autogluon.tabular 1.4.1b20251116__tar.gz → 1.4.1b20251201__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon_tabular-1.4.1b20251116/src/autogluon.tabular.egg-info → autogluon_tabular-1.4.1b20251201}/PKG-INFO +33 -33
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/README.md +7 -4
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/setup.py +0 -1
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_model.py +76 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info}/PKG-INFO +33 -33
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/requires.txt +23 -32
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/LICENSE +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/NOTICE +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/setup.cfg +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/mitra_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/tabicl_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/predictor.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/fit_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/zip-safe +0 -0
- {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/tests/test_check_style.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20251201
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -23,15 +23,15 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
23
23
|
Classifier: Operating System :: POSIX
|
|
24
24
|
Classifier: Operating System :: Unix
|
|
25
25
|
Classifier: Programming Language :: Python :: 3
|
|
26
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
27
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
28
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
29
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
30
30
|
Classifier: Topic :: Software Development
|
|
31
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
32
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
33
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
34
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
35
35
|
Description-Content-Type: text/markdown
|
|
36
36
|
License-File: LICENSE
|
|
37
37
|
License-File: NOTICE
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.4.
|
|
44
|
-
Requires-Dist: autogluon.features==1.4.
|
|
43
|
+
Requires-Dist: autogluon.core==1.4.1b20251201
|
|
44
|
+
Requires-Dist: autogluon.features==1.4.1b20251201
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -57,7 +57,6 @@ Provides-Extra: fastai
|
|
|
57
57
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
58
58
|
Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
|
|
59
59
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
|
|
60
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "fastai"
|
|
61
60
|
Provides-Extra: tabm
|
|
62
61
|
Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
|
|
63
62
|
Provides-Extra: tabpfn
|
|
@@ -77,7 +76,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
76
|
Provides-Extra: tabicl
|
|
78
77
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
79
78
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.4.
|
|
79
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
|
|
81
80
|
Provides-Extra: skex
|
|
82
81
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
|
83
82
|
Provides-Extra: imodels
|
|
@@ -89,41 +88,39 @@ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
|
|
|
89
88
|
Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
90
89
|
Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
91
90
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
93
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
94
|
-
Requires-Dist: loguru; extra == "all"
|
|
95
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
96
91
|
Requires-Dist: spacy<3.9; extra == "all"
|
|
92
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
97
93
|
Requires-Dist: einx; extra == "all"
|
|
98
|
-
Requires-Dist:
|
|
99
|
-
Requires-Dist:
|
|
94
|
+
Requires-Dist: loguru; extra == "all"
|
|
95
|
+
Requires-Dist: transformers; extra == "all"
|
|
96
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
|
|
100
97
|
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
101
|
-
Requires-Dist:
|
|
102
|
-
Requires-Dist:
|
|
98
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
103
100
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
101
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
104
102
|
Requires-Dist: torch<2.8,>=2.6; extra == "all"
|
|
103
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
105
104
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
106
|
-
Requires-Dist: transformers; extra == "all"
|
|
107
105
|
Provides-Extra: tabarena
|
|
108
|
-
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
109
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
110
106
|
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
111
|
-
Requires-Dist:
|
|
112
|
-
Requires-Dist:
|
|
113
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
107
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
108
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
114
109
|
Requires-Dist: loguru; extra == "tabarena"
|
|
115
|
-
Requires-Dist:
|
|
116
|
-
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
110
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
|
|
117
111
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
118
|
-
Requires-Dist:
|
|
112
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
119
113
|
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
114
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
115
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
116
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
117
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
118
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
119
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
120
|
+
Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
|
|
121
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
120
122
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
121
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
122
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "tabarena"
|
|
123
|
-
Requires-Dist: einx; extra == "tabarena"
|
|
124
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
|
|
125
123
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
126
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
127
124
|
Provides-Extra: tests
|
|
128
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
129
126
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
|
|
@@ -160,7 +157,7 @@ Dynamic: summary
|
|
|
160
157
|
|
|
161
158
|
[](https://github.com/autogluon/autogluon/releases)
|
|
162
159
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
163
|
-
[](https://pypi.org/project/autogluon/)
|
|
164
161
|
[](https://pepy.tech/project/autogluon)
|
|
165
162
|
[](./LICENSE)
|
|
166
163
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -177,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
177
174
|
|
|
178
175
|
## 💾 Installation
|
|
179
176
|
|
|
180
|
-
AutoGluon is supported on Python 3.
|
|
177
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
181
178
|
|
|
182
179
|
You can install AutoGluon with:
|
|
183
180
|
|
|
@@ -200,8 +197,8 @@ predictions = predictor.predict("test.csv")
|
|
|
200
197
|
| AutoGluon Task | Quickstart | API |
|
|
201
198
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
202
199
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
203
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
204
200
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
201
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
205
202
|
|
|
206
203
|
## :mag: Resources
|
|
207
204
|
|
|
@@ -224,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
224
221
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
225
222
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
226
223
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
224
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
225
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
226
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
228
228
|
|
|
229
229
|
### Articles
|
|
230
230
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -7,7 +7,7 @@
|
|
|
7
7
|
|
|
8
8
|
[](https://github.com/autogluon/autogluon/releases)
|
|
9
9
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
10
|
-
[](https://pypi.org/project/autogluon/)
|
|
11
11
|
[](https://pepy.tech/project/autogluon)
|
|
12
12
|
[](./LICENSE)
|
|
13
13
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -24,7 +24,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
24
24
|
|
|
25
25
|
## 💾 Installation
|
|
26
26
|
|
|
27
|
-
AutoGluon is supported on Python 3.
|
|
27
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
28
28
|
|
|
29
29
|
You can install AutoGluon with:
|
|
30
30
|
|
|
@@ -47,8 +47,8 @@ predictions = predictor.predict("test.csv")
|
|
|
47
47
|
| AutoGluon Task | Quickstart | API |
|
|
48
48
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
49
49
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
50
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
51
50
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
51
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
52
52
|
|
|
53
53
|
## :mag: Resources
|
|
54
54
|
|
|
@@ -71,7 +71,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
71
71
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
72
72
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
73
73
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
74
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
74
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
75
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
76
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
77
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
75
78
|
|
|
76
79
|
### Articles
|
|
77
80
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -57,7 +57,6 @@ extras_require = {
|
|
|
57
57
|
"spacy<3.9",
|
|
58
58
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
59
59
|
"fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
|
|
60
|
-
"blis>=0.7.0,<1.2.1;platform_system=='Windows' and python_version=='3.9'", # blis not publishing Python 3.9 wheels for Windows, TODO: remove this after dropping Python 3.9 support
|
|
61
60
|
],
|
|
62
61
|
"tabm": [
|
|
63
62
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
@@ -49,6 +49,7 @@ class TabMModel(AbstractModel):
|
|
|
49
49
|
self._indicator_columns = None
|
|
50
50
|
self._features_bool = None
|
|
51
51
|
self._bool_to_cat = None
|
|
52
|
+
self.device = None
|
|
52
53
|
|
|
53
54
|
def _fit(
|
|
54
55
|
self,
|
|
@@ -142,6 +143,81 @@ class TabMModel(AbstractModel):
|
|
|
142
143
|
|
|
143
144
|
return X
|
|
144
145
|
|
|
146
|
+
def save(self, path: str = None, verbose=True) -> str:
|
|
147
|
+
"""
|
|
148
|
+
Need to set device to CPU to be able to load on a non-GPU environment
|
|
149
|
+
"""
|
|
150
|
+
import torch
|
|
151
|
+
|
|
152
|
+
# Save on CPU to ensure the model can be loaded without GPU
|
|
153
|
+
if self.model is not None:
|
|
154
|
+
self.device = self.model.device_
|
|
155
|
+
device_cpu = torch.device("cpu")
|
|
156
|
+
self.model.model_ = self.model.model_.to(device_cpu)
|
|
157
|
+
self.model.device_ = device_cpu
|
|
158
|
+
path = super().save(path=path, verbose=verbose)
|
|
159
|
+
# Put the model back to the device after the save
|
|
160
|
+
if self.model is not None:
|
|
161
|
+
self.model.model_.to(self.device)
|
|
162
|
+
self.model.device_ = self.device
|
|
163
|
+
|
|
164
|
+
return path
|
|
165
|
+
|
|
166
|
+
@classmethod
|
|
167
|
+
def load(cls, path: str, reset_paths=True, verbose=True):
|
|
168
|
+
"""
|
|
169
|
+
Loads the model from disk to memory.
|
|
170
|
+
The loaded model will be on the same device it was trained on (cuda/mps);
|
|
171
|
+
if the device is not available (trained on GPU, deployed on CPU), then `cpu` will be used.
|
|
172
|
+
|
|
173
|
+
Parameters
|
|
174
|
+
----------
|
|
175
|
+
path : str
|
|
176
|
+
Path to the saved model, minus the file name.
|
|
177
|
+
This should generally be a directory path ending with a '/' character (or appropriate path separator value depending on OS).
|
|
178
|
+
The model file is typically located in os.path.join(path, cls.model_file_name).
|
|
179
|
+
reset_paths : bool, default True
|
|
180
|
+
Whether to reset the self.path value of the loaded model to be equal to path.
|
|
181
|
+
It is highly recommended to keep this value as True unless accessing the original self.path value is important.
|
|
182
|
+
If False, the actual valid path and self.path may differ, leading to strange behaviour and potential exceptions if the model needs to load any other files at a later time.
|
|
183
|
+
verbose : bool, default True
|
|
184
|
+
Whether to log the location of the loaded file.
|
|
185
|
+
|
|
186
|
+
Returns
|
|
187
|
+
-------
|
|
188
|
+
model : cls
|
|
189
|
+
Loaded model object.
|
|
190
|
+
"""
|
|
191
|
+
import torch
|
|
192
|
+
|
|
193
|
+
model: TabMModel = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
|
|
194
|
+
|
|
195
|
+
# Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
|
|
196
|
+
if model.model is not None:
|
|
197
|
+
original_device_type = model.device.type
|
|
198
|
+
if "cuda" in original_device_type:
|
|
199
|
+
# cuda: nvidia GPU
|
|
200
|
+
device = torch.device(original_device_type if torch.cuda.is_available() else "cpu")
|
|
201
|
+
elif "mps" in original_device_type:
|
|
202
|
+
# mps: Apple Silicon
|
|
203
|
+
device = torch.device(original_device_type if torch.backends.mps.is_available() else "cpu")
|
|
204
|
+
else:
|
|
205
|
+
device = torch.device(original_device_type)
|
|
206
|
+
|
|
207
|
+
if verbose and (original_device_type != device.type):
|
|
208
|
+
logger.log(15, f"Model is trained on {original_device_type}, but the device is not available - loading on {device.type}")
|
|
209
|
+
|
|
210
|
+
model.set_device(device=device)
|
|
211
|
+
|
|
212
|
+
return model
|
|
213
|
+
|
|
214
|
+
def set_device(self, device):
|
|
215
|
+
self.device = device
|
|
216
|
+
if self.model is not None:
|
|
217
|
+
self.model.device_ = device
|
|
218
|
+
if self.model.model_ is not None:
|
|
219
|
+
self.model.model_ = self.model.model_.to(device)
|
|
220
|
+
|
|
145
221
|
@classmethod
|
|
146
222
|
def supported_problem_types(cls) -> list[str] | None:
|
|
147
223
|
return ["binary", "multiclass", "regression"]
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20251201
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -23,15 +23,15 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
23
23
|
Classifier: Operating System :: POSIX
|
|
24
24
|
Classifier: Operating System :: Unix
|
|
25
25
|
Classifier: Programming Language :: Python :: 3
|
|
26
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
27
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
28
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
29
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
30
30
|
Classifier: Topic :: Software Development
|
|
31
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
32
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
33
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
34
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
35
35
|
Description-Content-Type: text/markdown
|
|
36
36
|
License-File: LICENSE
|
|
37
37
|
License-File: NOTICE
|
|
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
|
40
40
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
41
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
42
|
Requires-Dist: networkx<4,>=3.0
|
|
43
|
-
Requires-Dist: autogluon.core==1.4.
|
|
44
|
-
Requires-Dist: autogluon.features==1.4.
|
|
43
|
+
Requires-Dist: autogluon.core==1.4.1b20251201
|
|
44
|
+
Requires-Dist: autogluon.features==1.4.1b20251201
|
|
45
45
|
Provides-Extra: lightgbm
|
|
46
46
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
47
47
|
Provides-Extra: catboost
|
|
@@ -57,7 +57,6 @@ Provides-Extra: fastai
|
|
|
57
57
|
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
58
58
|
Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
|
|
59
59
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
|
|
60
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "fastai"
|
|
61
60
|
Provides-Extra: tabm
|
|
62
61
|
Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
|
|
63
62
|
Provides-Extra: tabpfn
|
|
@@ -77,7 +76,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
|
77
76
|
Provides-Extra: tabicl
|
|
78
77
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
79
78
|
Provides-Extra: ray
|
|
80
|
-
Requires-Dist: autogluon.core[all]==1.4.
|
|
79
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
|
|
81
80
|
Provides-Extra: skex
|
|
82
81
|
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
|
83
82
|
Provides-Extra: imodels
|
|
@@ -89,41 +88,39 @@ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
|
|
|
89
88
|
Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
90
89
|
Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
|
|
91
90
|
Provides-Extra: all
|
|
92
|
-
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
93
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
94
|
-
Requires-Dist: loguru; extra == "all"
|
|
95
|
-
Requires-Dist: omegaconf; extra == "all"
|
|
96
91
|
Requires-Dist: spacy<3.9; extra == "all"
|
|
92
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
97
93
|
Requires-Dist: einx; extra == "all"
|
|
98
|
-
Requires-Dist:
|
|
99
|
-
Requires-Dist:
|
|
94
|
+
Requires-Dist: loguru; extra == "all"
|
|
95
|
+
Requires-Dist: transformers; extra == "all"
|
|
96
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
|
|
100
97
|
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
101
|
-
Requires-Dist:
|
|
102
|
-
Requires-Dist:
|
|
98
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
103
100
|
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
101
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
104
102
|
Requires-Dist: torch<2.8,>=2.6; extra == "all"
|
|
103
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
105
104
|
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
106
|
-
Requires-Dist: transformers; extra == "all"
|
|
107
105
|
Provides-Extra: tabarena
|
|
108
|
-
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
109
|
-
Requires-Dist: omegaconf; extra == "tabarena"
|
|
110
106
|
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
111
|
-
Requires-Dist:
|
|
112
|
-
Requires-Dist:
|
|
113
|
-
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
107
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
108
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
114
109
|
Requires-Dist: loguru; extra == "tabarena"
|
|
115
|
-
Requires-Dist:
|
|
116
|
-
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
110
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
|
|
117
111
|
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
118
|
-
Requires-Dist:
|
|
112
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
119
113
|
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
114
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
115
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
116
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
117
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
118
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
119
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
120
|
+
Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
|
|
121
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
120
122
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
121
|
-
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
122
|
-
Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "tabarena"
|
|
123
|
-
Requires-Dist: einx; extra == "tabarena"
|
|
124
|
-
Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
|
|
125
123
|
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
126
|
-
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
127
124
|
Provides-Extra: tests
|
|
128
125
|
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
129
126
|
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
|
|
@@ -160,7 +157,7 @@ Dynamic: summary
|
|
|
160
157
|
|
|
161
158
|
[](https://github.com/autogluon/autogluon/releases)
|
|
162
159
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
163
|
-
[](https://pypi.org/project/autogluon/)
|
|
164
161
|
[](https://pepy.tech/project/autogluon)
|
|
165
162
|
[](./LICENSE)
|
|
166
163
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -177,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
177
174
|
|
|
178
175
|
## 💾 Installation
|
|
179
176
|
|
|
180
|
-
AutoGluon is supported on Python 3.
|
|
177
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
181
178
|
|
|
182
179
|
You can install AutoGluon with:
|
|
183
180
|
|
|
@@ -200,8 +197,8 @@ predictions = predictor.predict("test.csv")
|
|
|
200
197
|
| AutoGluon Task | Quickstart | API |
|
|
201
198
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
202
199
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
203
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
204
200
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
201
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
205
202
|
|
|
206
203
|
## :mag: Resources
|
|
207
204
|
|
|
@@ -224,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
224
221
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
225
222
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
226
223
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
224
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
225
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
226
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
228
228
|
|
|
229
229
|
### Articles
|
|
230
230
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -3,27 +3,24 @@ scipy<1.17,>=1.5.4
|
|
|
3
3
|
pandas<2.4.0,>=2.0.0
|
|
4
4
|
scikit-learn<1.8.0,>=1.4.0
|
|
5
5
|
networkx<4,>=3.0
|
|
6
|
-
autogluon.core==1.4.
|
|
7
|
-
autogluon.features==1.4.
|
|
6
|
+
autogluon.core==1.4.1b20251201
|
|
7
|
+
autogluon.features==1.4.1b20251201
|
|
8
8
|
|
|
9
9
|
[all]
|
|
10
|
-
einops<0.9,>=0.7
|
|
11
|
-
numpy<2.3.0,>=1.25
|
|
12
|
-
loguru
|
|
13
|
-
omegaconf
|
|
14
10
|
spacy<3.9
|
|
11
|
+
fastai<2.9,>=2.3.1
|
|
15
12
|
einx
|
|
16
|
-
|
|
13
|
+
loguru
|
|
14
|
+
transformers
|
|
15
|
+
autogluon.core[all]==1.4.1b20251201
|
|
17
16
|
xgboost<3.1,>=2.0
|
|
18
|
-
|
|
19
|
-
|
|
17
|
+
einops<0.9,>=0.7
|
|
18
|
+
omegaconf
|
|
20
19
|
huggingface_hub[torch]<1.0
|
|
20
|
+
catboost<1.3,>=1.2
|
|
21
21
|
torch<2.8,>=2.6
|
|
22
|
+
numpy<2.3.0,>=1.25
|
|
22
23
|
lightgbm<4.7,>=4.0
|
|
23
|
-
transformers
|
|
24
|
-
|
|
25
|
-
[all:platform_system == "Windows" and python_version == "3.9"]
|
|
26
|
-
blis<1.2.1,>=0.7.0
|
|
27
24
|
|
|
28
25
|
[catboost]
|
|
29
26
|
numpy<2.3.0,>=1.25
|
|
@@ -34,9 +31,6 @@ spacy<3.9
|
|
|
34
31
|
torch<2.8,>=2.6
|
|
35
32
|
fastai<2.9,>=2.3.1
|
|
36
33
|
|
|
37
|
-
[fastai:platform_system == "Windows" and python_version == "3.9"]
|
|
38
|
-
blis<1.2.1,>=0.7.0
|
|
39
|
-
|
|
40
34
|
[imodels]
|
|
41
35
|
imodels<2.1.0,>=1.3.10
|
|
42
36
|
|
|
@@ -56,7 +50,7 @@ huggingface_hub[torch]<1.0
|
|
|
56
50
|
einops<0.9,>=0.7
|
|
57
51
|
|
|
58
52
|
[ray]
|
|
59
|
-
autogluon.core[all]==1.4.
|
|
53
|
+
autogluon.core[all]==1.4.1b20251201
|
|
60
54
|
|
|
61
55
|
[realmlp]
|
|
62
56
|
pytabkit<1.7,>=1.6
|
|
@@ -76,27 +70,24 @@ onnx<1.18.0,>=1.13.0
|
|
|
76
70
|
onnx<1.16.2,>=1.13.0
|
|
77
71
|
|
|
78
72
|
[tabarena]
|
|
79
|
-
tabicl<0.2,>=0.1.3
|
|
80
|
-
omegaconf
|
|
81
73
|
spacy<3.9
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
lightgbm<4.7,>=4.0
|
|
74
|
+
einx
|
|
75
|
+
transformers
|
|
85
76
|
loguru
|
|
86
|
-
|
|
87
|
-
tabpfn<2.2,>=2.0.9
|
|
77
|
+
autogluon.core[all]==1.4.1b20251201
|
|
88
78
|
pytabkit<1.7,>=1.6
|
|
89
|
-
|
|
79
|
+
xgboost<3.1,>=2.0
|
|
90
80
|
einops<0.9,>=0.7
|
|
81
|
+
lightgbm<4.7,>=4.0
|
|
82
|
+
interpret-core<0.8,>=0.7.2
|
|
83
|
+
omegaconf
|
|
84
|
+
huggingface_hub[torch]<1.0
|
|
85
|
+
catboost<1.3,>=1.2
|
|
86
|
+
tabicl<0.2,>=0.1.3
|
|
87
|
+
torch<2.8,>=2.6
|
|
88
|
+
tabpfn<2.2,>=2.0.9
|
|
91
89
|
numpy<2.3.0,>=1.25
|
|
92
|
-
xgboost<3.1,>=2.0
|
|
93
|
-
autogluon.core[all]==1.4.1b20251116
|
|
94
|
-
einx
|
|
95
90
|
fastai<2.9,>=2.3.1
|
|
96
|
-
huggingface_hub[torch]<1.0
|
|
97
|
-
|
|
98
|
-
[tabarena:platform_system == "Windows" and python_version == "3.9"]
|
|
99
|
-
blis<1.2.1,>=0.7.0
|
|
100
91
|
|
|
101
92
|
[tabicl]
|
|
102
93
|
tabicl<0.2,>=0.1.3
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|