autogluon.tabular 1.4.1b20251201__tar.gz → 1.5.1b20260114__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260114}/PKG-INFO +55 -54
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/setup.py +21 -29
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/__init__.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/config_helper.py +18 -6
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/feature_generator_presets.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/hyperparameter_configs.py +46 -9
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/presets_configs.py +70 -9
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +49 -91
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +775 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +422 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/abstract_learner.py +160 -42
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/default_learner.py +79 -22
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/__init__.py +4 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/abstract/abstract_torch_model.py +150 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/automm/automm_model.py +12 -3
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/automm/ft_transformer.py +5 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/callbacks.py +2 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_model.py +94 -30
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/ebm_model.py +8 -13
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/callbacks.py +20 -3
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +70 -19
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_model.py +41 -8
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/callbacks.py +32 -9
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/lgb_model.py +207 -41
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +10 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_model.py +40 -10
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/__init__.py +1 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +144 -112
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/data/collator.py +50 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/mitra_model.py +68 -32
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/realmlp/realmlp_model.py +35 -16
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_model.py +50 -17
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +244 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabicl/tabicl_model.py +23 -3
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/tabm_model.py +31 -83
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +38 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +21 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +11 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +424 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep/prep_mixin.py +228 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +131 -38
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +42 -9
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/callbacks.py +9 -3
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/xgboost_model.py +60 -10
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xt/xt_model.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/predictor.py +453 -143
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/_ag_model_registry.py +10 -5
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/_model_registry.py +1 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/fit_helper.py +60 -13
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/generate_datasets.py +1 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/model_fit_helper.py +10 -4
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/abstract_trainer.py +673 -223
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/auto_trainer.py +24 -8
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/model_presets/presets.py +33 -9
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114/src/autogluon.tabular.egg-info}/PKG-INFO +55 -54
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/SOURCES.txt +10 -8
- autogluon_tabular-1.5.1b20260114/src/autogluon.tabular.egg-info/requires.txt +132 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/tests/test_check_style.py +1 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -6
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -46
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -1
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -46
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -32
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -22
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -388
- autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info/requires.txt +0 -126
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/LICENSE +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/NOTICE +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/README.md +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/setup.cfg +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/automm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/abstract}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/catboost → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/automm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/catboost/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/catboost}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/ebm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/catboost/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/ebm/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/ebm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fastainn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/ebm/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fastainn/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fastainn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fasttext → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fastainn/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fasttext/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fasttext}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/image_prediction → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fasttext/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/imodels → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/image_prediction}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/knn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/imodels}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lgb → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/knn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lgb/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lgb}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lgb/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/realmlp → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/rf → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/realmlp}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/rf/compilers → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/rf}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabicl → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/rf/compilers}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabdpt}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabicl}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabm}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/config → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/data → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/config}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/models → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/data}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/results → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/models}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2 → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/results}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/compilers → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnv2}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/torch → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/utils → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/compilers}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/text_prediction → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xgboost → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/torch}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xgboost/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/utils}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xt → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/text_prediction}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/trainer/model_presets → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xgboost}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/tuning → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xgboost/hyperparameters}/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/__init__.py +1 -1
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.5.1b20260114
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -40,101 +40,102 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.
|
|
44
|
-
Requires-Dist: autogluon.features==1.
|
|
43
|
+
Requires-Dist: autogluon.core==1.5.1b20260114
|
|
44
|
+
Requires-Dist: autogluon.features==1.5.1b20260114
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
48
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
49
48
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
50
49
|
Provides-Extra: xgboost
|
|
51
|
-
Requires-Dist: xgboost<3.
|
|
50
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
|
|
52
51
|
Provides-Extra: realmlp
|
|
53
|
-
Requires-Dist: pytabkit<1.
|
|
52
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
|
|
54
53
|
Provides-Extra: interpret
|
|
55
54
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
56
55
|
Provides-Extra: fastai
|
|
57
56
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
58
|
-
Requires-Dist: torch<2.
|
|
59
|
-
Requires-Dist: fastai<2.
|
|
57
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
58
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
|
|
60
59
|
Provides-Extra: tabm
|
|
61
|
-
Requires-Dist: torch<2.
|
|
60
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
62
61
|
Provides-Extra: tabpfn
|
|
63
|
-
Requires-Dist: tabpfn<2.
|
|
62
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
|
|
63
|
+
Provides-Extra: tabdpt
|
|
64
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
|
|
64
65
|
Provides-Extra: tabpfnmix
|
|
65
|
-
Requires-Dist: torch<2.
|
|
66
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
|
|
66
67
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
|
|
67
68
|
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
68
69
|
Provides-Extra: mitra
|
|
69
70
|
Requires-Dist: loguru; extra == "mitra"
|
|
70
71
|
Requires-Dist: einx; extra == "mitra"
|
|
71
72
|
Requires-Dist: omegaconf; extra == "mitra"
|
|
72
|
-
Requires-Dist: torch<2.
|
|
73
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "mitra"
|
|
73
74
|
Requires-Dist: transformers; extra == "mitra"
|
|
74
75
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
|
|
75
76
|
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
76
77
|
Provides-Extra: tabicl
|
|
77
|
-
Requires-Dist: tabicl<0.2,>=0.1.
|
|
78
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
|
|
78
79
|
Provides-Extra: ray
|
|
79
|
-
Requires-Dist: autogluon.core[all]==1.
|
|
80
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "ray"
|
|
80
81
|
Provides-Extra: skex
|
|
81
|
-
Requires-Dist: scikit-learn-intelex<2025.
|
|
82
|
+
Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
|
|
82
83
|
Provides-Extra: imodels
|
|
83
84
|
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
84
85
|
Provides-Extra: skl2onnx
|
|
85
|
-
Requires-Dist:
|
|
86
|
-
Requires-Dist: onnx
|
|
87
|
-
Requires-Dist:
|
|
88
|
-
Requires-Dist: onnxruntime<1.
|
|
89
|
-
Requires-Dist: onnxruntime-gpu<1.
|
|
86
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "skl2onnx"
|
|
87
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
|
88
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
|
89
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
90
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
90
91
|
Provides-Extra: all
|
|
91
|
-
Requires-Dist: spacy<3.9; extra == "all"
|
|
92
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
93
|
-
Requires-Dist: einx; extra == "all"
|
|
94
|
-
Requires-Dist: loguru; extra == "all"
|
|
95
|
-
Requires-Dist: transformers; extra == "all"
|
|
96
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
|
|
97
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
98
92
|
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
-
Requires-Dist:
|
|
100
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
93
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
101
94
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
102
|
-
Requires-Dist:
|
|
103
|
-
Requires-Dist:
|
|
95
|
+
Requires-Dist: loguru; extra == "all"
|
|
96
|
+
Requires-Dist: einx; extra == "all"
|
|
97
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
98
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "all"
|
|
104
99
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
100
|
+
Requires-Dist: transformers; extra == "all"
|
|
101
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
102
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
|
|
103
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
104
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
|
|
105
105
|
Provides-Extra: tabarena
|
|
106
|
-
Requires-Dist:
|
|
106
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
107
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
108
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
107
109
|
Requires-Dist: einx; extra == "tabarena"
|
|
108
|
-
Requires-Dist: transformers; extra == "tabarena"
|
|
109
110
|
Requires-Dist: loguru; extra == "tabarena"
|
|
110
|
-
Requires-Dist:
|
|
111
|
-
Requires-Dist:
|
|
112
|
-
Requires-Dist:
|
|
113
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
111
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
112
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
|
|
113
|
+
Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "tabarena"
|
|
114
114
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
115
|
-
Requires-Dist:
|
|
115
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
116
116
|
Requires-Dist: omegaconf; extra == "tabarena"
|
|
117
|
-
Requires-Dist:
|
|
118
|
-
Requires-Dist:
|
|
119
|
-
Requires-Dist:
|
|
120
|
-
Requires-Dist:
|
|
121
|
-
Requires-Dist:
|
|
122
|
-
Requires-Dist:
|
|
123
|
-
Requires-Dist: fastai<2.
|
|
117
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
|
|
118
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
|
|
119
|
+
Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
|
|
120
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
121
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
|
|
122
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
123
|
+
Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
|
|
124
124
|
Provides-Extra: tests
|
|
125
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
|
-
Requires-Dist:
|
|
127
|
-
Requires-Dist:
|
|
128
|
-
Requires-Dist:
|
|
129
|
-
Requires-Dist:
|
|
126
|
+
Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
|
|
127
|
+
Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
|
|
128
|
+
Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
|
|
129
|
+
Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
|
|
130
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tests"
|
|
130
131
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
|
|
131
132
|
Requires-Dist: einops<0.9,>=0.7; extra == "tests"
|
|
132
133
|
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
|
|
133
|
-
Requires-Dist:
|
|
134
|
-
Requires-Dist: onnx
|
|
135
|
-
Requires-Dist:
|
|
136
|
-
Requires-Dist: onnxruntime<1.
|
|
137
|
-
Requires-Dist: onnxruntime-gpu<1.
|
|
134
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "tests"
|
|
135
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "tests"
|
|
136
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
|
137
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "tests"
|
|
138
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
|
|
138
139
|
Dynamic: author
|
|
139
140
|
Dynamic: classifier
|
|
140
141
|
Dynamic: description
|
|
@@ -41,14 +41,13 @@ extras_require = {
|
|
|
41
41
|
"lightgbm>=4.0,<4.7", # <{N+1} upper cap, where N is the latest released minor version
|
|
42
42
|
],
|
|
43
43
|
"catboost": [
|
|
44
|
-
"numpy>=1.25,<2.3.0",
|
|
45
44
|
"catboost>=1.2,<1.3",
|
|
46
45
|
],
|
|
47
46
|
"xgboost": [
|
|
48
|
-
"xgboost>=2.0,<3.
|
|
47
|
+
"xgboost>=2.0,<3.2", # <{N+1} upper cap, where N is the latest released minor version
|
|
49
48
|
],
|
|
50
49
|
"realmlp": [
|
|
51
|
-
"pytabkit>=1.
|
|
50
|
+
"pytabkit>=1.7.2,<1.8",
|
|
52
51
|
],
|
|
53
52
|
"interpret": [
|
|
54
53
|
"interpret-core>=0.7.2,<0.8",
|
|
@@ -56,13 +55,16 @@ extras_require = {
|
|
|
56
55
|
"fastai": [
|
|
57
56
|
"spacy<3.9",
|
|
58
57
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
59
|
-
"fastai>=2.3.1,<2.
|
|
58
|
+
"fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
|
|
60
59
|
],
|
|
61
60
|
"tabm": [
|
|
62
61
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
63
62
|
],
|
|
64
63
|
"tabpfn": [
|
|
65
|
-
"tabpfn>=2.0.
|
|
64
|
+
"tabpfn>=6.2.0,<6.2.1", # <{N+1} upper cap, where N is the latest released minor version
|
|
65
|
+
],
|
|
66
|
+
"tabdpt": [
|
|
67
|
+
"tabdpt>=1.1.11,<1.2",
|
|
66
68
|
],
|
|
67
69
|
"tabpfnmix": [
|
|
68
70
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
@@ -79,41 +81,29 @@ extras_require = {
|
|
|
79
81
|
"einops>=0.7,<0.9",
|
|
80
82
|
],
|
|
81
83
|
"tabicl": [
|
|
82
|
-
"tabicl>=0.1.
|
|
84
|
+
"tabicl>=0.1.4,<0.2", # 0.1.4 added python 3.13 support
|
|
83
85
|
],
|
|
84
86
|
"ray": [
|
|
85
87
|
f"{ag.PACKAGE_NAME}.core[all]=={version}",
|
|
86
88
|
],
|
|
87
89
|
"skex": [
|
|
88
|
-
"scikit-learn-intelex>=
|
|
90
|
+
"scikit-learn-intelex>=2025.0,<2025.10", # <{N+1} upper cap, where N is the latest released minor version
|
|
89
91
|
],
|
|
90
92
|
"imodels": [
|
|
91
93
|
"imodels>=1.3.10,<2.1.0", # 1.3.8/1.3.9 either remove/renamed attribute `complexity_` causing failures. https://github.com/csinva/imodels/issues/147
|
|
92
94
|
],
|
|
93
95
|
}
|
|
94
96
|
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
# Therefore, we install onnxruntime explicitly here just for macOS.
|
|
106
|
-
"onnxruntime>=1.17.0,<1.20.0",
|
|
107
|
-
]
|
|
108
|
-
else:
|
|
109
|
-
# For other platforms, include both CPU and GPU versions
|
|
110
|
-
extras_require["skl2onnx"] = [
|
|
111
|
-
"onnx>=1.13.0,<1.16.2;platform_system=='Windows'", # cap at 1.16.1 for issue https://github.com/onnx/onnx/issues/6267
|
|
112
|
-
"onnx>=1.13.0,<1.18.0;platform_system!='Windows'",
|
|
113
|
-
"skl2onnx>=1.15.0,<1.18.0",
|
|
114
|
-
"onnxruntime>=1.17.0,<1.20.0", # install for gpu system due to https://github.com/autogluon/autogluon/issues/3804
|
|
115
|
-
"onnxruntime-gpu>=1.17.0,<1.20.0",
|
|
116
|
-
]
|
|
97
|
+
extras_require["skl2onnx"] = [
|
|
98
|
+
"skl2onnx>=1.15.0,<1.20.0",
|
|
99
|
+
# Sync ONNX requirements with multimodal/setup.py
|
|
100
|
+
"onnx>=1.13.0,!=1.16.2,<1.21.0;platform_system=='Windows'", # exclude 1.16.2 for issue https://github.com/onnx/onnx/issues/6267
|
|
101
|
+
"onnx>=1.13.0,<1.21.0;platform_system!='Windows'",
|
|
102
|
+
# For macOS, there isn't a onnxruntime-gpu package installed with skl2onnx.
|
|
103
|
+
# Therefore, we install onnxruntime explicitly here just for macOS.
|
|
104
|
+
"onnxruntime>=1.17.0,<1.24.0",
|
|
105
|
+
"onnxruntime-gpu>=1.17.0,<1.24.0; platform_system != 'Darwin' and platform_machine != 'aarch64'",
|
|
106
|
+
]
|
|
117
107
|
|
|
118
108
|
# TODO: v1.0: Rename `all` to `core`, make `all` contain everything.
|
|
119
109
|
all_requires = []
|
|
@@ -133,6 +123,7 @@ extras_require["all"] = all_requires
|
|
|
133
123
|
tabarena_requires = copy.deepcopy(all_requires)
|
|
134
124
|
for extra_package in [
|
|
135
125
|
"interpret",
|
|
126
|
+
"tabdpt",
|
|
136
127
|
"tabicl",
|
|
137
128
|
"tabpfn",
|
|
138
129
|
"realmlp",
|
|
@@ -144,6 +135,7 @@ extras_require["tabarena"] = tabarena_requires
|
|
|
144
135
|
test_requires = []
|
|
145
136
|
for test_package in [
|
|
146
137
|
"interpret",
|
|
138
|
+
"tabdpt",
|
|
147
139
|
"tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
|
|
148
140
|
"tabpfn",
|
|
149
141
|
"realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
# noinspection PyUnresolvedReferences
|
|
2
2
|
from autogluon.common.dataset import TabularDataset
|
|
3
|
+
|
|
3
4
|
# noinspection PyUnresolvedReferences
|
|
4
5
|
from autogluon.common.features.feature_metadata import FeatureMetadata
|
|
5
6
|
from autogluon.common.utils.log_utils import _add_stream_handler
|
|
@@ -125,7 +125,9 @@ class ConfigBuilder:
|
|
|
125
125
|
|
|
126
126
|
if isinstance(presets, list):
|
|
127
127
|
unknown_keys = [k for k in presets if k not in valid_keys]
|
|
128
|
-
assert len(unknown_keys) == 0,
|
|
128
|
+
assert len(unknown_keys) == 0, (
|
|
129
|
+
f"The following presets are not recognized: {unknown_keys} - use one of the valid presets: {valid_keys}"
|
|
130
|
+
)
|
|
129
131
|
|
|
130
132
|
self.config["presets"] = presets
|
|
131
133
|
return self
|
|
@@ -144,12 +146,18 @@ class ConfigBuilder:
|
|
|
144
146
|
valid_keys = self._valid_keys()
|
|
145
147
|
valid_str_values = list(hyperparameter_config_dict.keys())
|
|
146
148
|
if isinstance(hyperparameters, str):
|
|
147
|
-
assert hyperparameters in hyperparameter_config_dict,
|
|
149
|
+
assert hyperparameters in hyperparameter_config_dict, (
|
|
150
|
+
f"{hyperparameters} is not one of the valid presets {valid_str_values}"
|
|
151
|
+
)
|
|
148
152
|
elif isinstance(hyperparameters, dict):
|
|
149
153
|
unknown_keys = [k for k in hyperparameters.keys() if isinstance(k, str) and (k not in valid_keys)]
|
|
150
|
-
assert len(unknown_keys) == 0,
|
|
154
|
+
assert len(unknown_keys) == 0, (
|
|
155
|
+
f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
|
|
156
|
+
)
|
|
151
157
|
else:
|
|
152
|
-
raise ValueError(
|
|
158
|
+
raise ValueError(
|
|
159
|
+
f"hyperparameters must be either str: {valid_str_values} or dict with keys of {valid_keys}"
|
|
160
|
+
)
|
|
153
161
|
self.config["hyperparameters"] = hyperparameters
|
|
154
162
|
return self
|
|
155
163
|
|
|
@@ -230,7 +238,9 @@ class ConfigBuilder:
|
|
|
230
238
|
"""
|
|
231
239
|
valid_str_values = scheduler_factory._scheduler_presets.keys()
|
|
232
240
|
if isinstance(hyperparameter_tune_kwargs, str):
|
|
233
|
-
assert hyperparameter_tune_kwargs in valid_str_values,
|
|
241
|
+
assert hyperparameter_tune_kwargs in valid_str_values, (
|
|
242
|
+
f"{hyperparameter_tune_kwargs} string must be one of {valid_str_values}"
|
|
243
|
+
)
|
|
234
244
|
elif not isinstance(hyperparameter_tune_kwargs, dict):
|
|
235
245
|
raise ValueError(f"hyperparameter_tune_kwargs must be either str: {valid_str_values} or dict")
|
|
236
246
|
self.config["hyperparameter_tune_kwargs"] = hyperparameter_tune_kwargs
|
|
@@ -294,7 +304,9 @@ class ConfigBuilder:
|
|
|
294
304
|
models = [models]
|
|
295
305
|
|
|
296
306
|
unknown_keys = [k for k in models if isinstance(k, str) and (k not in valid_keys)]
|
|
297
|
-
assert len(unknown_keys) == 0,
|
|
307
|
+
assert len(unknown_keys) == 0, (
|
|
308
|
+
f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
|
|
309
|
+
)
|
|
298
310
|
|
|
299
311
|
models = [m for m in valid_keys if m not in models]
|
|
300
312
|
self.config["excluded_model_types"] = models
|
|
@@ -18,7 +18,9 @@ def get_default_feature_generator(feature_generator, feature_metadata=None, init
|
|
|
18
18
|
elif feature_generator == "interpretable":
|
|
19
19
|
feature_generator = AutoMLInterpretablePipelineFeatureGenerator(**init_kwargs)
|
|
20
20
|
else:
|
|
21
|
-
raise ValueError(
|
|
21
|
+
raise ValueError(
|
|
22
|
+
f"Unknown feature_generator preset: '{feature_generator}', valid presets: {['auto', 'interpretable']}"
|
|
23
|
+
)
|
|
22
24
|
if feature_metadata is not None:
|
|
23
25
|
if feature_generator.feature_metadata_in is None and not feature_generator.is_fit():
|
|
24
26
|
feature_generator.feature_metadata_in = copy.deepcopy(feature_metadata)
|
|
@@ -2,6 +2,8 @@ import copy
|
|
|
2
2
|
|
|
3
3
|
from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
|
|
4
4
|
from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
|
|
5
|
+
from .zeroshot.zeroshot_portfolio_cpu_2025_12_18 import hyperparameter_portfolio_zeroshot_cpu_2025_12_18
|
|
6
|
+
from .zeroshot.zeroshot_portfolio_gpu_2025_12_18 import hyperparameter_portfolio_zeroshot_gpu_2025_12_18
|
|
5
7
|
|
|
6
8
|
# Dictionary of preset hyperparameter configurations.
|
|
7
9
|
hyperparameter_config_dict = dict(
|
|
@@ -25,12 +27,18 @@ hyperparameter_config_dict = dict(
|
|
|
25
27
|
"RF": [
|
|
26
28
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
27
29
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
28
|
-
{
|
|
30
|
+
{
|
|
31
|
+
"criterion": "squared_error",
|
|
32
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
33
|
+
},
|
|
29
34
|
],
|
|
30
35
|
"XT": [
|
|
31
36
|
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
32
37
|
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
33
|
-
{
|
|
38
|
+
{
|
|
39
|
+
"criterion": "squared_error",
|
|
40
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
41
|
+
},
|
|
34
42
|
],
|
|
35
43
|
},
|
|
36
44
|
# Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
|
|
@@ -51,14 +59,38 @@ hyperparameter_config_dict = dict(
|
|
|
51
59
|
"XGB": {},
|
|
52
60
|
"FASTAI": {},
|
|
53
61
|
"RF": [
|
|
54
|
-
{
|
|
55
|
-
|
|
56
|
-
|
|
62
|
+
{
|
|
63
|
+
"criterion": "gini",
|
|
64
|
+
"max_depth": 15,
|
|
65
|
+
"ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
|
|
66
|
+
},
|
|
67
|
+
{
|
|
68
|
+
"criterion": "entropy",
|
|
69
|
+
"max_depth": 15,
|
|
70
|
+
"ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
|
|
71
|
+
},
|
|
72
|
+
{
|
|
73
|
+
"criterion": "squared_error",
|
|
74
|
+
"max_depth": 15,
|
|
75
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
76
|
+
},
|
|
57
77
|
],
|
|
58
78
|
"XT": [
|
|
59
|
-
{
|
|
60
|
-
|
|
61
|
-
|
|
79
|
+
{
|
|
80
|
+
"criterion": "gini",
|
|
81
|
+
"max_depth": 15,
|
|
82
|
+
"ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
|
|
83
|
+
},
|
|
84
|
+
{
|
|
85
|
+
"criterion": "entropy",
|
|
86
|
+
"max_depth": 15,
|
|
87
|
+
"ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
|
|
88
|
+
},
|
|
89
|
+
{
|
|
90
|
+
"criterion": "squared_error",
|
|
91
|
+
"max_depth": 15,
|
|
92
|
+
"ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
|
|
93
|
+
},
|
|
62
94
|
],
|
|
63
95
|
},
|
|
64
96
|
# Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
|
|
@@ -117,6 +149,8 @@ hyperparameter_config_dict = dict(
|
|
|
117
149
|
zeroshot=hyperparameter_portfolio_zeroshot_2023,
|
|
118
150
|
zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
|
|
119
151
|
zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
|
|
152
|
+
zeroshot_2025_12_18_gpu=hyperparameter_portfolio_zeroshot_gpu_2025_12_18,
|
|
153
|
+
zeroshot_2025_12_18_cpu=hyperparameter_portfolio_zeroshot_cpu_2025_12_18,
|
|
120
154
|
)
|
|
121
155
|
|
|
122
156
|
tabpfnmix_default = {
|
|
@@ -133,6 +167,7 @@ hyperparameter_config_dict["experimental_2024"] = {"TABPFNMIX": tabpfnmix_defaul
|
|
|
133
167
|
hyperparameter_config_dict["experimental_2024"].update(hyperparameter_config_dict["zeroshot_2023"])
|
|
134
168
|
hyperparameter_config_dict["experimental"] = hyperparameter_config_dict["experimental_2024"]
|
|
135
169
|
|
|
170
|
+
|
|
136
171
|
def get_hyperparameter_config_options():
|
|
137
172
|
return list(hyperparameter_config_dict.keys())
|
|
138
173
|
|
|
@@ -140,5 +175,7 @@ def get_hyperparameter_config_options():
|
|
|
140
175
|
def get_hyperparameter_config(config_name):
|
|
141
176
|
config_options = get_hyperparameter_config_options()
|
|
142
177
|
if config_name not in config_options:
|
|
143
|
-
raise ValueError(
|
|
178
|
+
raise ValueError(
|
|
179
|
+
f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead."
|
|
180
|
+
)
|
|
144
181
|
return copy.deepcopy(hyperparameter_config_dict[config_name])
|
|
@@ -9,6 +9,19 @@ tabular_presets_dict = dict(
|
|
|
9
9
|
"hyperparameters": "zeroshot",
|
|
10
10
|
"time_limit": 3600,
|
|
11
11
|
},
|
|
12
|
+
best_quality_v150={
|
|
13
|
+
"auto_stack": True,
|
|
14
|
+
"dynamic_stacking": "auto",
|
|
15
|
+
"num_stack_levels": 0,
|
|
16
|
+
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
17
|
+
"time_limit": 3600,
|
|
18
|
+
"callbacks": [
|
|
19
|
+
[
|
|
20
|
+
"EarlyStoppingCountCallback",
|
|
21
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
22
|
+
]
|
|
23
|
+
],
|
|
24
|
+
},
|
|
12
25
|
# High predictive accuracy with fast inference. ~8x faster inference and ~8x lower disk usage than `best_quality`.
|
|
13
26
|
# Recommended for applications that require fast inference speed and/or small model size.
|
|
14
27
|
# Aliases: high
|
|
@@ -21,6 +34,22 @@ tabular_presets_dict = dict(
|
|
|
21
34
|
"set_best_to_refit_full": True,
|
|
22
35
|
"save_bag_folds": False,
|
|
23
36
|
},
|
|
37
|
+
high_quality_v150={
|
|
38
|
+
"auto_stack": True,
|
|
39
|
+
"dynamic_stacking": "auto",
|
|
40
|
+
"num_stack_levels": 0,
|
|
41
|
+
"hyperparameters": "zeroshot_2025_12_18_cpu",
|
|
42
|
+
"time_limit": 3600,
|
|
43
|
+
"callbacks": [
|
|
44
|
+
[
|
|
45
|
+
"EarlyStoppingCountCallback",
|
|
46
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
47
|
+
]
|
|
48
|
+
],
|
|
49
|
+
"refit_full": True,
|
|
50
|
+
"set_best_to_refit_full": True,
|
|
51
|
+
"save_bag_folds": False,
|
|
52
|
+
},
|
|
24
53
|
# Good predictive accuracy with very fast inference. ~4x faster training, ~8x faster inference and ~8x lower disk usage than `high_quality`.
|
|
25
54
|
# Recommended for applications that require very fast inference speed.
|
|
26
55
|
# Aliases: good
|
|
@@ -46,7 +75,13 @@ tabular_presets_dict = dict(
|
|
|
46
75
|
optimize_for_deployment={"keep_only_best": True, "save_space": True},
|
|
47
76
|
# Disables automated feature generation when text features are detected.
|
|
48
77
|
# This is useful to determine how beneficial text features are to the end result, as well as to ensure features are not mistaken for text when they are not.
|
|
49
|
-
ignore_text={
|
|
78
|
+
ignore_text={
|
|
79
|
+
"_feature_generator_kwargs": {
|
|
80
|
+
"enable_text_ngram_features": False,
|
|
81
|
+
"enable_text_special_features": False,
|
|
82
|
+
"enable_raw_text_features": False,
|
|
83
|
+
}
|
|
84
|
+
},
|
|
50
85
|
ignore_text_ngrams={"_feature_generator_kwargs": {"enable_text_ngram_features": False}},
|
|
51
86
|
# Fit only interpretable models.
|
|
52
87
|
interpretable={
|
|
@@ -64,25 +99,48 @@ tabular_presets_dict = dict(
|
|
|
64
99
|
best_quality_v082={"auto_stack": True},
|
|
65
100
|
# High predictive accuracy with fast inference. ~10x-200x faster inference and ~10x-200x lower disk usage than `best_quality`.
|
|
66
101
|
# Recommended for applications that require reasonable inference speed and/or model size.
|
|
67
|
-
high_quality_v082={
|
|
102
|
+
high_quality_v082={
|
|
103
|
+
"auto_stack": True,
|
|
104
|
+
"refit_full": True,
|
|
105
|
+
"set_best_to_refit_full": True,
|
|
106
|
+
"save_bag_folds": False,
|
|
107
|
+
},
|
|
68
108
|
# Good predictive accuracy with very fast inference. ~4x faster inference and ~4x lower disk usage than `high_quality`.
|
|
69
109
|
# Recommended for applications that require fast inference speed.
|
|
70
|
-
good_quality_v082={
|
|
110
|
+
good_quality_v082={
|
|
111
|
+
"auto_stack": True,
|
|
112
|
+
"refit_full": True,
|
|
113
|
+
"set_best_to_refit_full": True,
|
|
114
|
+
"save_bag_folds": False,
|
|
115
|
+
"hyperparameters": "light",
|
|
116
|
+
},
|
|
71
117
|
# ------------------------------------------
|
|
72
118
|
# Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
|
|
73
119
|
# Experimental presets can be removed or changed without warning.
|
|
74
|
-
|
|
75
120
|
# [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
|
|
76
121
|
# This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
|
|
77
122
|
# Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
|
|
78
123
|
# Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
|
|
79
124
|
# Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
|
|
80
125
|
# Significantly stronger than `best_quality`, but can be over 10x slower in inference.
|
|
81
|
-
# Uses pre-trained tabular foundation models, which add a minimum of
|
|
126
|
+
# Uses pre-trained tabular foundation models, which add a minimum of 100 MB to the predictor artifact's size.
|
|
82
127
|
# For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
|
|
83
128
|
# Aliases: extreme, experimental, experimental_quality
|
|
84
129
|
# GPU STRONGLY RECOMMENDED
|
|
85
130
|
extreme_quality={
|
|
131
|
+
"auto_stack": True,
|
|
132
|
+
"dynamic_stacking": "auto",
|
|
133
|
+
"num_stack_levels": 0,
|
|
134
|
+
"hyperparameters": "zeroshot_2025_12_18_gpu",
|
|
135
|
+
"time_limit": 3600,
|
|
136
|
+
"callbacks": [
|
|
137
|
+
[
|
|
138
|
+
"EarlyStoppingCountCallback",
|
|
139
|
+
{"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
|
|
140
|
+
]
|
|
141
|
+
],
|
|
142
|
+
},
|
|
143
|
+
extreme_quality_v140={
|
|
86
144
|
"auto_stack": True,
|
|
87
145
|
"dynamic_stacking": "auto",
|
|
88
146
|
"num_bag_sets": 1,
|
|
@@ -90,7 +148,6 @@ tabular_presets_dict = dict(
|
|
|
90
148
|
"hyperparameters": None,
|
|
91
149
|
"time_limit": 3600,
|
|
92
150
|
},
|
|
93
|
-
|
|
94
151
|
# Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
|
|
95
152
|
# Uses tabular foundation models: TabPFNv2, TabICL, Mitra
|
|
96
153
|
# Uses deep learning model: TabM
|
|
@@ -105,7 +162,6 @@ tabular_presets_dict = dict(
|
|
|
105
162
|
"hyperparameters": "zeroshot_2025_tabfm",
|
|
106
163
|
"time_limit": 3600,
|
|
107
164
|
},
|
|
108
|
-
|
|
109
165
|
# DOES NOT SUPPORT GPU.
|
|
110
166
|
experimental_quality_v120={
|
|
111
167
|
"auto_stack": True,
|
|
@@ -116,7 +172,6 @@ tabular_presets_dict = dict(
|
|
|
116
172
|
"num_gpus": 0,
|
|
117
173
|
"time_limit": 3600,
|
|
118
174
|
},
|
|
119
|
-
|
|
120
175
|
# ------------------------------------------
|
|
121
176
|
# ------------------------------------------
|
|
122
177
|
# ------------------------------------------
|
|
@@ -140,5 +195,11 @@ tabular_presets_alias = dict(
|
|
|
140
195
|
mq="medium_quality",
|
|
141
196
|
experimental="extreme_quality",
|
|
142
197
|
experimental_quality="extreme_quality",
|
|
143
|
-
experimental_quality_v140="
|
|
198
|
+
experimental_quality_v140="extreme_quality_v140",
|
|
199
|
+
best_v140="best_quality",
|
|
200
|
+
best_v150="best_quality_v150",
|
|
201
|
+
best_quality_v140="best_quality",
|
|
202
|
+
high_v150="high_quality_v150",
|
|
203
|
+
extreme_v140="extreme_quality_v140",
|
|
204
|
+
extreme_v150="extreme_quality",
|
|
144
205
|
)
|