autogluon.tabular 1.4.1b20251216__tar.gz → 1.5.1b20260108__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (220) hide show
  1. {autogluon_tabular-1.4.1b20251216/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260108}/PKG-INFO +40 -39
  2. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/setup.py +11 -7
  3. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/hyperparameter_configs.py +4 -0
  4. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/presets_configs.py +39 -2
  5. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +2 -44
  6. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +2 -0
  7. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +2 -0
  8. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/abstract_learner.py +0 -2
  9. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/__init__.py +3 -1
  10. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/abstract/abstract_torch_model.py +148 -0
  11. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_model.py +1 -1
  12. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +5 -1
  13. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_model.py +58 -8
  14. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/lgb_utils.py +2 -2
  15. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +14 -1
  16. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/mitra_model.py +53 -22
  17. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/realmlp/realmlp_model.py +8 -2
  18. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +256 -0
  19. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabicl/tabicl_model.py +15 -2
  20. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_model.py +23 -79
  21. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +451 -0
  22. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
  23. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep/prep_mixin.py +220 -0
  24. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -3
  25. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +1 -1
  26. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +12 -4
  27. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_model.py +2 -0
  28. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xt/__init__.py +0 -0
  29. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/predictor.py +48 -19
  30. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_ag_model_registry.py +8 -2
  31. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/fit_helper.py +33 -0
  32. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/abstract_trainer.py +36 -6
  33. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/auto_trainer.py +1 -0
  34. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  35. autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/tuning/__init__.py +0 -0
  36. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/version.py +1 -1
  37. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108/src/autogluon.tabular.egg-info}/PKG-INFO +40 -39
  38. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/SOURCES.txt +10 -8
  39. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/requires.txt +40 -38
  40. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  41. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  42. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  43. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  44. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  45. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  46. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  47. autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -388
  48. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/LICENSE +0 -0
  49. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/NOTICE +0 -0
  50. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/README.md +0 -0
  51. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/setup.cfg +0 -0
  52. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/__init__.py +0 -0
  53. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/__init__.py +0 -0
  54. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/config_helper.py +0 -0
  55. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  56. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
  57. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  58. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  59. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/__init__.py +0 -0
  60. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  61. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  62. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  63. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  64. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/__init__.py +0 -0
  65. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/learner/default_learner.py +0 -0
  66. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  67. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  68. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  69. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/automm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/abstract}/__init__.py +0 -0
  70. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/catboost → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/automm}/__init__.py +0 -0
  71. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  72. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  73. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/catboost/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/catboost}/__init__.py +0 -0
  74. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  75. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  76. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  77. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/ebm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/catboost/hyperparameters}/__init__.py +0 -0
  78. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  79. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  80. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/ebm/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/ebm}/__init__.py +0 -0
  81. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
  82. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fastainn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/ebm/hyperparameters}/__init__.py +0 -0
  83. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
  84. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
  85. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fastainn/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fastainn}/__init__.py +0 -0
  86. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  87. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  88. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fasttext → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fastainn/hyperparameters}/__init__.py +0 -0
  89. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  90. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  91. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  92. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  93. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/fasttext/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fasttext}/__init__.py +0 -0
  94. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  95. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/image_prediction → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/fasttext/hyperparameters}/__init__.py +0 -0
  96. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  97. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/imodels → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/image_prediction}/__init__.py +0 -0
  98. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  99. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/knn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/imodels}/__init__.py +0 -0
  100. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  101. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lgb → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/knn}/__init__.py +0 -0
  102. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  103. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  104. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  105. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  106. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lgb/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lgb}/__init__.py +0 -0
  107. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  108. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lr → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lgb/hyperparameters}/__init__.py +0 -0
  109. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  110. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  111. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/lr/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lr}/__init__.py +0 -0
  112. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/mitra → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/lr/hyperparameters}/__init__.py +0 -0
  113. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  114. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  115. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  116. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  117. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  118. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/realmlp → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/mitra}/__init__.py +0 -0
  119. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  120. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  121. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  122. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  123. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  124. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  125. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  126. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  127. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  128. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  129. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  130. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  131. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  132. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
  133. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
  134. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  135. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  136. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  137. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  138. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
  139. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  140. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  141. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
  142. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/rf → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/realmlp}/__init__.py +0 -0
  143. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/rf/compilers → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/rf}/__init__.py +0 -0
  144. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabicl → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/rf/compilers}/__init__.py +0 -0
  145. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  146. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  147. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  148. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  149. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  150. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabm → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabdpt}/__init__.py +0 -0
  151. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabicl}/__init__.py +0 -0
  152. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabm}/__init__.py +0 -0
  153. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  154. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
  155. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
  156. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/config → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix}/__init__.py +0 -0
  157. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/core → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal}/__init__.py +0 -0
  158. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/data → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/config}/__init__.py +0 -0
  159. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  160. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/models → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/core}/__init__.py +0 -0
  161. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  162. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  163. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  164. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  165. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  166. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  167. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  168. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  169. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  170. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/data}/__init__.py +0 -0
  171. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  172. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  173. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnmix/_internal/results → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/models}/__init__.py +0 -0
  174. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabpfnv2 → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation}/__init__.py +0 -0
  175. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  176. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  177. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnmix/_internal/results}/__init__.py +0 -0
  178. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  179. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  180. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  181. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  182. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/compilers → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabpfnv2}/__init__.py +0 -0
  183. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabprep}/__init__.py +0 -0
  184. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/torch → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn}/__init__.py +0 -0
  185. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/tabular_nn/utils → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/compilers}/__init__.py +0 -0
  186. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  187. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  188. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/text_prediction → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/hyperparameters}/__init__.py +0 -0
  189. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  190. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  191. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xgboost → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/torch}/__init__.py +0 -0
  192. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  193. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  194. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xgboost/hyperparameters → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/tabular_nn/utils}/__init__.py +0 -0
  195. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  196. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/models/xt → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/text_prediction}/__init__.py +0 -0
  197. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  198. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/trainer/model_presets → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xgboost}/__init__.py +0 -0
  199. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  200. {autogluon_tabular-1.4.1b20251216/src/autogluon/tabular/tuning → autogluon_tabular-1.5.1b20260108/src/autogluon/tabular/models/xgboost/hyperparameters}/__init__.py +0 -0
  201. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  202. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  203. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  204. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  205. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/__init__.py +0 -0
  206. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  207. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/__init__.py +0 -0
  208. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  209. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/__init__.py +0 -0
  210. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  211. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  212. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/__init__.py +0 -0
  213. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  214. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  215. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  216. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  217. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  218. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  219. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/src/autogluon.tabular.egg-info/zip-safe +0 -0
  220. {autogluon_tabular-1.4.1b20251216 → autogluon_tabular-1.5.1b20260108}/tests/test_check_style.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20251216
3
+ Version: 1.5.1b20260108
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,27 +40,28 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.4.1b20251216
44
- Requires-Dist: autogluon.features==1.4.1b20251216
43
+ Requires-Dist: autogluon.core==1.5.1b20260108
44
+ Requires-Dist: autogluon.features==1.5.1b20260108
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
48
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
49
48
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
50
49
  Provides-Extra: xgboost
51
- Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
50
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
52
51
  Provides-Extra: realmlp
53
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
52
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
54
53
  Provides-Extra: interpret
55
54
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
56
55
  Provides-Extra: fastai
57
56
  Requires-Dist: spacy<3.9; extra == "fastai"
58
57
  Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
59
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
58
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
60
59
  Provides-Extra: tabm
61
60
  Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
62
61
  Provides-Extra: tabpfn
63
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
62
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
63
+ Provides-Extra: tabdpt
64
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
64
65
  Provides-Extra: tabpfnmix
65
66
  Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
66
67
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
@@ -74,11 +75,11 @@ Requires-Dist: transformers; extra == "mitra"
74
75
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
75
76
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
76
77
  Provides-Extra: tabicl
77
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
78
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
78
79
  Provides-Extra: ray
79
- Requires-Dist: autogluon.core[all]==1.4.1b20251216; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "ray"
80
81
  Provides-Extra: skex
81
- Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
82
+ Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
82
83
  Provides-Extra: imodels
83
84
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
84
85
  Provides-Extra: skl2onnx
@@ -88,44 +89,44 @@ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "
88
89
  Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
89
90
  Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
90
91
  Provides-Extra: all
91
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
92
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
92
+ Requires-Dist: spacy<3.9; extra == "all"
93
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
94
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
95
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
93
96
  Requires-Dist: torch<2.10,>=2.6; extra == "all"
94
- Requires-Dist: omegaconf; extra == "all"
95
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
96
- Requires-Dist: autogluon.core[all]==1.4.1b20251216; extra == "all"
97
97
  Requires-Dist: loguru; extra == "all"
98
- Requires-Dist: transformers; extra == "all"
99
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
100
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
101
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
102
- Requires-Dist: einx; extra == "all"
103
- Requires-Dist: spacy<3.9; extra == "all"
98
+ Requires-Dist: omegaconf; extra == "all"
104
99
  Requires-Dist: einops<0.9,>=0.7; extra == "all"
100
+ Requires-Dist: einx; extra == "all"
101
+ Requires-Dist: transformers; extra == "all"
102
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
103
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "all"
104
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
105
105
  Provides-Extra: tabarena
106
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
107
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
106
+ Requires-Dist: spacy<3.9; extra == "tabarena"
107
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
108
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
109
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
108
110
  Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
109
- Requires-Dist: omegaconf; extra == "tabarena"
110
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
111
- Requires-Dist: autogluon.core[all]==1.4.1b20251216; extra == "tabarena"
112
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
113
111
  Requires-Dist: loguru; extra == "tabarena"
114
- Requires-Dist: transformers; extra == "tabarena"
115
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
116
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
117
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
118
- Requires-Dist: einx; extra == "tabarena"
119
- Requires-Dist: spacy<3.9; extra == "tabarena"
112
+ Requires-Dist: omegaconf; extra == "tabarena"
120
113
  Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
121
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
122
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
114
+ Requires-Dist: einx; extra == "tabarena"
115
+ Requires-Dist: transformers; extra == "tabarena"
116
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
118
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
119
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
120
+ Requires-Dist: autogluon.core[all]==1.5.1b20260108; extra == "tabarena"
121
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
122
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
123
123
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
127
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
128
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
126
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
127
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
128
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
129
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
129
130
  Requires-Dist: torch<2.10,>=2.6; extra == "tests"
130
131
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
131
132
  Requires-Dist: einops<0.9,>=0.7; extra == "tests"
@@ -41,14 +41,13 @@ extras_require = {
41
41
  "lightgbm>=4.0,<4.7", # <{N+1} upper cap, where N is the latest released minor version
42
42
  ],
43
43
  "catboost": [
44
- "numpy>=1.25,<2.3.0",
45
44
  "catboost>=1.2,<1.3",
46
45
  ],
47
46
  "xgboost": [
48
- "xgboost>=2.0,<3.1", # <{N+1} upper cap, where N is the latest released minor version
47
+ "xgboost>=2.0,<3.2", # <{N+1} upper cap, where N is the latest released minor version
49
48
  ],
50
49
  "realmlp": [
51
- "pytabkit>=1.6,<1.7",
50
+ "pytabkit>=1.7.2,<1.8",
52
51
  ],
53
52
  "interpret": [
54
53
  "interpret-core>=0.7.2,<0.8",
@@ -56,13 +55,16 @@ extras_require = {
56
55
  "fastai": [
57
56
  "spacy<3.9",
58
57
  "torch", # version range defined in `core/_setup_utils.py`
59
- "fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
58
+ "fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
60
59
  ],
61
60
  "tabm": [
62
61
  "torch", # version range defined in `core/_setup_utils.py`
63
62
  ],
64
63
  "tabpfn": [
65
- "tabpfn>=2.0.9,<2.2", # <{N+1} upper cap, where N is the latest released minor version
64
+ "tabpfn>=6.2.0,<6.2.1", # <{N+1} upper cap, where N is the latest released minor version
65
+ ],
66
+ "tabdpt": [
67
+ "tabdpt>=1.1.11,<1.2",
66
68
  ],
67
69
  "tabpfnmix": [
68
70
  "torch", # version range defined in `core/_setup_utils.py`
@@ -79,13 +81,13 @@ extras_require = {
79
81
  "einops>=0.7,<0.9",
80
82
  ],
81
83
  "tabicl": [
82
- "tabicl>=0.1.3,<0.2", # 0.1.3 added a major bug fix to multithreading.
84
+ "tabicl>=0.1.4,<0.2", # 0.1.4 added python 3.13 support
83
85
  ],
84
86
  "ray": [
85
87
  f"{ag.PACKAGE_NAME}.core[all]=={version}",
86
88
  ],
87
89
  "skex": [
88
- "scikit-learn-intelex>=2024.0,<2025.5", # <{N+1} upper cap, where N is the latest released minor version
90
+ "scikit-learn-intelex>=2025.0,<2025.10", # <{N+1} upper cap, where N is the latest released minor version
89
91
  ],
90
92
  "imodels": [
91
93
  "imodels>=1.3.10,<2.1.0", # 1.3.8/1.3.9 either remove/renamed attribute `complexity_` causing failures. https://github.com/csinva/imodels/issues/147
@@ -121,6 +123,7 @@ extras_require["all"] = all_requires
121
123
  tabarena_requires = copy.deepcopy(all_requires)
122
124
  for extra_package in [
123
125
  "interpret",
126
+ "tabdpt",
124
127
  "tabicl",
125
128
  "tabpfn",
126
129
  "realmlp",
@@ -132,6 +135,7 @@ extras_require["tabarena"] = tabarena_requires
132
135
  test_requires = []
133
136
  for test_package in [
134
137
  "interpret",
138
+ "tabdpt",
135
139
  "tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
136
140
  "tabpfn",
137
141
  "realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
@@ -2,6 +2,8 @@ import copy
2
2
 
3
3
  from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
4
4
  from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
5
+ from .zeroshot.zeroshot_portfolio_cpu_2025_12_18 import hyperparameter_portfolio_zeroshot_cpu_2025_12_18
6
+ from .zeroshot.zeroshot_portfolio_gpu_2025_12_18 import hyperparameter_portfolio_zeroshot_gpu_2025_12_18
5
7
 
6
8
  # Dictionary of preset hyperparameter configurations.
7
9
  hyperparameter_config_dict = dict(
@@ -117,6 +119,8 @@ hyperparameter_config_dict = dict(
117
119
  zeroshot=hyperparameter_portfolio_zeroshot_2023,
118
120
  zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
119
121
  zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
122
+ zeroshot_2025_12_18_gpu=hyperparameter_portfolio_zeroshot_gpu_2025_12_18,
123
+ zeroshot_2025_12_18_cpu=hyperparameter_portfolio_zeroshot_cpu_2025_12_18,
120
124
  )
121
125
 
122
126
  tabpfnmix_default = {
@@ -9,6 +9,15 @@ tabular_presets_dict = dict(
9
9
  "hyperparameters": "zeroshot",
10
10
  "time_limit": 3600,
11
11
  },
12
+
13
+ best_quality_v150={
14
+ "auto_stack": True,
15
+ "dynamic_stacking": "auto",
16
+ "num_stack_levels": 0,
17
+ "hyperparameters": "zeroshot_2025_12_18_cpu",
18
+ "time_limit": 3600,
19
+ "callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
20
+ },
12
21
  # High predictive accuracy with fast inference. ~8x faster inference and ~8x lower disk usage than `best_quality`.
13
22
  # Recommended for applications that require fast inference speed and/or small model size.
14
23
  # Aliases: high
@@ -21,6 +30,19 @@ tabular_presets_dict = dict(
21
30
  "set_best_to_refit_full": True,
22
31
  "save_bag_folds": False,
23
32
  },
33
+
34
+ high_quality_v150={
35
+ "auto_stack": True,
36
+ "dynamic_stacking": "auto",
37
+ "num_stack_levels": 0,
38
+ "hyperparameters": "zeroshot_2025_12_18_cpu",
39
+ "time_limit": 3600,
40
+ "callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
41
+ "refit_full": True,
42
+ "set_best_to_refit_full": True,
43
+ "save_bag_folds": False,
44
+ },
45
+
24
46
  # Good predictive accuracy with very fast inference. ~4x faster training, ~8x faster inference and ~8x lower disk usage than `high_quality`.
25
47
  # Recommended for applications that require very fast inference speed.
26
48
  # Aliases: good
@@ -78,11 +100,20 @@ tabular_presets_dict = dict(
78
100
  # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
79
101
  # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
80
102
  # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
81
- # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
103
+ # Uses pre-trained tabular foundation models, which add a minimum of 100 MB to the predictor artifact's size.
82
104
  # For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
83
105
  # Aliases: extreme, experimental, experimental_quality
84
106
  # GPU STRONGLY RECOMMENDED
85
107
  extreme_quality={
108
+ "auto_stack": True,
109
+ "dynamic_stacking": "auto",
110
+ "num_stack_levels": 0,
111
+ "hyperparameters": "zeroshot_2025_12_18_gpu",
112
+ "time_limit": 3600,
113
+ "callbacks": [["EarlyStoppingCountCallback", {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]}]],
114
+ },
115
+
116
+ extreme_quality_v140={
86
117
  "auto_stack": True,
87
118
  "dynamic_stacking": "auto",
88
119
  "num_bag_sets": 1,
@@ -140,5 +171,11 @@ tabular_presets_alias = dict(
140
171
  mq="medium_quality",
141
172
  experimental="extreme_quality",
142
173
  experimental_quality="extreme_quality",
143
- experimental_quality_v140="extreme_quality",
174
+ experimental_quality_v140="extreme_quality_v140",
175
+ best_v140="best_quality",
176
+ best_v150="best_quality_v150",
177
+ best_quality_v140="best_quality",
178
+ high_v150="high_quality_v150",
179
+ extreme_v140="extreme_quality_v140",
180
+ extreme_v150="extreme_quality",
144
181
  )
@@ -1,50 +1,8 @@
1
1
  # optimized for <=10000 samples and <=500 features, with a GPU present
2
2
  hyperparameter_portfolio_zeroshot_2025_small = {
3
- "TABPFNV2": [
3
+ "REALTABPFN-V2": [
4
4
  {
5
- "ag_args": {'name_suffix': '_r143', 'priority': -1},
6
- "average_before_softmax": False,
7
- "classification_model_path": 'tabpfn-v2-classifier-od3j1g5m.ckpt',
8
- "inference_config/FINGERPRINT_FEATURE": False,
9
- "inference_config/OUTLIER_REMOVAL_STD": None,
10
- "inference_config/POLYNOMIAL_FEATURES": 'no',
11
- "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'safepower', 'subsample_features': -1}, {'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': -1}],
12
- "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None, 'power'],
13
- "inference_config/SUBSAMPLE_SAMPLES": 0.99,
14
- "model_type": 'single',
15
- "n_ensemble_repeats": 4,
16
- "regression_model_path": 'tabpfn-v2-regressor-wyl4o83o.ckpt',
17
- "softmax_temperature": 0.75,
18
- },
19
- {
20
- "ag_args": {'name_suffix': '_r94', 'priority': -3},
21
- "average_before_softmax": True,
22
- "classification_model_path": 'tabpfn-v2-classifier-vutqq28w.ckpt',
23
- "inference_config/FINGERPRINT_FEATURE": True,
24
- "inference_config/OUTLIER_REMOVAL_STD": None,
25
- "inference_config/POLYNOMIAL_FEATURES": 'no',
26
- "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': 0.99}],
27
- "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
28
- "inference_config/SUBSAMPLE_SAMPLES": None,
29
- "model_type": 'single',
30
- "n_ensemble_repeats": 4,
31
- "regression_model_path": 'tabpfn-v2-regressor-5wof9ojf.ckpt',
32
- "softmax_temperature": 0.9,
33
- },
34
- {
35
- "ag_args": {'name_suffix': '_r181', 'priority': -4},
36
- "average_before_softmax": False,
37
- "classification_model_path": 'tabpfn-v2-classifier-llderlii.ckpt',
38
- "inference_config/FINGERPRINT_FEATURE": False,
39
- "inference_config/OUTLIER_REMOVAL_STD": 9.0,
40
- "inference_config/POLYNOMIAL_FEATURES": 50,
41
- "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'onehot', 'global_transformer_name': 'svd', 'name': 'quantile_uni_coarse', 'subsample_features': 0.99}],
42
- "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": ['power'],
43
- "inference_config/SUBSAMPLE_SAMPLES": None,
44
- "model_type": 'single',
45
- "n_ensemble_repeats": 4,
46
- "regression_model_path": 'tabpfn-v2-regressor.ckpt',
47
- "softmax_temperature": 0.95,
5
+ "ag_args": {'priority': -1},
48
6
  },
49
7
  ],
50
8
  "GBM": [
@@ -0,0 +1,2 @@
1
+ # On par with `best_quality` while being much faster for smaller datasets. Runs on CPU.
2
+ hyperparameter_portfolio_zeroshot_cpu_2025_12_18 = {'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -1}}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -17}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r47', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9918048278435, 'bagging_freq': 1, 'cat_l2': 0.984162386723, 'cat_smooth': 0.0049687445294, 'extra_trees': True, 'feature_fraction': 0.4974006116018, 'lambda_l1': 0.7970644065518, 'lambda_l2': 1.2179933810825, 'learning_rate': 0.0537072755122, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 1, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r1', 'priority': -19}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8836335684032, 'bagging_freq': 1, 'cat_l2': 0.6608043016307, 'cat_smooth': 0.0451936212097, 'extra_trees': True, 'feature_fraction': 0.6189315903408, 'lambda_l1': 0.6514130054123, 'lambda_l2': 1.7382678663835, 'learning_rate': 0.0412716109215, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 9, 'min_data_per_group': 3, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r19', 'priority': -26}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7106002663401, 'bagging_freq': 1, 'cat_l2': 0.1559746777257, 'cat_smooth': 0.0036366126697, 'extra_trees': False, 'feature_fraction': 0.688233104808, 'lambda_l1': 0.8732887427372, 'lambda_l2': 0.446716114323, 'learning_rate': 0.0815946452855, 'max_cat_to_onehot': 78, 'min_data_in_leaf': 12, 'min_data_per_group': 2, 'num_leaves': 16}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r34', 'priority': -32}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8453534561545, 'bagging_freq': 1, 'cat_l2': 0.0321580936847, 'cat_smooth': 0.0011470238114, 'extra_trees': True, 'feature_fraction': 0.8611499511087, 'lambda_l1': 0.910743969343, 'lambda_l2': 1.2750027607225, 'learning_rate': 0.0151455176168, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 60, 'min_data_per_group': 4, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r32', 'priority': -37}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.927947070297, 'bagging_freq': 1, 'cat_l2': 0.0082294539727, 'cat_smooth': 0.0671878797989, 'extra_trees': True, 'feature_fraction': 0.9169657691675, 'lambda_l1': 0.9386485912678, 'lambda_l2': 1.619775689786, 'learning_rate': 0.0056864355547, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r7', 'priority': -38}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.8984634022103, 'bagging_freq': 1, 'cat_l2': 0.0053608956358, 'cat_smooth': 89.7168790664636, 'extra_trees': False, 'feature_fraction': 0.847638045482, 'lambda_l1': 0.5684527742857, 'lambda_l2': 1.0738026980295, 'learning_rate': 0.0417108779005, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 2, 'min_data_per_group': 7, 'num_leaves': 128}, {'ag.prep_params': [[[['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r14', 'priority': -40}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9318953983366, 'bagging_freq': 1, 'cat_l2': 0.065532200068, 'cat_smooth': 0.0696287198368, 'extra_trees': True, 'feature_fraction': 0.4649868965096, 'lambda_l1': 0.6586569196642, 'lambda_l2': 1.7799375779553, 'learning_rate': 0.072046289471, 'max_cat_to_onehot': 72, 'min_data_in_leaf': 26, 'min_data_per_group': 32, 'num_leaves': 32}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r27', 'priority': -42}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.811983527375, 'bagging_freq': 1, 'cat_l2': 0.0255048028385, 'cat_smooth': 1.5339379274002, 'extra_trees': True, 'feature_fraction': 0.5246746068724, 'lambda_l1': 0.9737915306165, 'lambda_l2': 1.929596568261, 'learning_rate': 0.0172284745143, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 8, 'min_data_per_group': 51, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]]]], 'ag_args': {'name_suffix': '_r37', 'priority': -46}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7853761603489, 'bagging_freq': 1, 'cat_l2': 0.2934796127084, 'cat_smooth': 10.1721684646257, 'extra_trees': False, 'feature_fraction': 0.4813265290277, 'lambda_l1': 0.9744837697365, 'lambda_l2': 0.6058665958153, 'learning_rate': 0.0371000014124, 'max_cat_to_onehot': 85, 'min_data_in_leaf': 22, 'min_data_per_group': 3, 'num_leaves': 32}], 'GBM': [{'ag_args': {'name_suffix': '_r177', 'priority': -3}, 'bagging_fraction': 0.8769107816033, 'bagging_freq': 1, 'cat_l2': 0.3418014393813, 'cat_smooth': 15.4304556649114, 'extra_trees': True, 'feature_fraction': 0.4622189821941, 'lambda_l1': 0.2375070586896, 'lambda_l2': 0.3551561351804, 'learning_rate': 0.0178593900218, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 3, 'min_data_per_group': 9, 'num_leaves': 39}, {'ag_args': {'name_suffix': '_r163', 'priority': -5}, 'bagging_fraction': 0.9783898288461, 'bagging_freq': 1, 'cat_l2': 0.1553395260142, 'cat_smooth': 0.0093122749318, 'extra_trees': False, 'feature_fraction': 0.5279825611461, 'lambda_l1': 0.0269274915833, 'lambda_l2': 0.8375250972309, 'learning_rate': 0.0113913650333, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 3, 'min_data_per_group': 75, 'num_leaves': 84}, {'ag_args': {'name_suffix': '_r72', 'priority': -8}, 'bagging_fraction': 0.950146543918, 'bagging_freq': 1, 'cat_l2': 0.2159137242663, 'cat_smooth': 0.0638204395719, 'extra_trees': True, 'feature_fraction': 0.4044759649281, 'lambda_l1': 0.7661581500422, 'lambda_l2': 1.6041759693902, 'learning_rate': 0.0179845918984, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 12, 'min_data_per_group': 3, 'num_leaves': 180}, {'ag_args': {'name_suffix': '_r120', 'priority': -13}, 'bagging_fraction': 0.8541333332514, 'bagging_freq': 1, 'cat_l2': 0.0110343197541, 'cat_smooth': 5.0905236124522, 'extra_trees': True, 'feature_fraction': 0.7334718346252, 'lambda_l1': 0.241338427726, 'lambda_l2': 0.298107723769, 'learning_rate': 0.0126654490778, 'max_cat_to_onehot': 67, 'min_data_in_leaf': 12, 'min_data_per_group': 93, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r6', 'priority': -16}, 'bagging_fraction': 0.8148132107231, 'bagging_freq': 1, 'cat_l2': 0.0058363329714, 'cat_smooth': 0.0289414318324, 'extra_trees': False, 'feature_fraction': 0.939979116902, 'lambda_l1': 0.4369494828584, 'lambda_l2': 0.2997524486083, 'learning_rate': 0.0078971749764, 'max_cat_to_onehot': 28, 'min_data_in_leaf': 24, 'min_data_per_group': 3, 'num_leaves': 8}, {'ag_args': {'name_suffix': '_r184', 'priority': -21}, 'bagging_fraction': 0.8406256713136, 'bagging_freq': 1, 'cat_l2': 0.9284921901786, 'cat_smooth': 0.0898191451684, 'extra_trees': False, 'feature_fraction': 0.5876132298377, 'lambda_l1': 0.078943697912, 'lambda_l2': 0.7713118402478, 'learning_rate': 0.0090676429159, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 17, 'min_data_per_group': 11, 'num_leaves': 2}, {'ag_args': {'name_suffix': '_r46', 'priority': -23}, 'bagging_fraction': 0.999426150416, 'bagging_freq': 1, 'cat_l2': 0.0076879104679, 'cat_smooth': 89.4599055435924, 'extra_trees': False, 'feature_fraction': 0.8588138897928, 'lambda_l1': 0.0413597548025, 'lambda_l2': 0.2258713386858, 'learning_rate': 0.0074056102479, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 1, 'min_data_per_group': 26, 'num_leaves': 14}, {'ag_args': {'name_suffix': '_r68', 'priority': -24}, 'bagging_fraction': 0.7199080522958, 'bagging_freq': 1, 'cat_l2': 0.9369509319667, 'cat_smooth': 11.0984745216942, 'extra_trees': False, 'feature_fraction': 0.9550596478029, 'lambda_l1': 0.1109843723892, 'lambda_l2': 0.5969094177111, 'learning_rate': 0.0079480499426, 'max_cat_to_onehot': 8, 'min_data_in_leaf': 3, 'min_data_per_group': 8, 'num_leaves': 111}, {'ag_args': {'name_suffix': '_r47', 'priority': -29}, 'bagging_fraction': 0.8831228358892, 'bagging_freq': 1, 'cat_l2': 0.1402622388062, 'cat_smooth': 3.3545774392409, 'extra_trees': True, 'feature_fraction': 0.6155890374887, 'lambda_l1': 0.1749502746898, 'lambda_l2': 0.8761391715812, 'learning_rate': 0.00891978331, 'max_cat_to_onehot': 84, 'min_data_in_leaf': 1, 'min_data_per_group': 21, 'num_leaves': 55}, {'ag_args': {'name_suffix': '_r63', 'priority': -31}, 'bagging_fraction': 0.7801003412553, 'bagging_freq': 1, 'cat_l2': 0.0071438335269, 'cat_smooth': 0.1338043459574, 'extra_trees': False, 'feature_fraction': 0.490455360592, 'lambda_l1': 0.6420805635778, 'lambda_l2': 0.5813319300456, 'learning_rate': 0.0308746408751, 'max_cat_to_onehot': 38, 'min_data_in_leaf': 1, 'min_data_per_group': 83, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r39', 'priority': -36}, 'bagging_fraction': 0.7035743460186, 'bagging_freq': 1, 'cat_l2': 0.0134845084619, 'cat_smooth': 56.4934757686511, 'extra_trees': True, 'feature_fraction': 0.7824899527144, 'lambda_l1': 0.3700115211248, 'lambda_l2': 0.0341499593689, 'learning_rate': 0.094652390088, 'max_cat_to_onehot': 13, 'min_data_in_leaf': 13, 'min_data_per_group': 4, 'num_leaves': 23}, {'ag_args': {'name_suffix': '_r18', 'priority': -43}, 'bagging_fraction': 0.7041134150362, 'bagging_freq': 1, 'cat_l2': 0.1139031650222, 'cat_smooth': 41.8937939300815, 'extra_trees': True, 'feature_fraction': 0.5028791565785, 'lambda_l1': 0.1031941284118, 'lambda_l2': 1.2554010747358, 'learning_rate': 0.0186530122901, 'max_cat_to_onehot': 29, 'min_data_in_leaf': 5, 'min_data_per_group': 74, 'num_leaves': 5}, {'ag_args': {'name_suffix': '_r50', 'priority': -45}, 'bagging_fraction': 0.9673434664048, 'bagging_freq': 1, 'cat_l2': 1.7662226703416, 'cat_smooth': 0.0097667848046, 'extra_trees': True, 'feature_fraction': 0.9286299570284, 'lambda_l1': 0.0448644389135, 'lambda_l2': 1.7322446850205, 'learning_rate': 0.0507909494543, 'max_cat_to_onehot': 11, 'min_data_in_leaf': 4, 'min_data_per_group': 2, 'num_leaves': 106}, {'ag_args': {'name_suffix': '_r104', 'priority': -48}, 'bagging_fraction': 0.9327643671568, 'bagging_freq': 1, 'cat_l2': 0.0067636494662, 'cat_smooth': 29.2351010915576, 'extra_trees': False, 'feature_fraction': 0.660864035482, 'lambda_l1': 0.556745328417, 'lambda_l2': 1.2717605868201, 'learning_rate': 0.0433336000175, 'max_cat_to_onehot': 42, 'min_data_in_leaf': 18, 'min_data_per_group': 6, 'num_leaves': 19}], 'NN_TORCH': [{'activation': 'elu', 'ag_args': {'name_suffix': '_r37', 'priority': -4}, 'dropout_prob': 0.0889772897547275, 'hidden_size': 109, 'learning_rate': 0.02184363543226557, 'num_layers': 3, 'use_batchnorm': True, 'weight_decay': 3.1736637236578543e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r31', 'priority': -9}, 'dropout_prob': 0.013288954106470907, 'hidden_size': 81, 'learning_rate': 0.005340914647396153, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 8.76216837077536e-05}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r193', 'priority': -14}, 'dropout_prob': 0.2976404923811552, 'hidden_size': 131, 'learning_rate': 0.0038408014156739775, 'num_layers': 3, 'use_batchnorm': False, 'weight_decay': 0.01745189206113213}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r144', 'priority': -15}, 'dropout_prob': 0.2670859555485912, 'hidden_size': 52, 'learning_rate': 0.015189605588375421, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 2.8013784883244263e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r82', 'priority': -22}, 'dropout_prob': 0.27342918414623907, 'hidden_size': 207, 'learning_rate': 0.0004069380929899853, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.002473667327700422}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r39', 'priority': -27}, 'dropout_prob': 0.21699951000415899, 'hidden_size': 182, 'learning_rate': 0.00014675249427915203, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 9.787353852692089e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r1', 'priority': -30}, 'dropout_prob': 0.23713784729000734, 'hidden_size': 200, 'learning_rate': 0.0031125617090901805, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 4.57301675647447e-08}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r48', 'priority': -34}, 'dropout_prob': 0.14224509513998226, 'hidden_size': 26, 'learning_rate': 0.007085904739869829, 'num_layers': 2, 'use_batchnorm': False, 'weight_decay': 2.465786211798467e-10}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r135', 'priority': -39}, 'dropout_prob': 0.06134755114373829, 'hidden_size': 144, 'learning_rate': 0.005834535148903802, 'num_layers': 5, 'use_batchnorm': True, 'weight_decay': 2.0826540090463376e-09}, {'activation': 'elu', 'ag_args': {'name_suffix': '_r24', 'priority': -49}, 'dropout_prob': 0.257596079691855, 'hidden_size': 168, 'learning_rate': 0.0034108596383714608, 'num_layers': 4, 'use_batchnorm': True, 'weight_decay': 1.4840689603685264e-07}, {'activation': 'relu', 'ag_args': {'name_suffix': '_r159', 'priority': -50}, 'dropout_prob': 0.16724368469920037, 'hidden_size': 44, 'learning_rate': 0.011043937174833164, 'num_layers': 4, 'use_batchnorm': False, 'weight_decay': 0.007265742373924609}], 'FASTAI': [{'ag_args': {'name_suffix': '_r25', 'priority': -6}, 'bs': 1024, 'emb_drop': 0.6167722379778131, 'epochs': 44, 'layers': [200, 100, 50], 'lr': 0.05344037785562929, 'ps': 0.48477211305443607}, {'ag_args': {'name_suffix': '_r162', 'priority': -11}, 'bs': 2048, 'emb_drop': 0.5474625640581479, 'epochs': 45, 'layers': [400, 200], 'lr': 0.0047438648957706655, 'ps': 0.07533239360470734}, {'ag_args': {'name_suffix': '_r147', 'priority': -20}, 'bs': 128, 'emb_drop': 0.6378380130337095, 'epochs': 48, 'layers': [200], 'lr': 0.058027179860229344, 'ps': 0.23253362133888375}, {'ag_args': {'name_suffix': '_r192', 'priority': -25}, 'bs': 1024, 'emb_drop': 0.0698130630643278, 'epochs': 37, 'layers': [400, 200], 'lr': 0.0018949411343821322, 'ps': 0.6526067160491229}, {'ag_args': {'name_suffix': '_r109', 'priority': -28}, 'bs': 128, 'emb_drop': 0.1978897556618756, 'epochs': 49, 'layers': [400, 200, 100], 'lr': 0.02155144303508465, 'ps': 0.005518872455908264}, {'ag_args': {'name_suffix': '_r78', 'priority': -33}, 'bs': 512, 'emb_drop': 0.4897354379753617, 'epochs': 26, 'layers': [400, 200, 100], 'lr': 0.027563880686468895, 'ps': 0.44524273881299886}, {'ag_args': {'name_suffix': '_r150', 'priority': -35}, 'bs': 2048, 'emb_drop': 0.6148607467659958, 'epochs': 27, 'layers': [400, 200], 'lr': 0.09351668652547614, 'ps': 0.5314977162016676}, {'ag_args': {'name_suffix': '_r133', 'priority': -41}, 'bs': 256, 'emb_drop': 0.6242606757570891, 'epochs': 43, 'layers': [200, 100, 50], 'lr': 0.001533613235987637, 'ps': 0.5354961132962562}, {'ag_args': {'name_suffix': '_r99', 'priority': -44}, 'bs': 512, 'emb_drop': 0.6071025838237253, 'epochs': 49, 'layers': [400, 200], 'lr': 0.02669945959641021, 'ps': 0.4897025421573259}, {'ag_args': {'name_suffix': '_r197', 'priority': -47}, 'bs': 256, 'emb_drop': 0.5277230463737563, 'epochs': 45, 'layers': [400, 200], 'lr': 0.006908743712130657, 'ps': 0.08262909528632323}]}
@@ -0,0 +1,2 @@
1
+ # State-of-the-art for datasets < 100k samples. Requires a GPU with at least 20 GB VRAM.
2
+ hyperparameter_portfolio_zeroshot_gpu_2025_12_18 = {'TABDPT': [{'ag_args': {'name_suffix': '_c1', 'priority': -3}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}}, {'ag_args': {'name_suffix': '_r20', 'priority': -5}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'quantile-uniform', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r1', 'priority': -7}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'log1p', 'permute_classes': False, 'temperature': 0.5}, {'ag_args': {'name_suffix': '_r15', 'priority': -9}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 16, 'feature_reduction': 'subsample', 'missing_indicators': False, 'normalizer': 'standard', 'permute_classes': True, 'temperature': 0.7}, {'ag_args': {'name_suffix': '_r22', 'priority': -11}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': False}, 'clip_sigma': 8, 'feature_reduction': 'pca', 'missing_indicators': True, 'normalizer': 'robust', 'permute_classes': False, 'temperature': 0.5}], 'TABICL': [{'ag_args': {'name_suffix': '_c1', 'priority': -4}, 'ag_args_ensemble': {'refit_folds': True}}], 'MITRA': [{'ag_args': {'name_suffix': '_c1', 'priority': -12}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}}], 'TABM': [{'ag_args': {'name_suffix': '_r99', 'priority': -13}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 880, 'd_embedding': 24, 'dropout': 0.10792355695428629, 'gradient_clipping_norm': 1.0, 'lr': 0.0013641856391615784, 'n_blocks': 5, 'num_emb_n_bins': 16, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r124', 'priority': -17}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 208, 'd_embedding': 16, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.00042152744054701374, 'n_blocks': 2, 'num_emb_n_bins': 109, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.00014007839435474664}, {'ag_args': {'name_suffix': '_r69', 'priority': -21}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 848, 'd_embedding': 28, 'dropout': 0.40215621636031007, 'gradient_clipping_norm': 1.0, 'lr': 0.0010413640454559532, 'n_blocks': 3, 'num_emb_n_bins': 18, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r184', 'priority': -24}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 864, 'd_embedding': 24, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.0019256819924656217, 'n_blocks': 3, 'num_emb_n_bins': 3, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0}, {'ag_args': {'name_suffix': '_r34', 'priority': -26}, 'amp': False, 'arch_type': 'tabm-mini', 'batch_size': 'auto', 'd_block': 896, 'd_embedding': 8, 'dropout': 0.0, 'gradient_clipping_norm': 1.0, 'lr': 0.002459175026451607, 'n_blocks': 4, 'num_emb_n_bins': 104, 'num_emb_type': 'pwl', 'patience': 16, 'share_training_batches': False, 'tabm_k': 32, 'weight_decay': 0.0006299584388562901}], 'GBM_PREP': [{'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r13', 'priority': -14}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9923026236907, 'bagging_freq': 1, 'cat_l2': 0.014290368488, 'cat_smooth': 1.8662939903973, 'extra_trees': True, 'feature_fraction': 0.5533919718605, 'lambda_l1': 0.914411672958, 'lambda_l2': 1.90439560009, 'learning_rate': 0.0193225778401, 'max_cat_to_onehot': 18, 'min_data_in_leaf': 28, 'min_data_per_group': 54, 'num_leaves': 64}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r41', 'priority': -16}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7215411996558, 'bagging_freq': 1, 'cat_l2': 1.887369154362, 'cat_smooth': 0.0278693980873, 'extra_trees': True, 'feature_fraction': 0.4247583287144, 'lambda_l1': 0.1129800247772, 'lambda_l2': 0.2623265718536, 'learning_rate': 0.0074201920651, 'max_cat_to_onehot': 9, 'min_data_in_leaf': 15, 'min_data_per_group': 10, 'num_leaves': 8}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r31', 'priority': -18}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9591526242875, 'bagging_freq': 1, 'cat_l2': 1.8962346412823, 'cat_smooth': 0.0215219089995, 'extra_trees': False, 'feature_fraction': 0.5791844062459, 'lambda_l1': 0.938461750637, 'lambda_l2': 0.9899852075056, 'learning_rate': 0.0397613094741, 'max_cat_to_onehot': 27, 'min_data_in_leaf': 1, 'min_data_per_group': 39, 'num_leaves': 16}, {'ag.prep_params': [], 'ag_args': {'name_suffix': '_r21', 'priority': -20}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.7111549514262, 'bagging_freq': 1, 'cat_l2': 0.8679131150136, 'cat_smooth': 48.7244965504817, 'extra_trees': False, 'feature_fraction': 0.425140839263, 'lambda_l1': 0.5140528525242, 'lambda_l2': 0.5134051978198, 'learning_rate': 0.0134375321277, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 2, 'min_data_per_group': 32, 'num_leaves': 20}, {'ag.prep_params': [[[['ArithmeticFeatureGenerator', {}]], [['CategoricalInteractionFeatureGenerator', {'passthrough': True}], ['OOFTargetEncodingFeatureGenerator', {}]]]], 'ag.prep_params.passthrough_types': {'invalid_raw_types': ['category', 'object']}, 'ag_args': {'name_suffix': '_r17', 'priority': -23}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'bagging_fraction': 0.9277474245702, 'bagging_freq': 1, 'cat_l2': 0.0731876168104, 'cat_smooth': 0.1369210915339, 'extra_trees': False, 'feature_fraction': 0.6680440910385, 'lambda_l1': 0.0125057410295, 'lambda_l2': 0.7157181359874, 'learning_rate': 0.0351342879995, 'max_cat_to_onehot': 20, 'min_data_in_leaf': 1, 'min_data_per_group': 2, 'num_leaves': 64}], 'CAT': [{'ag_args': {'name_suffix': '_c1', 'priority': -15}}], 'GBM': [{'ag_args': {'name_suffix': '_r73', 'priority': -19}, 'bagging_fraction': 0.7295548973583, 'bagging_freq': 1, 'cat_l2': 1.8025485263237, 'cat_smooth': 59.6178463268351, 'extra_trees': False, 'feature_fraction': 0.8242607305914, 'lambda_l1': 0.7265522905459, 'lambda_l2': 0.3492160682092, 'learning_rate': 0.0068803786367, 'max_cat_to_onehot': 16, 'min_data_in_leaf': 1, 'min_data_per_group': 10, 'num_leaves': 24}, {'ag_args': {'name_suffix': '_r37', 'priority': -22}, 'bagging_fraction': 0.8096374561947, 'bagging_freq': 1, 'cat_l2': 1.6385754694703, 'cat_smooth': 16.1922506671724, 'extra_trees': True, 'feature_fraction': 0.885927003286, 'lambda_l1': 0.0430386950502, 'lambda_l2': 0.2507506811761, 'learning_rate': 0.0079622660542, 'max_cat_to_onehot': 23, 'min_data_in_leaf': 7, 'min_data_per_group': 49, 'num_leaves': 6}, {'ag_args': {'name_suffix': '_r162', 'priority': -25}, 'bagging_fraction': 0.7552878818396, 'bagging_freq': 1, 'cat_l2': 0.0081083103544, 'cat_smooth': 75.7373446363438, 'extra_trees': False, 'feature_fraction': 0.6171258454584, 'lambda_l1': 0.1071522383181, 'lambda_l2': 1.7882554584069, 'learning_rate': 0.0229328987255, 'max_cat_to_onehot': 24, 'min_data_in_leaf': 23, 'min_data_per_group': 2, 'num_leaves': 125}, {'ag_args': {'name_suffix': '_r57', 'priority': -27}, 'bagging_fraction': 0.8515739264605, 'bagging_freq': 1, 'cat_l2': 0.2263901847144, 'cat_smooth': 1.7397457971767, 'extra_trees': True, 'feature_fraction': 0.6284015946887, 'lambda_l1': 0.6935431676756, 'lambda_l2': 1.7605230133162, 'learning_rate': 0.0294830579218, 'max_cat_to_onehot': 52, 'min_data_in_leaf': 8, 'min_data_per_group': 3, 'num_leaves': 43}, {'ag_args': {'name_suffix': '_r33', 'priority': -28}, 'bagging_fraction': 0.9625293420216, 'bagging_freq': 1, 'cat_l2': 0.1236875455555, 'cat_smooth': 68.8584757332856, 'extra_trees': False, 'feature_fraction': 0.6189215809382, 'lambda_l1': 0.1641757352921, 'lambda_l2': 0.6937755557881, 'learning_rate': 0.0154031028561, 'max_cat_to_onehot': 17, 'min_data_in_leaf': 1, 'min_data_per_group': 30, 'num_leaves': 68}], 'REALTABPFN-V2': [{'ag_args': {'name_suffix': '_r13', 'priority': -1}, 'ag_args_ensemble': {'model_random_seed': 104, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None, 'safepower'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default', 'quantile_uni_coarse'], 'softmax_temperature': 1.0, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r106', 'priority': -2}, 'ag_args_ensemble': {'model_random_seed': 848, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['quantile_uni_coarse'], 'softmax_temperature': 0.8, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r11', 'priority': -6}, 'ag_args_ensemble': {'model_random_seed': 88, 'vary_seed_across_folds': True}, 'balance_probabilities': True, 'inference_config/OUTLIER_REMOVAL_STD': 6, 'inference_config/POLYNOMIAL_FEATURES': 25, 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': [None], 'preprocessing/append_original': True, 'preprocessing/categoricals': 'onehot', 'preprocessing/global': 'svd_quarter_components', 'preprocessing/scaling': ['safepower', 'quantile_uni'], 'softmax_temperature': 0.7, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_c1', 'priority': -8}, 'ag_args_ensemble': {'model_random_seed': 0, 'vary_seed_across_folds': True}, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}, {'ag_args': {'name_suffix': '_r196', 'priority': -10}, 'ag_args_ensemble': {'model_random_seed': 1568, 'vary_seed_across_folds': True}, 'balance_probabilities': False, 'inference_config/OUTLIER_REMOVAL_STD': 12, 'inference_config/POLYNOMIAL_FEATURES': 'no', 'inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS': ['kdi_alpha_1.0'], 'preprocessing/append_original': False, 'preprocessing/categoricals': 'numeric', 'preprocessing/global': None, 'preprocessing/scaling': ['squashing_scaler_default'], 'softmax_temperature': 1.25, 'zip_model_path': ['tabpfn-v2-classifier-finetuned-zk73skhh.ckpt', 'tabpfn-v2-regressor-v2_default.ckpt']}]}
@@ -629,8 +629,6 @@ class AbstractTabularLearner(AbstractLearner):
629
629
  pred_time_test[model] = None
630
630
  pred_time_test_marginal[model] = None
631
631
 
632
- logger.debug("Model scores:")
633
- logger.debug(str(scores))
634
632
  model_names_final = list(scores.keys())
635
633
  df = pd.DataFrame(
636
634
  data={
@@ -1,5 +1,6 @@
1
1
  from autogluon.core.models.abstract.abstract_model import AbstractModel
2
2
 
3
+ from .tabprep.prep_lgb_model import PrepLGBModel
3
4
  from .automm.automm_model import MultiModalPredictorModel
4
5
  from .automm.ft_transformer import FTTransformerModel
5
6
  from .catboost.catboost_model import CatBoostModel
@@ -20,10 +21,11 @@ from .lgb.lgb_model import LGBModel
20
21
  from .lr.lr_model import LinearModel
21
22
  from .realmlp.realmlp_model import RealMLPModel
22
23
  from .rf.rf_model import RFModel
24
+ from .tabdpt.tabdpt_model import TabDPTModel
23
25
  from .tabicl.tabicl_model import TabICLModel
24
26
  from .tabm.tabm_model import TabMModel
25
- from .tabpfnv2.tabpfnv2_model import TabPFNV2Model
26
27
  from .tabpfnmix.tabpfnmix_model import TabPFNMixModel
28
+ from .tabpfnv2.tabpfnv2_5_model import RealTabPFNv2Model, RealTabPFNv25Model
27
29
  from .mitra.mitra_model import MitraModel
28
30
  from .tabular_nn.torch.tabular_nn_torch import TabularNeuralNetTorchModel
29
31
  from .text_prediction.text_prediction_v1_model import TextPredictorModel
@@ -0,0 +1,148 @@
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+
5
+ from autogluon.core.models import AbstractModel
6
+
7
+ logger = logging.getLogger(__name__)
8
+
9
+
10
+ # TODO: Add type hints once torch is a required dependency
11
+ class AbstractTorchModel(AbstractModel):
12
+ """
13
+ .. versionadded:: 1.5.0
14
+ """
15
+ def __init__(self, **kwargs):
16
+ super().__init__(**kwargs)
17
+ self.device = None
18
+ self.device_train = None
19
+
20
+ def suggest_device_infer(self, verbose: bool = False) -> str:
21
+ import torch
22
+
23
+ # Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
24
+ if self.device_train is None:
25
+ original_device_type = None # skip update because no device is recorded
26
+ elif isinstance(self.device_train, str):
27
+ original_device_type = self.device_train
28
+ else:
29
+ original_device_type = self.device_train.type
30
+ if original_device_type is None:
31
+ # fallback to CPU
32
+ device = torch.device("cpu")
33
+ elif "cuda" in original_device_type:
34
+ # cuda: nvidia GPU
35
+ device = torch.device(original_device_type if torch.cuda.is_available() else "cpu")
36
+ elif "mps" in original_device_type:
37
+ # mps: Apple Silicon
38
+ device = torch.device(original_device_type if torch.backends.mps.is_available() else "cpu")
39
+ else:
40
+ device = torch.device(original_device_type)
41
+
42
+ if verbose and (original_device_type != device.type):
43
+ logger.log(
44
+ 15,
45
+ f"Model is trained on {original_device_type}, but the device is not available - "
46
+ f"loading on {device.type}...",
47
+ )
48
+
49
+ return device.type
50
+
51
+ @classmethod
52
+ def to_torch_device(cls, device: str):
53
+ import torch
54
+ return torch.device(device)
55
+
56
+ def get_device(self) -> str:
57
+ """
58
+ Returns torch.device(...) of the fitted model
59
+
60
+ Requires implementation by the inheriting model class.
61
+ Refer to overriding methods in existing models for reference implementations.
62
+ """
63
+ raise NotImplementedError
64
+
65
+ def set_device(self, device: str):
66
+ if not isinstance(device, str):
67
+ device = device.type
68
+ self.device = device
69
+ self._set_device(device=device)
70
+
71
+ def _set_device(self, device: str):
72
+ """
73
+ Sets the device for the inner model object.
74
+
75
+ Requires implementation by the inheriting model class.
76
+ Refer to overriding methods in existing models for reference implementations.
77
+
78
+ If your model does not need to edit inner model object details, you can simply make the logic `pass`.
79
+ """
80
+ raise NotImplementedError
81
+
82
+ def _post_fit(self, **kwargs):
83
+ super()._post_fit(**kwargs)
84
+ if self._get_class_tags().get("can_set_device", False):
85
+ self.device_train = self.get_device()
86
+ self.device = self.device_train
87
+ return self
88
+
89
+ def save(self, path: str = None, verbose=True) -> str:
90
+ """
91
+ Need to set device to CPU to be able to load on a non-GPU environment
92
+ """
93
+ reset_device = False
94
+ og_device = self.device
95
+
96
+ # Save on CPU to ensure the model can be loaded without GPU
97
+ if self.is_fit():
98
+ device_save = self._get_class_tags().get("set_device_on_save_to", None)
99
+ if device_save is not None:
100
+ self.set_device(device=device_save)
101
+ reset_device = True
102
+ path = super().save(path=path, verbose=verbose)
103
+ # Put the model back to the device after the save
104
+ if reset_device:
105
+ self.set_device(device=og_device)
106
+ return path
107
+
108
+ @classmethod
109
+ def load(cls, path: str, reset_paths=True, verbose=True):
110
+ """
111
+ Loads the model from disk to memory.
112
+ The loaded model will be on the same device it was trained on (cuda/mps);
113
+ if the device is not available (trained on GPU, deployed on CPU), then `cpu` will be used.
114
+
115
+ Parameters
116
+ ----------
117
+ path : str
118
+ Path to the saved model, minus the file name.
119
+ This should generally be a directory path ending with a '/' character (or appropriate path separator value depending on OS).
120
+ The model file is typically located in os.path.join(path, cls.model_file_name).
121
+ reset_paths : bool, default True
122
+ Whether to reset the self.path value of the loaded model to be equal to path.
123
+ It is highly recommended to keep this value as True unless accessing the original self.path value is important.
124
+ If False, the actual valid path and self.path may differ, leading to strange behaviour and potential exceptions if the model needs to load any other files at a later time.
125
+ verbose : bool, default True
126
+ Whether to log the location of the loaded file.
127
+
128
+ Returns
129
+ -------
130
+ model : cls
131
+ Loaded model object.
132
+ """
133
+ model = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
134
+
135
+ # Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
136
+ if model.is_fit() and model._get_class_tags().get("set_device_on_load", False):
137
+ device = model.suggest_device_infer(verbose=verbose)
138
+ model.set_device(device=device)
139
+
140
+ return model
141
+
142
+ @classmethod
143
+ def _class_tags(cls):
144
+ return {
145
+ "can_set_device": True,
146
+ "set_device_on_save_to": "cpu",
147
+ "set_device_on_load": True,
148
+ }
@@ -146,7 +146,7 @@ class CatBoostModel(AbstractModel):
146
146
  num_cols_train = len(X.columns)
147
147
  num_classes = self.num_classes if self.num_classes else 1 # self.num_classes could be None after initialization if it's a regression problem
148
148
 
149
- X = self.preprocess(X)
149
+ X = self.preprocess(X, y=y, is_train=True)
150
150
  cat_features = list(X.select_dtypes(include="category").columns)
151
151
  X = Pool(data=X, label=y, cat_features=cat_features, weight=sample_weight)
152
152