autogluon.tabular 1.4.1b20251201__tar.gz → 1.5.1b20260114__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (232) hide show
  1. {autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info → autogluon_tabular-1.5.1b20260114}/PKG-INFO +55 -54
  2. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/setup.py +21 -29
  3. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/__init__.py +1 -0
  4. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/config_helper.py +18 -6
  5. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/feature_generator_presets.py +3 -1
  6. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/hyperparameter_configs.py +46 -9
  7. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/presets_configs.py +70 -9
  8. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
  9. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +49 -91
  10. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +775 -0
  11. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +422 -0
  12. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_scikit_mixin.py +6 -2
  13. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_tabular_classifier.py +3 -1
  14. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/_tabular_regressor.py +3 -1
  15. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/plot_leaderboard.py +73 -19
  16. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/abstract_learner.py +160 -42
  17. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/default_learner.py +79 -22
  18. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/__init__.py +4 -2
  19. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/rapids_utils.py +3 -1
  20. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/abstract/abstract_torch_model.py +150 -0
  21. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/automm/automm_model.py +12 -3
  22. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/automm/ft_transformer.py +5 -1
  23. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/callbacks.py +2 -2
  24. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_model.py +94 -30
  25. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
  26. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/catboost_utils.py +3 -1
  27. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/ebm_model.py +8 -13
  28. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
  29. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
  30. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/callbacks.py +20 -3
  31. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
  32. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
  33. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +70 -19
  34. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
  35. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
  36. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_model.py +41 -8
  37. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/callbacks.py +32 -9
  38. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
  39. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/lgb_model.py +207 -41
  40. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/lgb_utils.py +12 -4
  41. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +10 -0
  42. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_model.py +40 -10
  43. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
  44. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/__init__.py +1 -0
  45. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -0
  46. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
  47. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
  48. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
  49. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -0
  50. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
  51. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
  52. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
  53. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
  54. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
  55. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +144 -112
  56. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -0
  57. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/data/collator.py +50 -0
  58. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
  59. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
  60. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
  61. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -0
  62. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
  63. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
  64. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
  65. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -0
  66. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
  67. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/mitra_model.py +68 -32
  68. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
  69. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/realmlp/realmlp_model.py +35 -16
  70. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/compilers/onnx.py +1 -1
  71. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_model.py +50 -17
  72. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_quantile.py +4 -2
  73. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabdpt/tabdpt_model.py +244 -0
  74. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabicl/tabicl_model.py +23 -3
  75. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
  76. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
  77. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/tabm_model.py +31 -83
  78. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabm/tabm_reference.py +53 -85
  79. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
  80. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +38 -0
  81. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
  82. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
  83. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
  84. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +21 -0
  85. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +11 -0
  86. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
  87. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
  88. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
  89. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
  90. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
  91. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
  92. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
  93. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
  94. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
  95. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
  96. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +424 -0
  97. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep/prep_lgb_model.py +21 -0
  98. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep/prep_mixin.py +228 -0
  99. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
  100. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +131 -38
  101. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
  102. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
  103. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
  104. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +42 -9
  105. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
  106. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/callbacks.py +9 -3
  107. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/xgboost_model.py +60 -10
  108. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xt/__init__.py +0 -0
  109. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xt/xt_model.py +1 -0
  110. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/interpretable_predictor.py +3 -1
  111. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/predictor.py +453 -143
  112. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/_ag_model_registry.py +10 -5
  113. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/_model_registry.py +1 -0
  114. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/fit_helper.py +60 -13
  115. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/generate_datasets.py +1 -1
  116. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/model_fit_helper.py +10 -4
  117. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/abstract_trainer.py +673 -223
  118. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/auto_trainer.py +24 -8
  119. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  120. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/model_presets/presets.py +33 -9
  121. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
  122. autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/tuning/__init__.py +0 -0
  123. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/version.py +1 -1
  124. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114/src/autogluon.tabular.egg-info}/PKG-INFO +55 -54
  125. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/SOURCES.txt +10 -8
  126. autogluon_tabular-1.5.1b20260114/src/autogluon.tabular.egg-info/requires.txt +132 -0
  127. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/tests/test_check_style.py +1 -1
  128. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -6
  129. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -1
  130. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -1
  131. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -1
  132. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -1
  133. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -46
  134. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -1
  135. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -1
  136. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -46
  137. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -32
  138. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -22
  139. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  140. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  141. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  142. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  143. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  144. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  145. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  146. autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -388
  147. autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info/requires.txt +0 -126
  148. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/LICENSE +0 -0
  149. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/NOTICE +0 -0
  150. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/README.md +0 -0
  151. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/setup.cfg +0 -0
  152. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/__init__.py +0 -0
  153. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
  154. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  155. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/experimental/__init__.py +0 -0
  156. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/learner/__init__.py +0 -0
  157. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  158. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  159. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/automm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/abstract}/__init__.py +0 -0
  160. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/catboost → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/automm}/__init__.py +0 -0
  161. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/catboost/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/catboost}/__init__.py +0 -0
  162. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/ebm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/catboost/hyperparameters}/__init__.py +0 -0
  163. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  164. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  165. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/ebm/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/ebm}/__init__.py +0 -0
  166. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fastainn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/ebm/hyperparameters}/__init__.py +0 -0
  167. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fastainn/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fastainn}/__init__.py +0 -0
  168. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  169. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fasttext → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fastainn/hyperparameters}/__init__.py +0 -0
  170. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  171. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  172. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/fasttext/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fasttext}/__init__.py +0 -0
  173. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/image_prediction → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/fasttext/hyperparameters}/__init__.py +0 -0
  174. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  175. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/imodels → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/image_prediction}/__init__.py +0 -0
  176. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/knn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/imodels}/__init__.py +0 -0
  177. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  178. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lgb → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/knn}/__init__.py +0 -0
  179. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  180. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  181. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  182. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lgb/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lgb}/__init__.py +0 -0
  183. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lgb/hyperparameters}/__init__.py +0 -0
  184. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  185. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/lr/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr}/__init__.py +0 -0
  186. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/mitra → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/lr/hyperparameters}/__init__.py +0 -0
  187. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  188. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  189. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/realmlp → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/mitra}/__init__.py +0 -0
  190. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/rf → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/realmlp}/__init__.py +0 -0
  191. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/rf/compilers → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/rf}/__init__.py +0 -0
  192. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabicl → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/rf/compilers}/__init__.py +0 -0
  193. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  194. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  195. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabm → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabdpt}/__init__.py +0 -0
  196. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabicl}/__init__.py +0 -0
  197. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabm}/__init__.py +0 -0
  198. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/config → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix}/__init__.py +0 -0
  199. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/core → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal}/__init__.py +0 -0
  200. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/data → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/config}/__init__.py +0 -0
  201. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  202. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/models → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/core}/__init__.py +0 -0
  203. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/data}/__init__.py +0 -0
  204. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnmix/_internal/results → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/models}/__init__.py +0 -0
  205. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabpfnv2 → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation}/__init__.py +0 -0
  206. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnmix/_internal/results}/__init__.py +0 -0
  207. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/compilers → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabpfnv2}/__init__.py +0 -0
  208. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabprep}/__init__.py +0 -0
  209. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/torch → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn}/__init__.py +0 -0
  210. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/tabular_nn/utils → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/compilers}/__init__.py +0 -0
  211. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  212. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/text_prediction → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/hyperparameters}/__init__.py +0 -0
  213. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  214. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  215. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xgboost → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/torch}/__init__.py +0 -0
  216. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xgboost/hyperparameters → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/tabular_nn/utils}/__init__.py +0 -0
  217. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/models/xt → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/text_prediction}/__init__.py +0 -0
  218. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  219. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/trainer/model_presets → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xgboost}/__init__.py +0 -0
  220. {autogluon_tabular-1.4.1b20251201/src/autogluon/tabular/tuning → autogluon_tabular-1.5.1b20260114/src/autogluon/tabular/models/xgboost/hyperparameters}/__init__.py +0 -0
  221. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  222. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  223. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  224. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/predictor/__init__.py +0 -0
  225. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/registry/__init__.py +1 -1
  226. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/testing/__init__.py +0 -0
  227. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/trainer/__init__.py +0 -0
  228. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  229. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  230. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  231. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  232. {autogluon_tabular-1.4.1b20251201 → autogluon_tabular-1.5.1b20260114}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20251201
3
+ Version: 1.5.1b20260114
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -40,101 +40,102 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.4.1b20251201
44
- Requires-Dist: autogluon.features==1.4.1b20251201
43
+ Requires-Dist: autogluon.core==1.5.1b20260114
44
+ Requires-Dist: autogluon.features==1.5.1b20260114
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
48
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
49
48
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
50
49
  Provides-Extra: xgboost
51
- Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
50
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "xgboost"
52
51
  Provides-Extra: realmlp
53
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
52
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "realmlp"
54
53
  Provides-Extra: interpret
55
54
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
56
55
  Provides-Extra: fastai
57
56
  Requires-Dist: spacy<3.9; extra == "fastai"
58
- Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
59
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
57
+ Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
58
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "fastai"
60
59
  Provides-Extra: tabm
61
- Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
60
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
62
61
  Provides-Extra: tabpfn
63
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
62
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabpfn"
63
+ Provides-Extra: tabdpt
64
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabdpt"
64
65
  Provides-Extra: tabpfnmix
65
- Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
66
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
66
67
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
67
68
  Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
68
69
  Provides-Extra: mitra
69
70
  Requires-Dist: loguru; extra == "mitra"
70
71
  Requires-Dist: einx; extra == "mitra"
71
72
  Requires-Dist: omegaconf; extra == "mitra"
72
- Requires-Dist: torch<2.8,>=2.6; extra == "mitra"
73
+ Requires-Dist: torch<2.10,>=2.6; extra == "mitra"
73
74
  Requires-Dist: transformers; extra == "mitra"
74
75
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
75
76
  Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
76
77
  Provides-Extra: tabicl
77
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
78
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabicl"
78
79
  Provides-Extra: ray
79
- Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
80
+ Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "ray"
80
81
  Provides-Extra: skex
81
- Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
82
+ Requires-Dist: scikit-learn-intelex<2025.10,>=2025.0; extra == "skex"
82
83
  Provides-Extra: imodels
83
84
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
84
85
  Provides-Extra: skl2onnx
85
- Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
86
- Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
87
- Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
88
- Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
89
- Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
86
+ Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "skl2onnx"
87
+ Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
88
+ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
89
+ Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
90
+ Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
90
91
  Provides-Extra: all
91
- Requires-Dist: spacy<3.9; extra == "all"
92
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
93
- Requires-Dist: einx; extra == "all"
94
- Requires-Dist: loguru; extra == "all"
95
- Requires-Dist: transformers; extra == "all"
96
- Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
97
- Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
98
92
  Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
- Requires-Dist: omegaconf; extra == "all"
100
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
93
+ Requires-Dist: torch<2.10,>=2.6; extra == "all"
101
94
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
102
- Requires-Dist: torch<2.8,>=2.6; extra == "all"
103
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
95
+ Requires-Dist: loguru; extra == "all"
96
+ Requires-Dist: einx; extra == "all"
97
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
98
+ Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "all"
104
99
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
100
+ Requires-Dist: transformers; extra == "all"
101
+ Requires-Dist: omegaconf; extra == "all"
102
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "all"
103
+ Requires-Dist: spacy<3.9; extra == "all"
104
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "all"
105
105
  Provides-Extra: tabarena
106
- Requires-Dist: spacy<3.9; extra == "tabarena"
106
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
107
+ Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
108
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
107
109
  Requires-Dist: einx; extra == "tabarena"
108
- Requires-Dist: transformers; extra == "tabarena"
109
110
  Requires-Dist: loguru; extra == "tabarena"
110
- Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
111
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
112
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
113
- Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
111
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
112
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tabarena"
113
+ Requires-Dist: autogluon.core[all]==1.5.1b20260114; extra == "tabarena"
114
114
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
115
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
115
+ Requires-Dist: transformers; extra == "tabarena"
116
116
  Requires-Dist: omegaconf; extra == "tabarena"
117
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
118
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
119
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
120
- Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
121
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
122
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
123
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
117
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tabarena"
118
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tabarena"
119
+ Requires-Dist: xgboost<3.2,>=2.0; extra == "tabarena"
120
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
121
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tabarena"
122
+ Requires-Dist: spacy<3.9; extra == "tabarena"
123
+ Requires-Dist: fastai<2.8.6,>=2.3.1; extra == "tabarena"
124
124
  Provides-Extra: tests
125
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
127
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
128
- Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
129
- Requires-Dist: torch<2.8,>=2.6; extra == "tests"
126
+ Requires-Dist: tabdpt<1.2,>=1.1.11; extra == "tests"
127
+ Requires-Dist: tabicl<0.2,>=0.1.4; extra == "tests"
128
+ Requires-Dist: tabpfn<6.2.1,>=6.2.0; extra == "tests"
129
+ Requires-Dist: pytabkit<1.8,>=1.7.2; extra == "tests"
130
+ Requires-Dist: torch<2.10,>=2.6; extra == "tests"
130
131
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
131
132
  Requires-Dist: einops<0.9,>=0.7; extra == "tests"
132
133
  Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
133
- Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
134
- Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
135
- Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
136
- Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
137
- Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
134
+ Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "tests"
135
+ Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "tests"
136
+ Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
137
+ Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "tests"
138
+ Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
138
139
  Dynamic: author
139
140
  Dynamic: classifier
140
141
  Dynamic: description
@@ -41,14 +41,13 @@ extras_require = {
41
41
  "lightgbm>=4.0,<4.7", # <{N+1} upper cap, where N is the latest released minor version
42
42
  ],
43
43
  "catboost": [
44
- "numpy>=1.25,<2.3.0",
45
44
  "catboost>=1.2,<1.3",
46
45
  ],
47
46
  "xgboost": [
48
- "xgboost>=2.0,<3.1", # <{N+1} upper cap, where N is the latest released minor version
47
+ "xgboost>=2.0,<3.2", # <{N+1} upper cap, where N is the latest released minor version
49
48
  ],
50
49
  "realmlp": [
51
- "pytabkit>=1.6,<1.7",
50
+ "pytabkit>=1.7.2,<1.8",
52
51
  ],
53
52
  "interpret": [
54
53
  "interpret-core>=0.7.2,<0.8",
@@ -56,13 +55,16 @@ extras_require = {
56
55
  "fastai": [
57
56
  "spacy<3.9",
58
57
  "torch", # version range defined in `core/_setup_utils.py`
59
- "fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
58
+ "fastai>=2.3.1,<2.8.6", # Cap due to dependency conflict in fastai-2.8.6 https://github.com/autogluon/autogluon/issues/5521
60
59
  ],
61
60
  "tabm": [
62
61
  "torch", # version range defined in `core/_setup_utils.py`
63
62
  ],
64
63
  "tabpfn": [
65
- "tabpfn>=2.0.9,<2.2", # <{N+1} upper cap, where N is the latest released minor version
64
+ "tabpfn>=6.2.0,<6.2.1", # <{N+1} upper cap, where N is the latest released minor version
65
+ ],
66
+ "tabdpt": [
67
+ "tabdpt>=1.1.11,<1.2",
66
68
  ],
67
69
  "tabpfnmix": [
68
70
  "torch", # version range defined in `core/_setup_utils.py`
@@ -79,41 +81,29 @@ extras_require = {
79
81
  "einops>=0.7,<0.9",
80
82
  ],
81
83
  "tabicl": [
82
- "tabicl>=0.1.3,<0.2", # 0.1.3 added a major bug fix to multithreading.
84
+ "tabicl>=0.1.4,<0.2", # 0.1.4 added python 3.13 support
83
85
  ],
84
86
  "ray": [
85
87
  f"{ag.PACKAGE_NAME}.core[all]=={version}",
86
88
  ],
87
89
  "skex": [
88
- "scikit-learn-intelex>=2024.0,<2025.5", # <{N+1} upper cap, where N is the latest released minor version
90
+ "scikit-learn-intelex>=2025.0,<2025.10", # <{N+1} upper cap, where N is the latest released minor version
89
91
  ],
90
92
  "imodels": [
91
93
  "imodels>=1.3.10,<2.1.0", # 1.3.8/1.3.9 either remove/renamed attribute `complexity_` causing failures. https://github.com/csinva/imodels/issues/147
92
94
  ],
93
95
  }
94
96
 
95
- is_aarch64 = platform.machine() == "aarch64"
96
- is_darwin = sys.platform == "darwin"
97
-
98
- if is_darwin or is_aarch64:
99
- # For macOS or aarch64, only use CPU version
100
- extras_require["skl2onnx"] = [
101
- "onnx>=1.13.0,<1.16.2;platform_system=='Windows'", # cap at 1.16.1 for issue https://github.com/onnx/onnx/issues/6267
102
- "onnx>=1.13.0,<1.18.0;platform_system!='Windows'",
103
- "skl2onnx>=1.15.0,<1.18.0",
104
- # For macOS, there isn't a onnxruntime-gpu package installed with skl2onnx.
105
- # Therefore, we install onnxruntime explicitly here just for macOS.
106
- "onnxruntime>=1.17.0,<1.20.0",
107
- ]
108
- else:
109
- # For other platforms, include both CPU and GPU versions
110
- extras_require["skl2onnx"] = [
111
- "onnx>=1.13.0,<1.16.2;platform_system=='Windows'", # cap at 1.16.1 for issue https://github.com/onnx/onnx/issues/6267
112
- "onnx>=1.13.0,<1.18.0;platform_system!='Windows'",
113
- "skl2onnx>=1.15.0,<1.18.0",
114
- "onnxruntime>=1.17.0,<1.20.0", # install for gpu system due to https://github.com/autogluon/autogluon/issues/3804
115
- "onnxruntime-gpu>=1.17.0,<1.20.0",
116
- ]
97
+ extras_require["skl2onnx"] = [
98
+ "skl2onnx>=1.15.0,<1.20.0",
99
+ # Sync ONNX requirements with multimodal/setup.py
100
+ "onnx>=1.13.0,!=1.16.2,<1.21.0;platform_system=='Windows'", # exclude 1.16.2 for issue https://github.com/onnx/onnx/issues/6267
101
+ "onnx>=1.13.0,<1.21.0;platform_system!='Windows'",
102
+ # For macOS, there isn't a onnxruntime-gpu package installed with skl2onnx.
103
+ # Therefore, we install onnxruntime explicitly here just for macOS.
104
+ "onnxruntime>=1.17.0,<1.24.0",
105
+ "onnxruntime-gpu>=1.17.0,<1.24.0; platform_system != 'Darwin' and platform_machine != 'aarch64'",
106
+ ]
117
107
 
118
108
  # TODO: v1.0: Rename `all` to `core`, make `all` contain everything.
119
109
  all_requires = []
@@ -133,6 +123,7 @@ extras_require["all"] = all_requires
133
123
  tabarena_requires = copy.deepcopy(all_requires)
134
124
  for extra_package in [
135
125
  "interpret",
126
+ "tabdpt",
136
127
  "tabicl",
137
128
  "tabpfn",
138
129
  "realmlp",
@@ -144,6 +135,7 @@ extras_require["tabarena"] = tabarena_requires
144
135
  test_requires = []
145
136
  for test_package in [
146
137
  "interpret",
138
+ "tabdpt",
147
139
  "tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
148
140
  "tabpfn",
149
141
  "realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
@@ -1,5 +1,6 @@
1
1
  # noinspection PyUnresolvedReferences
2
2
  from autogluon.common.dataset import TabularDataset
3
+
3
4
  # noinspection PyUnresolvedReferences
4
5
  from autogluon.common.features.feature_metadata import FeatureMetadata
5
6
  from autogluon.common.utils.log_utils import _add_stream_handler
@@ -125,7 +125,9 @@ class ConfigBuilder:
125
125
 
126
126
  if isinstance(presets, list):
127
127
  unknown_keys = [k for k in presets if k not in valid_keys]
128
- assert len(unknown_keys) == 0, f"The following presets are not recognized: {unknown_keys} - use one of the valid presets: {valid_keys}"
128
+ assert len(unknown_keys) == 0, (
129
+ f"The following presets are not recognized: {unknown_keys} - use one of the valid presets: {valid_keys}"
130
+ )
129
131
 
130
132
  self.config["presets"] = presets
131
133
  return self
@@ -144,12 +146,18 @@ class ConfigBuilder:
144
146
  valid_keys = self._valid_keys()
145
147
  valid_str_values = list(hyperparameter_config_dict.keys())
146
148
  if isinstance(hyperparameters, str):
147
- assert hyperparameters in hyperparameter_config_dict, f"{hyperparameters} is not one of the valid presets {valid_str_values}"
149
+ assert hyperparameters in hyperparameter_config_dict, (
150
+ f"{hyperparameters} is not one of the valid presets {valid_str_values}"
151
+ )
148
152
  elif isinstance(hyperparameters, dict):
149
153
  unknown_keys = [k for k in hyperparameters.keys() if isinstance(k, str) and (k not in valid_keys)]
150
- assert len(unknown_keys) == 0, f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
154
+ assert len(unknown_keys) == 0, (
155
+ f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
156
+ )
151
157
  else:
152
- raise ValueError(f"hyperparameters must be either str: {valid_str_values} or dict with keys of {valid_keys}")
158
+ raise ValueError(
159
+ f"hyperparameters must be either str: {valid_str_values} or dict with keys of {valid_keys}"
160
+ )
153
161
  self.config["hyperparameters"] = hyperparameters
154
162
  return self
155
163
 
@@ -230,7 +238,9 @@ class ConfigBuilder:
230
238
  """
231
239
  valid_str_values = scheduler_factory._scheduler_presets.keys()
232
240
  if isinstance(hyperparameter_tune_kwargs, str):
233
- assert hyperparameter_tune_kwargs in valid_str_values, f"{hyperparameter_tune_kwargs} string must be one of {valid_str_values}"
241
+ assert hyperparameter_tune_kwargs in valid_str_values, (
242
+ f"{hyperparameter_tune_kwargs} string must be one of {valid_str_values}"
243
+ )
234
244
  elif not isinstance(hyperparameter_tune_kwargs, dict):
235
245
  raise ValueError(f"hyperparameter_tune_kwargs must be either str: {valid_str_values} or dict")
236
246
  self.config["hyperparameter_tune_kwargs"] = hyperparameter_tune_kwargs
@@ -294,7 +304,9 @@ class ConfigBuilder:
294
304
  models = [models]
295
305
 
296
306
  unknown_keys = [k for k in models if isinstance(k, str) and (k not in valid_keys)]
297
- assert len(unknown_keys) == 0, f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
307
+ assert len(unknown_keys) == 0, (
308
+ f"The following model types are not recognized: {unknown_keys} - use one of the valid models: {valid_keys}"
309
+ )
298
310
 
299
311
  models = [m for m in valid_keys if m not in models]
300
312
  self.config["excluded_model_types"] = models
@@ -18,7 +18,9 @@ def get_default_feature_generator(feature_generator, feature_metadata=None, init
18
18
  elif feature_generator == "interpretable":
19
19
  feature_generator = AutoMLInterpretablePipelineFeatureGenerator(**init_kwargs)
20
20
  else:
21
- raise ValueError(f"Unknown feature_generator preset: '{feature_generator}', valid presets: {['auto', 'interpretable']}")
21
+ raise ValueError(
22
+ f"Unknown feature_generator preset: '{feature_generator}', valid presets: {['auto', 'interpretable']}"
23
+ )
22
24
  if feature_metadata is not None:
23
25
  if feature_generator.feature_metadata_in is None and not feature_generator.is_fit():
24
26
  feature_generator.feature_metadata_in = copy.deepcopy(feature_metadata)
@@ -2,6 +2,8 @@ import copy
2
2
 
3
3
  from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
4
4
  from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
5
+ from .zeroshot.zeroshot_portfolio_cpu_2025_12_18 import hyperparameter_portfolio_zeroshot_cpu_2025_12_18
6
+ from .zeroshot.zeroshot_portfolio_gpu_2025_12_18 import hyperparameter_portfolio_zeroshot_gpu_2025_12_18
5
7
 
6
8
  # Dictionary of preset hyperparameter configurations.
7
9
  hyperparameter_config_dict = dict(
@@ -25,12 +27,18 @@ hyperparameter_config_dict = dict(
25
27
  "RF": [
26
28
  {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
27
29
  {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
28
- {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
30
+ {
31
+ "criterion": "squared_error",
32
+ "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
33
+ },
29
34
  ],
30
35
  "XT": [
31
36
  {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
32
37
  {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
33
- {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
38
+ {
39
+ "criterion": "squared_error",
40
+ "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
41
+ },
34
42
  ],
35
43
  },
36
44
  # Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
@@ -51,14 +59,38 @@ hyperparameter_config_dict = dict(
51
59
  "XGB": {},
52
60
  "FASTAI": {},
53
61
  "RF": [
54
- {"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
55
- {"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
56
- {"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
62
+ {
63
+ "criterion": "gini",
64
+ "max_depth": 15,
65
+ "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
66
+ },
67
+ {
68
+ "criterion": "entropy",
69
+ "max_depth": 15,
70
+ "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
71
+ },
72
+ {
73
+ "criterion": "squared_error",
74
+ "max_depth": 15,
75
+ "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
76
+ },
57
77
  ],
58
78
  "XT": [
59
- {"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
60
- {"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
61
- {"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
79
+ {
80
+ "criterion": "gini",
81
+ "max_depth": 15,
82
+ "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]},
83
+ },
84
+ {
85
+ "criterion": "entropy",
86
+ "max_depth": 15,
87
+ "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]},
88
+ },
89
+ {
90
+ "criterion": "squared_error",
91
+ "max_depth": 15,
92
+ "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]},
93
+ },
62
94
  ],
63
95
  },
64
96
  # Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
@@ -117,6 +149,8 @@ hyperparameter_config_dict = dict(
117
149
  zeroshot=hyperparameter_portfolio_zeroshot_2023,
118
150
  zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
119
151
  zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
152
+ zeroshot_2025_12_18_gpu=hyperparameter_portfolio_zeroshot_gpu_2025_12_18,
153
+ zeroshot_2025_12_18_cpu=hyperparameter_portfolio_zeroshot_cpu_2025_12_18,
120
154
  )
121
155
 
122
156
  tabpfnmix_default = {
@@ -133,6 +167,7 @@ hyperparameter_config_dict["experimental_2024"] = {"TABPFNMIX": tabpfnmix_defaul
133
167
  hyperparameter_config_dict["experimental_2024"].update(hyperparameter_config_dict["zeroshot_2023"])
134
168
  hyperparameter_config_dict["experimental"] = hyperparameter_config_dict["experimental_2024"]
135
169
 
170
+
136
171
  def get_hyperparameter_config_options():
137
172
  return list(hyperparameter_config_dict.keys())
138
173
 
@@ -140,5 +175,7 @@ def get_hyperparameter_config_options():
140
175
  def get_hyperparameter_config(config_name):
141
176
  config_options = get_hyperparameter_config_options()
142
177
  if config_name not in config_options:
143
- raise ValueError(f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead.")
178
+ raise ValueError(
179
+ f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead."
180
+ )
144
181
  return copy.deepcopy(hyperparameter_config_dict[config_name])
@@ -9,6 +9,19 @@ tabular_presets_dict = dict(
9
9
  "hyperparameters": "zeroshot",
10
10
  "time_limit": 3600,
11
11
  },
12
+ best_quality_v150={
13
+ "auto_stack": True,
14
+ "dynamic_stacking": "auto",
15
+ "num_stack_levels": 0,
16
+ "hyperparameters": "zeroshot_2025_12_18_cpu",
17
+ "time_limit": 3600,
18
+ "callbacks": [
19
+ [
20
+ "EarlyStoppingCountCallback",
21
+ {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
22
+ ]
23
+ ],
24
+ },
12
25
  # High predictive accuracy with fast inference. ~8x faster inference and ~8x lower disk usage than `best_quality`.
13
26
  # Recommended for applications that require fast inference speed and/or small model size.
14
27
  # Aliases: high
@@ -21,6 +34,22 @@ tabular_presets_dict = dict(
21
34
  "set_best_to_refit_full": True,
22
35
  "save_bag_folds": False,
23
36
  },
37
+ high_quality_v150={
38
+ "auto_stack": True,
39
+ "dynamic_stacking": "auto",
40
+ "num_stack_levels": 0,
41
+ "hyperparameters": "zeroshot_2025_12_18_cpu",
42
+ "time_limit": 3600,
43
+ "callbacks": [
44
+ [
45
+ "EarlyStoppingCountCallback",
46
+ {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
47
+ ]
48
+ ],
49
+ "refit_full": True,
50
+ "set_best_to_refit_full": True,
51
+ "save_bag_folds": False,
52
+ },
24
53
  # Good predictive accuracy with very fast inference. ~4x faster training, ~8x faster inference and ~8x lower disk usage than `high_quality`.
25
54
  # Recommended for applications that require very fast inference speed.
26
55
  # Aliases: good
@@ -46,7 +75,13 @@ tabular_presets_dict = dict(
46
75
  optimize_for_deployment={"keep_only_best": True, "save_space": True},
47
76
  # Disables automated feature generation when text features are detected.
48
77
  # This is useful to determine how beneficial text features are to the end result, as well as to ensure features are not mistaken for text when they are not.
49
- ignore_text={"_feature_generator_kwargs": {"enable_text_ngram_features": False, "enable_text_special_features": False, "enable_raw_text_features": False}},
78
+ ignore_text={
79
+ "_feature_generator_kwargs": {
80
+ "enable_text_ngram_features": False,
81
+ "enable_text_special_features": False,
82
+ "enable_raw_text_features": False,
83
+ }
84
+ },
50
85
  ignore_text_ngrams={"_feature_generator_kwargs": {"enable_text_ngram_features": False}},
51
86
  # Fit only interpretable models.
52
87
  interpretable={
@@ -64,25 +99,48 @@ tabular_presets_dict = dict(
64
99
  best_quality_v082={"auto_stack": True},
65
100
  # High predictive accuracy with fast inference. ~10x-200x faster inference and ~10x-200x lower disk usage than `best_quality`.
66
101
  # Recommended for applications that require reasonable inference speed and/or model size.
67
- high_quality_v082={"auto_stack": True, "refit_full": True, "set_best_to_refit_full": True, "save_bag_folds": False},
102
+ high_quality_v082={
103
+ "auto_stack": True,
104
+ "refit_full": True,
105
+ "set_best_to_refit_full": True,
106
+ "save_bag_folds": False,
107
+ },
68
108
  # Good predictive accuracy with very fast inference. ~4x faster inference and ~4x lower disk usage than `high_quality`.
69
109
  # Recommended for applications that require fast inference speed.
70
- good_quality_v082={"auto_stack": True, "refit_full": True, "set_best_to_refit_full": True, "save_bag_folds": False, "hyperparameters": "light"},
110
+ good_quality_v082={
111
+ "auto_stack": True,
112
+ "refit_full": True,
113
+ "set_best_to_refit_full": True,
114
+ "save_bag_folds": False,
115
+ "hyperparameters": "light",
116
+ },
71
117
  # ------------------------------------------
72
118
  # Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
73
119
  # Experimental presets can be removed or changed without warning.
74
-
75
120
  # [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
76
121
  # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
77
122
  # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
78
123
  # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
79
124
  # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
80
125
  # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
81
- # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
126
+ # Uses pre-trained tabular foundation models, which add a minimum of 100 MB to the predictor artifact's size.
82
127
  # For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
83
128
  # Aliases: extreme, experimental, experimental_quality
84
129
  # GPU STRONGLY RECOMMENDED
85
130
  extreme_quality={
131
+ "auto_stack": True,
132
+ "dynamic_stacking": "auto",
133
+ "num_stack_levels": 0,
134
+ "hyperparameters": "zeroshot_2025_12_18_gpu",
135
+ "time_limit": 3600,
136
+ "callbacks": [
137
+ [
138
+ "EarlyStoppingCountCallback",
139
+ {"patience": [[100, 4], [500, 8], [2500, 15], [10000, 40], [100000, 100], None]},
140
+ ]
141
+ ],
142
+ },
143
+ extreme_quality_v140={
86
144
  "auto_stack": True,
87
145
  "dynamic_stacking": "auto",
88
146
  "num_bag_sets": 1,
@@ -90,7 +148,6 @@ tabular_presets_dict = dict(
90
148
  "hyperparameters": None,
91
149
  "time_limit": 3600,
92
150
  },
93
-
94
151
  # Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
95
152
  # Uses tabular foundation models: TabPFNv2, TabICL, Mitra
96
153
  # Uses deep learning model: TabM
@@ -105,7 +162,6 @@ tabular_presets_dict = dict(
105
162
  "hyperparameters": "zeroshot_2025_tabfm",
106
163
  "time_limit": 3600,
107
164
  },
108
-
109
165
  # DOES NOT SUPPORT GPU.
110
166
  experimental_quality_v120={
111
167
  "auto_stack": True,
@@ -116,7 +172,6 @@ tabular_presets_dict = dict(
116
172
  "num_gpus": 0,
117
173
  "time_limit": 3600,
118
174
  },
119
-
120
175
  # ------------------------------------------
121
176
  # ------------------------------------------
122
177
  # ------------------------------------------
@@ -140,5 +195,11 @@ tabular_presets_alias = dict(
140
195
  mq="medium_quality",
141
196
  experimental="extreme_quality",
142
197
  experimental_quality="extreme_quality",
143
- experimental_quality_v140="extreme_quality",
198
+ experimental_quality_v140="extreme_quality_v140",
199
+ best_v140="best_quality",
200
+ best_v150="best_quality_v150",
201
+ best_quality_v140="best_quality",
202
+ high_v150="high_quality_v150",
203
+ extreme_v140="extreme_quality_v140",
204
+ extreme_v150="extreme_quality",
144
205
  )