dist: pytabkit<1.
|
|
52
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
|
|
54
53
|
Provides-Extra: interpret
|
|
55
54
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
56
55
|
Provides-Extra: fastai
|
|
57
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
58
57
|
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
59
|
-
Requires-Dist: fastai<2.
|
|
58
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
|
|
60
59
|
Provides-Extra: tabm
|
|
61
60
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
62
61
|
Provides-Extra: tabpfn
|
|
63
|
-
Requires-Dist: tabpfn<2.
|
|
62
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
|
|
63
|
+
Provides-Extra: tabdpt
|
|
64
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
|
|
64
65
|
Provides-Extra: tabpfnmix
|
|
65
66
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
|
|
66
67
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
|
|
@@ -74,11 +75,11 @@ Requires-Dist: transformers; extra == "mitra"
|
|
|
74
75
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
|
|
75
76
|
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
76
77
|
Provides-Extra: tabicl
|
|
77
|
-
Requires-Dist: tabicl<0.2,>=0.1.
|
|
78
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
78
79
|
Provides-Extra: ray
|
|
79
|
-
Requires-Dist: autogluon.core[all]==1.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
|
|
80
81
|
Provides-Extra: skex
|
|
81
|
-
Requires-Dist: scikit-learn-intelex<2025.
|
|
82
|
+
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
82
83
|
Provides-Extra: imodels
|
|
83
84
|
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
84
85
|
Provides-Extra: skl2onnx
|
|
@@ -88,44 +89,44 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
|
|
|
88
89
|
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
89
90
|
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
90
91
|
Provides-Extra: all
|
|
91
|
-
Requires-Dist:
|
|
92
|
-
Requires-Dist:
|
|
92
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
93
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
94
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
95
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
93
96
|
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
94
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
95
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
96
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251216; extra == "all"
|
|
97
97
|
Requires-Dist: loguru; extra == "all"
|
|
98
|
-
Requires-Dist:
|
|
99
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
100
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
101
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
102
|
-
Requires-Dist: einx; extra == "all"
|
|
103
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
98
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
104
99
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
100
|
+
Requires-Dist: einx; extra == "all"
|
|
101
|
+
Requires-Dist: transformers; extra == "all"
|
|
102
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
103
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
|
|
104
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
-
Requires-Dist:
|
|
107
|
-
Requires-Dist:
|
|
106
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
107
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
108
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
109
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
108
110
|
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
109
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
110
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
111
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251216; extra == "tabarena"
|
|
112
|
-
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
113
111
|
Requires-Dist: loguru; extra == "tabarena"
|
|
114
|
-
Requires-Dist:
|
|
115
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
116
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
117
|
-
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
118
|
-
Requires-Dist: einx; extra == "tabarena"
|
|
119
|
-
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
112
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
120
113
|
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
121
|
-
Requires-Dist:
|
|
122
|
-
Requires-Dist:
|
|
114
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
115
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
116
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
117
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
118
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
119
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
120
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
|
|
121
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
122
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
123
123
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
|
-
Requires-Dist:
|
|
127
|
-
Requires-Dist:
|
|
128
|
-
Requires-Dist:
|
|
126
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
127
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
|
|
128
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
|
|
129
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
|
|
129
130
|
Requires-Dist: torch<2.10,>=2.6; extra == "tests"
|
|
130
131
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
|
|
131
132
|
Requires-Dist: einops<0.9,>=0.7; extra == "tests"
|
|
@@ -41,14 +41,13 @@ extras_require = {
|
|
|
41
41
|
"lightgbm>=4.0,<4.7", # <{N+1} upper cap, where N is the latest released minor version
|
|
42
42
|
],
|
|
43
43
|
"catboost": [
|
|
44
|
-
"numpy>=1.25,<2.3.0",
|
|
45
44
|
"catboost>=1.2,<1.3",
|
|
46
45
|
],
|
|
47
46
|
"xgboost": [
|
|
48
|
-
"xgboost>=2.0,<3.
|
|
47
|
+
"xgboost>=2.0,<3.2", # <{N+1} upper cap, where N is the latest released minor version
|
|
49
48
|
],
|
|
50
49
|
"realmlp": [
|
|
51
|
-
"pytabkit>=1.
|
|
50
|
+
"pytabkit>=1.7.2,<1.8",
|
|
52
51
|
],
|
|
53
52
|
"interpret": [
|
|
54
53
|
"interpret-core>=0.7.2,<0.8",
|
|
@@ -56,13 +55,16 @@ extras_require = {
|
|
|
56
55
|
"fastai": [
|
|
57
56
|
"spacy<3.9",
|
|
58
57
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
59
|
-
"fastai>=2.3.1,<2.
|
|
58
|
+
"fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
|
|
60
59
|
],
|
|
61
60
|
"tabm": [
|
|
62
61
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
63
62
|
],
|
|
64
63
|
"tabpfn": [
|
|
65
|
-
"tabpfn>=2.0.
|
|
64
|
+
"tabpfn>=6.2.0,<6.2.1", # <{N+1} upper cap, where N is the latest released minor version
|
|
65
|
+
],
|
|
66
|
+
"tabdpt": [
|
|
67
|
+
"tabdpt>=1.1.11,<1.2",
|
|
66
68
|
],
|
|
67
69
|
"tabpfnmix": [
|
|
68
70
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
@@ -79,13 +81,13 @@ extras_require = {
|
|
|
79
81
|
"einops>=0.7,<0.9",
|
|
80
82
|
],
|
|
81
83
|
"tabicl": [
|
|
82
|
-
"tabicl>=0.1.
|
|
84
|
+
"tabicl>=0.1.4,<0.2", # 0.1.4 added python 3.13 support
|
|
83
85
|
],
|
|
84
86
|
"ray": [
|
|
85
87
|
f"{ag.PACKAGE_NAME}.core[all]=={version}",
|
|
86
88
|
],
|
|
87
89
|
"skex": [
|
|
88
|
-
"scikit-learn-intelex>=
|
|
90
|
+
"scikit-learn-intelex>=2025.0,<2025.10", # <{N+1} upper cap, where N is the latest released minor version
|
|
89
91
|
],
|
|
90
92
|
"imodels": [
|
|
91
93
|
"imodels>=1.3.10,<2.1.0", # 1.3.8/1.3.9 either remove/renamed attribute `complexity_` causing failures. https://github.com/csinva/imodels/issues/147
|
|
@@ -121,6 +123,7 @@ extras_require["all"] = all_requires
|
|
|
121
123
|
tabarena_requires = copy.deepcopy(all_requires)
|
|
122
124
|
for extra_package in [
|
|
123
125
|
"interpret",
|
|
126
|
+
"tabdpt",
|
|
124
127
|
"tabicl",
|
|
125
128
|
"tabpfn",
|
|
126
129
|
"realmlp",
|
|
@@ -132,6 +135,7 @@ extras_require["tabarena"] = tabarena_requires
|
|
|
132
135
|
test_requires = []
|
|
133
136
|
for test_package in [
|
|
134
137
|
"interpret",
|
|
138
|
+
"tabdpt",
|
|
135
139
|
"tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
|
|
136
140
|
"tabpfn",
|
|
137
141
|
"realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
|
|
@@ -2,6 +2,8 @@ import copy
|
|
|
2
2
|
|
|
3
3
|
from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
|
|
4
4
|
from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
|
|
5
|
+
from .zeroshot.zeroshot_portfolio_cpu_2025_12_18 import hyperparameter_portfolio_zeroshot_cpu_2025_12_18
|
|
6
|
+
from .zeroshot.zeroshot_portfolio_gpu_2025_12_18 import hyperparameter_portfolio_zeroshot_gpu_2025_12_18
|
|
5
7
|
|
|
6
8
|
# Dictionary of preset hyperparameter configurations.
|
|
7
9
|
hyperparameter_config_dict = dict(
|
|
@@ -117,6 +119,8 @@ hyperparameter_config_dict = dict(
|
|
|
117
119
|
zeroshot=hyperparameter_portfolio_zeroshot_2023,
|
|
118
120
|
zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
|
|
119
121
|
zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
|
|
122
|
+
zeroshot_2025_12_18_gpu=hyperparameter_portfolio_zeroshot_gpu_2025_12_18,
|
|
123
|
+
zeroshot_2025_12_18_cpu=hyperparameter_portfolio_zeroshot_cpu_2025_12_18,
|
|
120
124
|
)
|
|
121
125
|
|
|
122
126
|
tabpfnmix_default = {
|
|
@@ -9,6 +9,15 @@ tabular_presets_dict = dict(
|
|
|
9
9
|
"hyperparameters": "zeroshot",
|
|
10
10
|
"time_limit": 3600,
|
|
11
11
|
},
|
|
12
|
+
|
|
13
|
+
best_quality_v150={
|
|
14
|
+
"auto_stack": True,
|
|
15
|
+
"dynamic_stacking": "auto",
|
|
16
|
+
"num_stack_levels": 0,
|
|
17
|
+
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
18
|
+
"time_limit": 3600,
|
|
19
|
+
"callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
|
|
20
|
+
},
|
|
12
21
|
# High predictive accuracy with fast inference. ~8x faster inference and ~8x lower disk usage than `best_quality`.
|
|
13
22
|
# Recommended for applications that require fast inference speed and/or small model size.
|
|
14
23
|
# Aliases: high
|
|
@@ -21,6 +30,19 @@ tabular_presets_dict = dict(
|
|
|
21
30
|
"set_best_to_refit_full": True,
|
|
22
31
|
"save_bag_folds": False,
|
|
23
32
|
},
|
|
33
|
+
|
|
34
|
+
high_quality_v150={
|
|
35
|
+
"auto_stack": True,
|
|
36
|
+
"dynamic_stacking": "auto",
|
|
37
|
+
"num_stack_levels": 0,
|
|
38
|
+
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
39
|
+
"time_limit": 3600,
|
|
40
|
+
"callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
|
|
41
|
+
"refit_full": True,
|
|
42
|
+
"set_best_to_refit_full": True,
|
|
43
|
+
"save_bag_folds": False,
|
|
44
|
+
},
|
|
45
|
+
|
|
24
46
|
# Good predictive accuracy with very fast inference. ~4x faster training, ~8x faster inference and ~8x lower disk usage than `high_quality`.
|
|
25
47
|
# Recommended for applications that require very fast inference speed.
|
|
26
48
|
# Aliases: good
|
|
@@ -78,11 +100,20 @@ tabular_presets_dict = dict(
|
|
|
78
100
|
# Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
|
|
79
101
|
# Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
|
|
80
102
|
# Significantly stronger than `best_quality`, but can be over 10x slower in inference.
|
|
81
|
-
# Uses pre-trained tabular foundation models, which add a minimum of
|
|
103
|
+
# Uses pre-trained tabular foundation models, which add a minimum of 100 MB to the predictor artifact's size.
|
|
82
104
|
# For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
|
|
83
105
|
# Aliases: extreme, experimental, experimental_quality
|
|
84
106
|
# GPU STRONGLY RECOMMENDED
|
|
85
107
|
extreme_quality={
|
|
108
|
+
"auto_stack": True,
|
|
109
|
+
"dynamic_stacking": "auto",
|
|
110
|
+
"num_stack_levels": 0,
|
|
111
|
+
"hyperparameters": "zeroshot_2025_12_18_gpu",
|
|
112
|
+
"time_limit": 3600,
|
|
113
|
+
"callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
|
|
114
|
+
},
|
|
115
|
+
|
|
116
|
+
extreme_quality_v140={
|
|
86
117
|
"auto_stack": True,
|
|
87
118
|
"dynamic_stacking": "auto",
|
|
88
119
|
"num_bag_sets": 1,
|
|
@@ -140,5 +171,11 @@ tabular_presets_alias = dict(
|
|
|
140
171
|
mq="medium_quality",
|
|
141
172
|
experimental="extreme_quality",
|
|
142
173
|
experimental_quality="extreme_quality",
|
|
143
|
-
experimental_quality_v140="
|
|
174
|
+
experimental_quality_v140="extreme_quality_v140",
|
|
175
|
+
best_v140="best_quality",
|
|
176
|
+
best_v150="best_quality_v150",
|
|
177
|
+
best_quality_v140="best_quality",
|
|
178
|
+
high_v150="high_quality_v150",
|
|
179
|
+
extreme_v140="extreme_quality_v140",
|
|
180
|
+
extreme_v150="extreme_quality",
|
|
144
181
|
)
|
|
@@ -1,50 +1,8 @@
|
|
|
1
1
|
# optimized for <=10000 samples and <=500 features, with a GPU present
|
|
2
2
|
hyperparameter_portfolio_zeroshot_2025_small = {
|
|
3
|
-
"
|
|
3
|
+
"REALTABPFN-V2": [
|
|
4
4
|
{
|
|
5
|
-
"ag_args": {'
|
|
6
|
-
"average_before_softmax": False,
|
|
7
|
-
"classification_model_path": 'tabpfn-v2-classifier-od3j1g5m.ckpt',
|
|
8
|
-
"inference_config/FINGERPRINT_FEATURE": False,
|
|
9
|
-
"inference_config/OUTLIER_REMOVAL_STD": None,
|
|
10
|
-
"inference_config/POLYNOMIAL_FEATURES": 'no',
|
|
11
|
-
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'safepower', 'subsample_features': -1}, {'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': -1}],
|
|
12
|
-
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None, 'power'],
|
|
13
|
-
"inference_config/SUBSAMPLE_SAMPLES": 0.99,
|
|
14
|
-
"model_type": 'single',
|
|
15
|
-
"n_ensemble_repeats": 4,
|
|
16
|
-
"regression_model_path": 'tabpfn-v2-regressor-wyl4o83o.ckpt',
|
|
17
|
-
"softmax_temperature": 0.75,
|
|
18
|
-
},
|
|
19
|
-
{
|
|
20
|
-
"ag_args": {'name_suffix': '_r94', 'priority': -3},
|
|
21
|
-
"average_before_softmax": True,
|
|
22
|
-
"classification_model_path": 'tabpfn-v2-classifier-vutqq28w.ckpt',
|
|
23
|
-
"inference_config/FINGERPRINT_FEATURE": True,
|
|
24
|
-
"inference_config/OUTLIER_REMOVAL_STD": None,
|
|
25
|
-
"inference_config/POLYNOMIAL_FEATURES": 'no',
|
|
26
|
-
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': 0.99}],
|
|
27
|
-
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
|
|
28
|
-
"inference_config/SUBSAMPLE_SAMPLES": None,
|
|
29
|
-
"model_type": 'single',
|
|
30
|
-
"n_ensemble_repeats": 4,
|
|
31
|
-
"regression_model_path": 'tabpfn-v2-regressor-5wof9ojf.ckpt',
|
|
32
|
-
"softmax_temperature": 0.9,
|
|
33
|
-
},
|
|
34
|
-
{
|
|
35
|
-
"ag_args": {'name_suffix': '_r181', 'priority': -4},
|
|
36
|
-
"average_before_softmax": False,
|
|
37
|
-
"classification_model_path": 'tabpfn-v2-classifier-llderlii.ckpt',
|
|
38
|
-
"inference_config/FINGERPRINT_FEATURE": False,
|
|
39
|
-
"inference_config/OUTLIER_REMOVAL_STD": 9.0,
|
|
40
|
-
"inference_config/POLYNOMIAL_FEATURES": 50,
|
|
41
|
-
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'onehot', 'global_transformer_name': 'svd', 'name': 'quantile_uni_coarse', 'subsample_features': 0.99}],
|
|
42
|
-
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": ['power'],
|
|
43
|
-
"inference_config/SUBSAMPLE_SAMPLES": None,
|
|
44
|
-
"model_type": 'single',
|
|
45
|
-
"n_ensemble_repeats": 4,
|
|
46
|
-
"regression_model_path": 'tabpfn-v2-regressor.ckpt',
|
|
47
|
-
"softmax_temperature": 0.95,
|
|
5
|
+
"ag_args": {'priority': -1},
|
|
48
6
|
},
|
|
49
7
|
],
|
|
50
8
|
"GBM": [
|
|
@@ -0,0 +1,2 @@
|
|
|
1
|
+
# On par with `best_quality` while being much faster for smaller datasets. Runs on CPU.
|
|
2
|
+
hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -1}}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -17}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r47', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9918048278435, 'bagging_freq': 1, 'cat_l2': 0.984162386723, 'cat_smooth': 0.0049687445294, 'extra_trees': True, 'feature_fraction': 0.4974006116018, 'lambda_l1': 0.7970644065518, 'lambda_l2': 1.2179933810825, 'learning_rate': 0.0537072755122, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 1, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r1', 'priority': -19}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8836335684032, 'bagging_freq': 1, 'cat_l2': 0.6608043016307, 'cat_smooth': 0.0451936212097, 'extra_trees': True, 'feature_fraction': 0.6189315903408, 'lambda_l1': 0.6514130054123, 'lambda_l2': 1.7382678663835, 'learning_rate': 0.0412716109215, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 9, 'min_data_per_group': 3, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r19', 'priority': -26}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7106002663401, 'bagging_freq': 1, 'cat_l2': 0.1559746777257, 'cat_smooth': 0.0036366126697, 'extra_trees': False, 'feature_fraction': 0.688233104808, 'lambda_l1': 0.8732887427372, 'lambda_l2': 0.446716114323, 'learning_rate': 0.0815946452855, 'max_cat_to_onehot': 78, 'min_data_in_leaf': 12, 'min_data_per_group': 2, 'num_leaves': 16}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r34', 'priority': -32}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8453534561545, 'bagging_freq': 1, 'cat_l2': 0.0321580936847, 'cat_smooth': 0.0011470238114, 'extra_trees': True, 'feature_fraction': 0.8611499511087, 'lambda_l1': 0.910743969343, 'lambda_l2': 1.2750027607225, 'learning_rate': 0.0151455176168, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 60, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r32', 'priority': -37}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.927947070297, 'bagging_freq': 1, 'cat_l2': 0.0082294539727, 'cat_smooth': 0.0671878797989, 'extra_trees': True, 'feature_fraction': 0.9169657691675, 'lambda_l1': 0.9386485912678, 'lambda_l2': 1.619775689786, 'learning_rate': 0.0056864355547, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r7', 'priority': -38}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8984634022103, 'bagging_freq': 1, 'cat_l2': 0.0053608956358, 'cat_smooth': 89.7168790664636, 'extra_trees': False, 'feature_fraction': 0.847638045482, 'lambda_l1': 0.5684527742857, 'lambda_l2': 1.0738026980295, 'learning_rate': 0.0417108779005, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 2, 'min_data_per_group': 7, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r14', 'priority': -40}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9318953983366, 'bagging_freq': 1, 'cat_l2': 0.065532200068, 'cat_smooth': 0.0696287198368, 'extra_trees': True, 'feature_fraction': 0.4649868965096, 'lambda_l1': 0.6586569196642, 'lambda_l2': 1.7799375779553, 'learning_rate': 0.072046289471, 'max_cat_to_onehot': 72, 'min_data_in_leaf': 26, 'min_data_per_group': 32, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r27', 'priority': -42}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.811983527375, 'bagging_freq': 1, 'cat_l2': 0.0255048028385, 'cat_smooth': 1.5339379274002, 'extra_trees': True, 'feature_fraction': 0.5246746068724, 'lambda_l1': 0.9737915306165, 'lambda_l2': 1.929596568261, 'learning_rate': 0.0172284745143, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 8, 'min_data_per_group': 51, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r37', 'priority': -46}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7853761603489, 'bagging_freq': 1, 'cat_l2': 0.2934796127084, 'cat_smooth': 10.1721684646257, 'extra_trees': False, 'feature_fraction': 0.4813265290277, 'lambda_l1': 0.9744837697365, 'lambda_l2': 0.6058665958153, 'learning_rate': 0.0371000014124, 'max_cat_to_onehot': 85, 'min_data_in_leaf': 22, 'min_data_per_group': 3, 'num_leaves': 32}], 'GBM': [{'ag_args': {'name_suffix': '_r177', 'priority': -3}, 'bagging_fraction': 0.8769107816033, 'bagging_freq': 1, 'cat_l2': 0.3418014393813, 'cat_smooth': 15.4304556649114, 'extra_trees': True, 'feature_fraction': 0.4622189821941, 'lambda_l1': 0.2375070586896, 'lambda_l2': 0.3551561351804, 'learning_rate': 0.0178593900218, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 3, 'min_data_per_group': 9, 'num_leaves': 39}, {'ag_args': {'name_suffix': '_r163', 'priority': -5}, 'bagging_fraction': 0.9783898288461, 'bagging_freq': 1, 'cat_l2': 0.1553395260142, 'cat_smooth': 0.0093122749318, 'extra_trees': False, 'feature_fraction': 0.5279825611461, 'lambda_l1': 0.0269274915833, 'lambda_l2': 0.8375250972309, 'learning_rate': 0.0113913650333, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 3, 'min_data_per_group': 75, 'num_leaves': 84}, {'ag_args': {'name_suffix': '_r72', 'priority': -8}, 'bagging_fraction': 0.950146543918, 'bagging_freq': 1, 'cat_l2': 0.2159137242663, 'cat_smooth': 0.0638204395719, 'extra_trees': True, 'feature_fraction': 0.4044759649281, 'lambda_l1': 0.7661581500422, 'lambda_l2': 1.6041759693902, 'learning_rate': 0.0179845918984, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 12, 'min_data_per_group': 3, 'num_leaves': 180}, {'ag_args': {'name_suffix': '_r120', 'priority': -13}, 'bagging_fraction': 0.8541333332514, 'bagging_freq': 1, 'cat_l2': 0.0110343197541, 'cat_smooth': 5.0905236124522, 'extra_trees': True, 'feature_fraction': 0.7334718346252, 'lambda_l1': 0.241338427726, 'lambda_l2': 0.298107723769, 'learning_rate': 0.0126654490778, 'max_cat_to_onehot': 67, 'min_data_in_leaf': 12, 'min_data_per_group': 93, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r6', 'priority': -16}, 'bagging_fraction': 0.8148132107231, 'bagging_freq': 1, 'cat_l2': 0.0058363329714, 'cat_smooth': 0.0289414318324, 'extra_trees': False, 'feature_fraction': 0.939979116902, 'lambda_l1': 0.4369494828584, 'lambda_l2': 0.2997524486083, 'learning_rate': 0.0078971749764, 'max_cat_to_onehot': 28, 'min_data_in_leaf': 24, 'min_data_per_group': 3, 'num_leaves': 8}, {'ag_args': {'name_suffix': '_r184', 'priority': -21}, 'bagging_fraction': 0.8406256713136, 'bagging_freq': 1, 'cat_l2': 0.9284921901786, 'cat_smooth': 0.0898191451684, 'extra_trees': False, 'feature_fraction': 0.5876132298377, 'lambda_l1': 0.078943697912, 'lambda_l2': 0.7713118402478, 'learning_rate': 0.0090676429159, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 17, 'min_data_per_group': 11, 'num_leaves': 2}, {'ag_args': {'name_suffix': '_r46', 'priority': -23}, 'bagging_fraction': 0.999426150416, 'bagging_freq': 1, 'cat_l2': 0.0076879104679, 'cat_smooth': 89.4599055435924, 'extra_trees': False, 'feature_fraction': 0.8588138897928, 'lambda_l1': 0.0413597548025, 'lambda_l2': 0.2258713386858, 'learning_rate': 0.0074056102479, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 26, 'num_leaves': 14}, {'ag_args': {'name_suffix': '_r68', 'priority': -24}, 'bagging_fraction': 0.7199080522958, 'bagging_freq': 1, 'cat_l2': 0.9369509319667, 'cat_smooth': 11.0984745216942, 'extra_trees': False, 'feature_fraction': 0.9550596478029, 'lambda_l1': 0.1109843723892, 'lambda_l2': 0.5969094177111, 'learning_rate': 0.0079480499426, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 3, 'min_data_per_group': 8, 'num_leaves': 111}, {'ag_args': {'name_suffix': '_r47', 'priority': -29}, 'bagging_fraction': 0.8831228358892, 'bagging_freq': 1, 'cat_l2': 0.1402622388062, 'cat_smooth': 3.3545774392409, 'extra_trees': True, 'feature_fraction': 0.6155890374887, 'lambda_l1': 0.1749502746898, 'lambda_l2': 0.8761391715812, 'learning_rate': 0.00891978331, 'max_cat_to_onehot': 84, 'min_data_in_leaf': 1, 'min_data_per_group': 21, 'num_leaves': 55}, {'ag_args': {'name_suffix': '_r63', 'priority': -31}, 'bagging_fraction': 0.7801003412553, 'bagging_freq': 1, 'cat_l2': 0.0071438335269, 'cat_smooth': 0.1338043459574, 'extra_trees': False, 'feature_fraction': 0.490455360592, 'lambda_l1': 0.6420805635778, 'lambda_l2': 0.5813319300456, 'learning_rate': 0.0308746408751, 'max_cat_to_onehot': 38, 'min_data_in_leaf': 1, 'min_data_per_group': 83, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r39', 'priority': -36}, 'bagging_fraction': 0.7035743460186, 'bagging_freq': 1, 'cat_l2': 0.0134845084619, 'cat_smooth': 56.4934757686511, 'extra_trees': True, 'feature_fraction': 0.7824899527144, 'lambda_l1': 0.3700115211248, 'lambda_l2': 0.0341499593689, 'learning_rate': 0.094652390088, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 13, 'min_data_per_group': 4, 'num_leaves': 23}, {'ag_args': {'name_suffix': '_r18', 'priority': -43}, 'bagging_fraction': 0.7041134150362, 'bagging_freq': 1, 'cat_l2': 0.1139031650222, 'cat_smooth': 41.8937939300815, 'extra_trees': True, 'feature_fraction': 0.5028791565785, 'lambda_l1': 0.1031941284118, 'lambda_l2': 1.2554010747358, 'learning_rate': 0.0186530122901, 'max_cat_to_onehot': 29, 'min_data_in_leaf': 5, 'min_data_per_group': 74, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r50', 'priority': -45}, 'bagging_fraction': 0.9673434664048, 'bagging_freq': 1, 'cat_l2': 1.7662226703416, 'cat_smooth': 0.0097667848046, 'extra_trees': True, 'feature_fraction': 0.9286299570284, 'lambda_l1': 0.0448644389135, 'lambda_l2': 1.7322446850205, 'learning_rate': 0.0507909494543, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 4, 'min_data_per_group': 2, 'num_leaves': 106}, {'ag_args': {'name_suffix': '_r104', 'priority': -48}, 'bagging_fraction': 0.9327643671568, 'bagging_freq': 1, 'cat_l2': 0.0067636494662, 'cat_smooth': 29.2351010915576, 'extra_trees': False, 'feature_fraction': 0.660864035482, 'lambda_l1': 0.556745328417, 'lambda_l2': 1.2717605868201, 'learning_rate': 0.0433336000175, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 18, 'min_data_per_group': 6, 'num_leaves': 19}], 'NN_TORCH': [{'activation': 'elu', 'ag_args': {'name_suffix': '_r37', 'priority': -4}, 'dropout_prob': 0.0889772897547275, 'hidden_size': 109, 'learning_rate': 0.02184363543226557, 'num_layers': 3, 'use_batchnorm': True, 'weight_decay': 3.1736637236578543e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r31', 'priority': -9}, 'dropout_prob': 0.013288954106470907, 'hidden_size': 81, 'learning_rate': 0.005340914647396153, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 8.76216837077536e-05}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r193', 'priority': -14}, 'dropout_prob': 0.2976404923811552, 'hidden_size': 131, 'learning_rate': 0.0038408014156739775, 'num_layers': 3, 'use_batchnorm': False, 'weight_decay': 0.01745189206113213}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r144', 'priority': -15}, 'dropout_prob': 0.2670859555485912, 'hidden_size': 52, 'learning_rate': 0.015189605588375421, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 2.8013784883244263e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r82', 'priority': -22}, 'dropout_prob': 0.27342918414623907, 'hidden_size': 207, 'learning_rate': 0.0004069380929899853, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.002473667327700422}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r39', 'priority': -27}, 'dropout_prob': 0.21699951000415899, 'hidden_size': 182, 'learning_rate': 0.00014675249427915203, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 9.787353852692089e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r1', 'priority': -30}, 'dropout_prob': 0.23713784729000734, 'hidden_size': 200, 'learning_rate': 0.0031125617090901805, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 4.57301675647447e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r48', 'priority': -34}, 'dropout_prob': 0.14224509513998226, 'hidden_size': 26, 'learning_rate': 0.007085904739869829, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 2.465786211798467e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r135', 'priority': -39}, 'dropout_prob': 0.06134755114373829, 'hidden_size': 144, 'learning_rate': 0.005834535148903802, 'num_layers': 5, 'use_batchnorm': True, 'weight_decay': 2.0826540090463376e-09}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r24', 'priority': -49}, 'dropout_prob': 0.257596079691855, 'hidden_size': 168, 'learning_rate': 0.0034108596383714608, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 1.4840689603685264e-07}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r159', 'priority': -50}, 'dropout_prob': 0.16724368469920037, 'hidden_size': 44, 'learning_rate': 0.011043937174833164, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.007265742373924609}], 'FASTAI': [{'ag_args': {'name_suffix': '_r25', 'priority': -6}, 'bs': 1024, 'emb_drop': 0.6167722379778131, 'epochs': 44, 'layers': [200, 100, 50], 'lr': 0.05344037785562929, 'ps': 0.48477211305443607}, {'ag_args': {'name_suffix': '_r162', 'priority': -11}, 'bs': 2048, 'emb_drop': 0.5474625640581479, 'epochs': 45, 'layers': [400, 200], 'lr': 0.0047438648957706655, 'ps': 0.07533239360470734}, {'ag_args': {'name_suffix': '_r147', 'priority': -20}, 'bs': 128, 'emb_drop': 0.6378380130337095, 'epochs': 48, 'layers': [200], 'lr': 0.058027179860229344, 'ps': 0.23253362133888375}, {'ag_args': {'name_suffix': '_r192', 'priority': -25}, 'bs': 1024, 'emb_drop': 0.0698130630643278, 'epochs': 37, 'layers': [400, 200], 'lr': 0.0018949411343821322, 'ps': 0.6526067160491229}, {'ag_args': {'name_suffix': '_r109', 'priority': -28}, 'bs': 128, 'emb_drop': 0.1978897556618756, 'epochs': 49, 'layers': [400, 200, 100], 'lr': 0.02155144303508465, 'ps': 0.005518872455908264}, {'ag_args': {'name_suffix': '_r78', 'priority': -33}, 'bs': 512, 'emb_drop': 0.4897354379753617, 'epochs': 26, 'layers': [400, 200, 100], 'lr': 0.027563880686468895, 'ps': 0.44524273881299886}, {'ag_args': {'name_suffix': '_r150', 'priority': -35}, 'bs': 2048, 'emb_drop': 0.6148607467659958, 'epochs': 27, 'layers': [400, 200], 'lr': 0.09351668652547614, 'ps': 0.5314977162016676}, {'ag_args': {'name_suffix': '_r133', 'priority': -41}, 'bs': 256, 'emb_drop': 0.6242606757570891, 'epochs': 43, 'layers': [200, 100, 50], 'lr': 0.001533613235987637, 'ps': 0.5354961132962562}, {'ag_args': {'name_suffix': '_r99', 'priority': -44}, 'bs': 512, 'emb_drop': 0.6071025838237253, 'epochs': 49, 'layers': [400, 200], 'lr': 0.02669945959641021, 'ps': 0.4897025421573259}, {'ag_args': {'name_suffix': '_r197', 'priority': -47}, 'bs': 256, 'emb_drop': 0.5277230463737563, 'epochs': 45, 'layers': [400, 200], 'lr': 0.006908743712130657, 'ps': 0.08262909528632323}]}
|
|
@@ -0,0 +1,2 @@
|
|
|
1
|
+
# State-of-the-art for datasets < 100k samples. Requires a GPU with at least 20 GB VRAM.
|
|
2
|
+
hyperparameter_portfolio_zeroshot_gpu_2025_12_18 = {'TABDPT': [{'ag_args': {'name_suffix': '_c1', 'priority': -3}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}}, {'ag_args': {'name_suffix': '_r20', 'priority': -5}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'quantile-uniform', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r1', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'log1p', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r15', 'priority': -9}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'standard', 'permute_classes': True, 'temperature': 0.7}, {'ag_args': {'name_suffix': '_r22', 'priority': -11}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'pca', 'missing_indicators': True, 'normalizer': 'robust', 'permute_classes': False, 'temperature': 0.5}], 'TABICL': [{'ag_args': {'name_suffix': '_c1', 'priority': -4}, 'ag_args_ensemble': {'refit_folds': True}}], 'MITRA': [{'ag_args': {'name_suffix': '_c1', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}}], 'TABM': [{'ag_args': {'name_suffix': '_r99', 'priority': -13}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 880, 'd_embedding': 24, 'dropout': 0.10792355695428629, 'gradient_clipping_norm': 1.0, 'lr': 0.0013641856391615784, 'n_blocks': 5, 'num_emb_n_bins': 16, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r124', 'priority': -17}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 208, 'd_embedding': 16, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.00042152744054701374, 'n_blocks': 2, 'num_emb_n_bins': 109, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.00014007839435474664}, {'ag_args': {'name_suffix': '_r69', 'priority': -21}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 848, 'd_embedding': 28, 'dropout': 0.40215621636031007, 'gradient_clipping_norm': 1.0, 'lr': 0.0010413640454559532, 'n_blocks': 3, 'num_emb_n_bins': 18, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r184', 'priority': -24}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 864, 'd_embedding': 24, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.0019256819924656217, 'n_blocks': 3, 'num_emb_n_bins': 3, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r34', 'priority': -26}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 896, 'd_embedding': 8, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.002459175026451607, 'n_blocks': 4, 'num_emb_n_bins': 104, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0006299584388562901}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -14}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -16}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -20}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -23}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}], 'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -15}}], 'GBM': [{'ag_args': {'name_suffix': '_r73', 'priority': -19}, 'bagging_fraction': 0.7295548973583, 'bagging_freq': 1, 'cat_l2': 1.8025485263237, 'cat_smooth': 59.6178463268351, 'extra_trees': False, 'feature_fraction': 0.8242607305914, 'lambda_l1': 0.7265522905459, 'lambda_l2': 0.3492160682092, 'learning_rate': 0.0068803786367, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r37', 'priority': -22}, 'bagging_fraction': 0.8096374561947, 'bagging_freq': 1, 'cat_l2': 1.6385754694703, 'cat_smooth': 16.1922506671724, 'extra_trees': True, 'feature_fraction': 0.885927003286, 'lambda_l1': 0.0430386950502, 'lambda_l2': 0.2507506811761, 'learning_rate': 0.0079622660542, 'max_cat_to_onehot': 23, 'min_data_in_leaf': 7, 'min_data_per_group': 49, 'num_leaves': 6}, {'ag_args': {'name_suffix': '_r162', 'priority': -25}, 'bagging_fraction': 0.7552878818396, 'bagging_freq': 1, 'cat_l2': 0.0081083103544, 'cat_smooth': 75.7373446363438, 'extra_trees': False, 'feature_fraction': 0.6171258454584, 'lambda_l1': 0.1071522383181, 'lambda_l2': 1.7882554584069, 'learning_rate': 0.0229328987255, 'max_cat_to_onehot': 24, 'min_data_in_leaf': 23, 'min_data_per_group': 2, 'num_leaves': 125}, {'ag_args': {'name_suffix': '_r57', 'priority': -27}, 'bagging_fraction': 0.8515739264605, 'bagging_freq': 1, 'cat_l2': 0.2263901847144, 'cat_smooth': 1.7397457971767, 'extra_trees': True, 'feature_fraction': 0.6284015946887, 'lambda_l1': 0.6935431676756, 'lambda_l2': 1.7605230133162, 'learning_rate': 0.0294830579218, 'max_cat_to_onehot': 52, 'min_data_in_leaf': 8, 'min_data_per_group': 3, 'num_leaves': 43}, {'ag_args': {'name_suffix': '_r33', 'priority': -28}, 'bagging_fraction': 0.9625293420216, 'bagging_freq': 1, 'cat_l2': 0.1236875455555, 'cat_smooth': 68.8584757332856, 'extra_trees': False, 'feature_fraction': 0.6189215809382, 'lambda_l1': 0.1641757352921, 'lambda_l2': 0.6937755557881, 'learning_rate': 0.0154031028561, 'max_cat_to_onehot': 17, 'min_data_in_leaf': 1, 'min_data_per_group': 30, 'num_leaves': 68}], 'REALTABPFN-V2': [{'ag_args': {'name_suffix': '_r13', 'priority': -1}, 'ag_args_ensemble': {'model_random_seed': 104, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None, 'safepower'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default', 'quantile_uni_coarse'], 'softmax_temperature': 1.0, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r106', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 848, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['quantile_uni_coarse'], 'softmax_temperature': 0.8, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r11', 'priority': -6}, 'ag_args_ensemble': {'model_random_seed': 88, 'vary_seed_across_folds': True}, 'balance_probabilities': True, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 25, 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'onehot', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['safepower', 'quantile_uni'], 'softmax_temperature': 0.7, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_c1', 'priority': -8}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r196', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 1568, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 12, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': ['kdi_alpha_1.0'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default'], 'softmax_temperature': 1.25, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}]}
|
|
@@ -629,8 +629,6 @@ class AbstractTabularLearner(AbstractLearner):
|
|
|
629
629
|
pred_time_test[model] = None
|
|
630
630
|
pred_time_test_marginal[model] = None
|
|
631
631
|
|
|
632
|
-
logger.debug("Model scores:")
|
|
633
|
-
logger.debug(str(scores))
|
|
634
632
|
model_names_final = list(scores.keys())
|
|
635
633
|
df = pd.DataFrame(
|
|
636
634
|
data={
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
from autogluon.core.models.abstract.abstract_model import AbstractModel
|
|
2
2
|
|
|
3
|
+
from .tabprep.prep_lgb_model import PrepLGBModel
|
|
3
4
|
from .automm.automm_model import MultiModalPredictorModel
|
|
4
5
|
from .automm.ft_transformer import FTTransformerModel
|
|
5
6
|
from .catboost.catboost_model import CatBoostModel
|
|
@@ -20,10 +21,11 @@ from .lgb.lgb_model import LGBModel
|
|
|
20
21
|
from .lr.lr_model import LinearModel
|
|
21
22
|
from .realmlp.realmlp_model import RealMLPModel
|
|
22
23
|
from .rf.rf_model import RFModel
|
|
24
|
+
from .tabdpt.tabdpt_model import TabDPTModel
|
|
23
25
|
from .tabicl.tabicl_model import TabICLModel
|
|
24
26
|
from .tabm.tabm_model import TabMModel
|
|
25
|
-
from .tabpfnv2.tabpfnv2_model import TabPFNV2Model
|
|
26
27
|
from .tabpfnmix.tabpfnmix_model import TabPFNMixModel
|
|
28
|
+
from .tabpfnv2.tabpfnv2_5_model import RealTabPFNv2Model, RealTabPFNv25Model
|
|
27
29
|
from .mitra.mitra_model import MitraModel
|
|
28
30
|
from .tabular_nn.torch.tabular_nn_torch import TabularNeuralNetTorchModel
|
|
29
31
|
from .text_prediction.text_prediction_v1_model import TextPredictorModel
|
autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/abstract/abstract_torch_model.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
|
|
5
|
+
from autogluon.core.models import AbstractModel
|
|
6
|
+
|
|
7
|
+
logger = logging.getLogger(__name__)
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
# TODO: Add type hints once torch is a required dependency
|
|
11
|
+
class AbstractTorchModel(AbstractModel):
|
|
12
|
+
"""
|
|
13
|
+
.. versionadded:: 1.5.0
|
|
14
|
+
"""
|
|
15
|
+
def __init__(self, **kwargs):
|
|
16
|
+
super().__init__(**kwargs)
|
|
17
|
+
self.device = None
|
|
18
|
+
self.device_train = None
|
|
19
|
+
|
|
20
|
+
def suggest_device_infer(self, verbose: bool = False) -> str:
|
|
21
|
+
import torch
|
|
22
|
+
|
|
23
|
+
# Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
|
|
24
|
+
if self.device_train is None:
|
|
25
|
+
original_device_type = None # skip update because no device is recorded
|
|
26
|
+
elif isinstance(self.device_train, str):
|
|
27
|
+
original_device_type = self.device_train
|
|
28
|
+
else:
|
|
29
|
+
original_device_type = self.device_train.type
|
|
30
|
+
if original_device_type is None:
|
|
31
|
+
# fallback to CPU
|
|
32
|
+
device = torch.device("cpu")
|
|
33
|
+
elif "cuda" in original_device_type:
|
|
34
|
+
# cuda: nvidia GPU
|
|
35
|
+
device = torch.device(original_device_type if torch.cuda.is_available() else "cpu")
|
|
36
|
+
elif "mps" in original_device_type:
|
|
37
|
+
# mps: Apple Silicon
|
|
38
|
+
device = torch.device(original_device_type if torch.backends.mps.is_available() else "cpu")
|
|
39
|
+
else:
|
|
40
|
+
device = torch.device(original_device_type)
|
|
41
|
+
|
|
42
|
+
if verbose and (original_device_type != device.type):
|
|
43
|
+
logger.log(
|
|
44
|
+
15,
|
|
45
|
+
f"Model is trained on {original_device_type}, but the device is not available - "
|
|
46
|
+
f"loading on {device.type}...",
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
return device.type
|
|
50
|
+
|
|
51
|
+
@classmethod
|
|
52
|
+
def to_torch_device(cls, device: str):
|
|
53
|
+
import torch
|
|
54
|
+
return torch.device(device)
|
|
55
|
+
|
|
56
|
+
def get_device(self) -> str:
|
|
57
|
+
"""
|
|
58
|
+
Returns torch.device(...) of the fitted model
|
|
59
|
+
|
|
60
|
+
Requires implementation by the inheriting model class.
|
|
61
|
+
Refer to overriding methods in existing models for reference implementations.
|
|
62
|
+
"""
|
|
63
|
+
raise NotImplementedError
|
|
64
|
+
|
|
65
|
+
def set_device(self, device: str):
|
|
66
|
+
if not isinstance(device, str):
|
|
67
|
+
device = device.type
|
|
68
|
+
self.device = device
|
|
69
|
+
self._set_device(device=device)
|
|
70
|
+
|
|
71
|
+
def _set_device(self, device: str):
|
|
72
|
+
"""
|
|
73
|
+
Sets the device for the inner model object.
|
|
74
|
+
|
|
75
|
+
Requires implementation by the inheriting model class.
|
|
76
|
+
Refer to overriding methods in existing models for reference implementations.
|
|
77
|
+
|
|
78
|
+
If your model does not need to edit inner model object details, you can simply make the logic `pass`.
|
|
79
|
+
"""
|
|
80
|
+
raise NotImplementedError
|
|
81
|
+
|
|
82
|
+
def _post_fit(self, **kwargs):
|
|
83
|
+
super()._post_fit(**kwargs)
|
|
84
|
+
if self._get_class_tags().get("can_set_device", False):
|
|
85
|
+
self.device_train = self.get_device()
|
|
86
|
+
self.device = self.device_train
|
|
87
|
+
return self
|
|
88
|
+
|
|
89
|
+
def save(self, path: str = None, verbose=True) -> str:
|
|
90
|
+
"""
|
|
91
|
+
Need to set device to CPU to be able to load on a non-GPU environment
|
|
92
|
+
"""
|
|
93
|
+
reset_device = False
|
|
94
|
+
og_device = self.device
|
|
95
|
+
|
|
96
|
+
# Save on CPU to ensure the model can be loaded without GPU
|
|
97
|
+
if self.is_fit():
|
|
98
|
+
device_save = self._get_class_tags().get("set_device_on_save_to", None)
|
|
99
|
+
if device_save is not None:
|
|
100
|
+
self.set_device(device=device_save)
|
|
101
|
+
reset_device = True
|
|
102
|
+
path = super().save(path=path, verbose=verbose)
|
|
103
|
+
# Put the model back to the device after the save
|
|
104
|
+
if reset_device:
|
|
105
|
+
self.set_device(device=og_device)
|
|
106
|
+
return path
|
|
107
|
+
|
|
108
|
+
@classmethod
|
|
109
|
+
def load(cls, path: str, reset_paths=True, verbose=True):
|
|
110
|
+
"""
|
|
111
|
+
Loads the model from disk to memory.
|
|
112
|
+
The loaded model will be on the same device it was trained on (cuda/mps);
|
|
113
|
+
if the device is not available (trained on GPU, deployed on CPU), then `cpu` will be used.
|
|
114
|
+
|
|
115
|
+
Parameters
|
|
116
|
+
----------
|
|
117
|
+
path : str
|
|
118
|
+
Path to the saved model, minus the file name.
|
|
119
|
+
This should generally be a directory path ending with a '/' character (or appropriate path separator value depending on OS).
|
|
120
|
+
The model file is typically located in os.path.join(path, cls.model_file_name).
|
|
121
|
+
reset_paths : bool, default True
|
|
122
|
+
Whether to reset the self.path value of the loaded model to be equal to path.
|
|
123
|
+
It is highly recommended to keep this value as True unless accessing the original self.path value is important.
|
|
124
|
+
If False, the actual valid path and self.path may differ, leading to strange behaviour and potential exceptions if the model needs to load any other files at a later time.
|
|
125
|
+
verbose : bool, default True
|
|
126
|
+
Whether to log the location of the loaded file.
|
|
127
|
+
|
|
128
|
+
Returns
|
|
129
|
+
-------
|
|
130
|
+
model : cls
|
|
131
|
+
Loaded model object.
|
|
132
|
+
"""
|
|
133
|
+
model = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
|
|
134
|
+
|
|
135
|
+
# Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
|
|
136
|
+
if model.is_fit() and model._get_class_tags().get("set_device_on_load", False):
|
|
137
|
+
device = model.suggest_device_infer(verbose=verbose)
|
|
138
|
+
model.set_device(device=device)
|
|
139
|
+
|
|
140
|
+
return model
|
|
141
|
+
|
|
142
|
+
@classmethod
|
|
143
|
+
def _class_tags(cls):
|
|
144
|
+
return {
|
|
145
|
+
"can_set_device": True,
|
|
146
|
+
"set_device_on_save_to": "cpu",
|
|
147
|
+
"set_device_on_load": True,
|
|
148
|
+
}
|
|
@@ -146,7 +146,7 @@ class CatBoostModel(AbstractModel):
|
|
|
146
146
|
num_cols_train = len(X.columns)
|
|
147
147
|
num_classes = self.num_classes if self.num_classes else 1 # self.num_classes could be None after initialization if it's a regression problem
|
|
148
148
|
|
|
149
|
-
X = self.preprocess(X)
|
|
149
|
+
X = self.preprocess(X, y=y, is_train=True)
|
|
150
150
|
cat_features = list(X.select_dtypes(include="category").columns)
|
|
151
151
|
X = Pool(data=X, label=y, cat_features=cat_features, weight=sample_weight)
|
|
152
152
|
|