autogluon.tabular 1.4.1b20251116__tar.gz → 1.4.1b20251201__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. {autogluon_tabular-1.4.1b20251116/src/autogluon.tabular.egg-info → autogluon_tabular-1.4.1b20251201}/PKG-INFO +33 -33
  2. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/README.md +7 -4
  3. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/setup.py +0 -1
  4. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_model.py +76 -0
  5. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/version.py +1 -1
  6. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info}/PKG-INFO +33 -33
  7. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/requires.txt +23 -32
  8. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/LICENSE +0 -0
  9. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/NOTICE +0 -0
  10. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/setup.cfg +0 -0
  11. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/__init__.py +0 -0
  12. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/__init__.py +0 -0
  13. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/config_helper.py +0 -0
  14. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  15. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  16. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
  17. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  18. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  19. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  20. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
  21. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/__init__.py +0 -0
  22. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  23. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  24. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  25. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  26. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/__init__.py +0 -0
  27. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  28. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/default_learner.py +0 -0
  29. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/__init__.py +0 -0
  30. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  31. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  32. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  33. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  34. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  35. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  36. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  37. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  38. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  39. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  40. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  41. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  42. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  43. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  44. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
  45. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/ebm_model.py +0 -0
  46. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
  47. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
  48. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
  49. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  50. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  51. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  52. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  53. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  54. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  55. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  56. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  57. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  58. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  59. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  60. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  61. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  62. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  63. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  64. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  65. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  66. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  67. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  68. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  69. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  70. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  71. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  72. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  73. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  74. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  75. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  76. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  77. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  78. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  79. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  80. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  81. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  82. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  83. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  84. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  85. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
  86. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  87. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  88. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  89. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  90. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  91. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  92. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  93. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  94. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  95. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  96. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  97. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
  98. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  99. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  100. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
  101. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
  102. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  103. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  104. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  105. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  106. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
  107. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  108. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  109. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/mitra_model.py +0 -0
  110. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
  111. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
  112. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -0
  113. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  114. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  115. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  116. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  117. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  118. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  119. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  120. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
  121. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/tabicl_model.py +0 -0
  122. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
  123. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  124. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
  125. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
  126. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  127. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  128. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  129. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  130. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  131. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  132. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  133. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  134. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  135. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  136. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  137. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  138. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  139. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  140. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  141. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  142. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  143. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  144. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  145. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  146. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  147. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  148. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  149. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  150. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  151. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  152. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
  153. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
  154. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
  155. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
  156. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
  157. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
  158. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
  159. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
  160. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -0
  161. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  162. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  163. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  164. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  165. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  166. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  167. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  168. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  169. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  170. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  171. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  172. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  173. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  174. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  175. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  176. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  177. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  178. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  179. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  180. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  181. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  182. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  183. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  184. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  185. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  186. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  187. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/__init__.py +0 -0
  188. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  189. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/predictor.py +0 -0
  190. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/__init__.py +0 -0
  191. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  192. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  193. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/__init__.py +0 -0
  194. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  195. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  196. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  197. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/__init__.py +0 -0
  198. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  199. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  200. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  201. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  202. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  203. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/__init__.py +0 -0
  204. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  205. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
  206. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  207. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  208. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  209. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/zip-safe +0 -0
  210. {autogluon_tabular-1.4.1b20251116 → autogluon_tabular-1.4.1b20251201}/tests/test_check_style.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20251116
3
+ Version: 1.4.1b20251201
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -23,15 +23,15 @@ Classifier: Operating System :: Microsoft :: Windows
23
23
  Classifier: Operating System :: POSIX
24
24
  Classifier: Operating System :: Unix
25
25
  Classifier: Programming Language :: Python :: 3
26
- Classifier: Programming Language :: Python :: 3.9
27
26
  Classifier: Programming Language :: Python :: 3.10
28
27
  Classifier: Programming Language :: Python :: 3.11
29
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
30
30
  Classifier: Topic :: Software Development
31
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
32
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
33
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
34
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
35
35
  Description-Content-Type: text/markdown
36
36
  License-File: LICENSE
37
37
  License-File: NOTICE
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.4.1b20251116
44
- Requires-Dist: autogluon.features==1.4.1b20251116
43
+ Requires-Dist: autogluon.core==1.4.1b20251201
44
+ Requires-Dist: autogluon.features==1.4.1b20251201
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
@@ -57,7 +57,6 @@ Provides-Extra: fastai
57
57
  Requires-Dist: spacy<3.9; extra == "fastai"
58
58
  Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
59
59
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
60
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "fastai"
61
60
  Provides-Extra: tabm
62
61
  Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
63
62
  Provides-Extra: tabpfn
@@ -77,7 +76,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
77
76
  Provides-Extra: tabicl
78
77
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
79
78
  Provides-Extra: ray
80
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "ray"
79
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
81
80
  Provides-Extra: skex
82
81
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
83
82
  Provides-Extra: imodels
@@ -89,41 +88,39 @@ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
89
88
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
90
89
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
91
90
  Provides-Extra: all
92
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
93
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
94
- Requires-Dist: loguru; extra == "all"
95
- Requires-Dist: omegaconf; extra == "all"
96
91
  Requires-Dist: spacy<3.9; extra == "all"
92
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
97
93
  Requires-Dist: einx; extra == "all"
98
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
99
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
94
+ Requires-Dist: loguru; extra == "all"
95
+ Requires-Dist: transformers; extra == "all"
96
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
100
97
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
101
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
102
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "all"
98
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
+ Requires-Dist: omegaconf; extra == "all"
103
100
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
101
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
104
102
  Requires-Dist: torch<2.8,>=2.6; extra == "all"
103
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
105
104
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
106
- Requires-Dist: transformers; extra == "all"
107
105
  Provides-Extra: tabarena
108
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
109
- Requires-Dist: omegaconf; extra == "tabarena"
110
106
  Requires-Dist: spacy<3.9; extra == "tabarena"
111
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
112
- Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
113
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
107
+ Requires-Dist: einx; extra == "tabarena"
108
+ Requires-Dist: transformers; extra == "tabarena"
114
109
  Requires-Dist: loguru; extra == "tabarena"
115
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
110
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
117
111
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
118
- Requires-Dist: transformers; extra == "tabarena"
112
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
119
113
  Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
114
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
115
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
+ Requires-Dist: omegaconf; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
118
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
119
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
120
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
121
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
120
122
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
121
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
122
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "tabarena"
123
- Requires-Dist: einx; extra == "tabarena"
124
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
125
123
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
126
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
127
124
  Provides-Extra: tests
128
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
129
126
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
@@ -160,7 +157,7 @@ Dynamic: summary
160
157
 
161
158
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
162
159
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
163
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
160
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
164
161
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
165
162
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
166
163
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -177,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
177
174
 
178
175
  ## 💾 Installation
179
176
 
180
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
177
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
181
178
 
182
179
  You can install AutoGluon with:
183
180
 
@@ -200,8 +197,8 @@ predictions = predictor.predict("test.csv")
200
197
  | AutoGluon Task | Quickstart | API |
201
198
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
202
199
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
203
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
204
200
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
201
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
205
202
 
206
203
  ## :mag: Resources
207
204
 
@@ -224,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
224
221
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
225
222
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
226
223
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
227
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
224
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
225
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
226
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
227
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
228
228
 
229
229
  ### Articles
230
230
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -7,7 +7,7 @@
7
7
 
8
8
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
9
9
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
10
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
10
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
11
11
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
12
12
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
13
13
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -24,7 +24,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
24
24
 
25
25
  ## 💾 Installation
26
26
 
27
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
27
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
28
28
 
29
29
  You can install AutoGluon with:
30
30
 
@@ -47,8 +47,8 @@ predictions = predictor.predict("test.csv")
47
47
  | AutoGluon Task | Quickstart | API |
48
48
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
49
49
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
50
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
51
50
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
51
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
52
52
 
53
53
  ## :mag: Resources
54
54
 
@@ -71,7 +71,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
71
71
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
72
72
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
73
73
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
74
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
74
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
75
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
76
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
77
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
75
78
 
76
79
  ### Articles
77
80
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -57,7 +57,6 @@ extras_require = {
57
57
  "spacy<3.9",
58
58
  "torch", # version range defined in `core/_setup_utils.py`
59
59
  "fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
60
- "blis>=0.7.0,<1.2.1;platform_system=='Windows' and python_version=='3.9'", # blis not publishing Python 3.9 wheels for Windows, TODO: remove this after dropping Python 3.9 support
61
60
  ],
62
61
  "tabm": [
63
62
  "torch", # version range defined in `core/_setup_utils.py`
@@ -49,6 +49,7 @@ class TabMModel(AbstractModel):
49
49
  self._indicator_columns = None
50
50
  self._features_bool = None
51
51
  self._bool_to_cat = None
52
+ self.device = None
52
53
 
53
54
  def _fit(
54
55
  self,
@@ -142,6 +143,81 @@ class TabMModel(AbstractModel):
142
143
 
143
144
  return X
144
145
 
146
+ def save(self, path: str = None, verbose=True) -> str:
147
+ """
148
+ Need to set device to CPU to be able to load on a non-GPU environment
149
+ """
150
+ import torch
151
+
152
+ # Save on CPU to ensure the model can be loaded without GPU
153
+ if self.model is not None:
154
+ self.device = self.model.device_
155
+ device_cpu = torch.device("cpu")
156
+ self.model.model_ = self.model.model_.to(device_cpu)
157
+ self.model.device_ = device_cpu
158
+ path = super().save(path=path, verbose=verbose)
159
+ # Put the model back to the device after the save
160
+ if self.model is not None:
161
+ self.model.model_.to(self.device)
162
+ self.model.device_ = self.device
163
+
164
+ return path
165
+
166
+ @classmethod
167
+ def load(cls, path: str, reset_paths=True, verbose=True):
168
+ """
169
+ Loads the model from disk to memory.
170
+ The loaded model will be on the same device it was trained on (cuda/mps);
171
+ if the device is not available (trained on GPU, deployed on CPU), then `cpu` will be used.
172
+
173
+ Parameters
174
+ ----------
175
+ path : str
176
+ Path to the saved model, minus the file name.
177
+ This should generally be a directory path ending with a '/' character (or appropriate path separator value depending on OS).
178
+ The model file is typically located in os.path.join(path, cls.model_file_name).
179
+ reset_paths : bool, default True
180
+ Whether to reset the self.path value of the loaded model to be equal to path.
181
+ It is highly recommended to keep this value as True unless accessing the original self.path value is important.
182
+ If False, the actual valid path and self.path may differ, leading to strange behaviour and potential exceptions if the model needs to load any other files at a later time.
183
+ verbose : bool, default True
184
+ Whether to log the location of the loaded file.
185
+
186
+ Returns
187
+ -------
188
+ model : cls
189
+ Loaded model object.
190
+ """
191
+ import torch
192
+
193
+ model: TabMModel = super().load(path=path, reset_paths=reset_paths, verbose=verbose)
194
+
195
+ # Put the model on the same device it was trained on (GPU/MPS) if it is available; otherwise use CPU
196
+ if model.model is not None:
197
+ original_device_type = model.device.type
198
+ if "cuda" in original_device_type:
199
+ # cuda: nvidia GPU
200
+ device = torch.device(original_device_type if torch.cuda.is_available() else "cpu")
201
+ elif "mps" in original_device_type:
202
+ # mps: Apple Silicon
203
+ device = torch.device(original_device_type if torch.backends.mps.is_available() else "cpu")
204
+ else:
205
+ device = torch.device(original_device_type)
206
+
207
+ if verbose and (original_device_type != device.type):
208
+ logger.log(15, f"Model is trained on {original_device_type}, but the device is not available - loading on {device.type}")
209
+
210
+ model.set_device(device=device)
211
+
212
+ return model
213
+
214
+ def set_device(self, device):
215
+ self.device = device
216
+ if self.model is not None:
217
+ self.model.device_ = device
218
+ if self.model.model_ is not None:
219
+ self.model.model_ = self.model.model_.to(device)
220
+
145
221
  @classmethod
146
222
  def supported_problem_types(cls) -> list[str] | None:
147
223
  return ["binary", "multiclass", "regression"]
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.1b20251116"
3
+ __version__ = "1.4.1b20251201"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20251116
3
+ Version: 1.4.1b20251201
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -23,15 +23,15 @@ Classifier: Operating System :: Microsoft :: Windows
23
23
  Classifier: Operating System :: POSIX
24
24
  Classifier: Operating System :: Unix
25
25
  Classifier: Programming Language :: Python :: 3
26
- Classifier: Programming Language :: Python :: 3.9
27
26
  Classifier: Programming Language :: Python :: 3.10
28
27
  Classifier: Programming Language :: Python :: 3.11
29
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
30
30
  Classifier: Topic :: Software Development
31
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
32
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
33
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
34
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
35
35
  Description-Content-Type: text/markdown
36
36
  License-File: LICENSE
37
37
  License-File: NOTICE
@@ -40,8 +40,8 @@ Requires-Dist: scipy<1.17,>=1.5.4
40
40
  Requires-Dist: pandas<2.4.0,>=2.0.0
41
41
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
42
  Requires-Dist: networkx<4,>=3.0
43
- Requires-Dist: autogluon.core==1.4.1b20251116
44
- Requires-Dist: autogluon.features==1.4.1b20251116
43
+ Requires-Dist: autogluon.core==1.4.1b20251201
44
+ Requires-Dist: autogluon.features==1.4.1b20251201
45
45
  Provides-Extra: lightgbm
46
46
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
47
47
  Provides-Extra: catboost
@@ -57,7 +57,6 @@ Provides-Extra: fastai
57
57
  Requires-Dist: spacy<3.9; extra == "fastai"
58
58
  Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
59
59
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
60
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "fastai"
61
60
  Provides-Extra: tabm
62
61
  Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
63
62
  Provides-Extra: tabpfn
@@ -77,7 +76,7 @@ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
77
76
  Provides-Extra: tabicl
78
77
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
79
78
  Provides-Extra: ray
80
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "ray"
79
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
81
80
  Provides-Extra: skex
82
81
  Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
83
82
  Provides-Extra: imodels
@@ -89,41 +88,39 @@ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
89
88
  Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
90
89
  Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
91
90
  Provides-Extra: all
92
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
93
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
94
- Requires-Dist: loguru; extra == "all"
95
- Requires-Dist: omegaconf; extra == "all"
96
91
  Requires-Dist: spacy<3.9; extra == "all"
92
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
97
93
  Requires-Dist: einx; extra == "all"
98
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "all"
99
- Requires-Dist: catboost<1.3,>=1.2; extra == "all"
94
+ Requires-Dist: loguru; extra == "all"
95
+ Requires-Dist: transformers; extra == "all"
96
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
100
97
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
101
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
102
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "all"
98
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
+ Requires-Dist: omegaconf; extra == "all"
103
100
  Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
101
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
104
102
  Requires-Dist: torch<2.8,>=2.6; extra == "all"
103
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
105
104
  Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
106
- Requires-Dist: transformers; extra == "all"
107
105
  Provides-Extra: tabarena
108
- Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
109
- Requires-Dist: omegaconf; extra == "tabarena"
110
106
  Requires-Dist: spacy<3.9; extra == "tabarena"
111
- Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
112
- Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
113
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
107
+ Requires-Dist: einx; extra == "tabarena"
108
+ Requires-Dist: transformers; extra == "tabarena"
114
109
  Requires-Dist: loguru; extra == "tabarena"
115
- Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
- Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
110
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
117
111
  Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
118
- Requires-Dist: transformers; extra == "tabarena"
112
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
119
113
  Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
114
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
115
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
+ Requires-Dist: omegaconf; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
118
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
119
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
120
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
121
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
120
122
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
121
- Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
122
- Requires-Dist: autogluon.core[all]==1.4.1b20251116; extra == "tabarena"
123
- Requires-Dist: einx; extra == "tabarena"
124
- Requires-Dist: blis<1.2.1,>=0.7.0; (platform_system == "Windows" and python_version == "3.9") and extra == "tabarena"
125
123
  Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
126
- Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
127
124
  Provides-Extra: tests
128
125
  Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
129
126
  Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
@@ -160,7 +157,7 @@ Dynamic: summary
160
157
 
161
158
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
162
159
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
163
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
160
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
164
161
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
165
162
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
166
163
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -177,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
177
174
 
178
175
  ## 💾 Installation
179
176
 
180
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
177
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
181
178
 
182
179
  You can install AutoGluon with:
183
180
 
@@ -200,8 +197,8 @@ predictions = predictor.predict("test.csv")
200
197
  | AutoGluon Task | Quickstart | API |
201
198
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
202
199
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
203
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
204
200
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
201
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
205
202
 
206
203
  ## :mag: Resources
207
204
 
@@ -224,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
224
221
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
225
222
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
226
223
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
227
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
224
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
225
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
226
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
227
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
228
228
 
229
229
  ### Articles
230
230
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -3,27 +3,24 @@ scipy<1.17,>=1.5.4
3
3
  pandas<2.4.0,>=2.0.0
4
4
  scikit-learn<1.8.0,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.4.1b20251116
7
- autogluon.features==1.4.1b20251116
6
+ autogluon.core==1.4.1b20251201
7
+ autogluon.features==1.4.1b20251201
8
8
 
9
9
  [all]
10
- einops<0.9,>=0.7
11
- numpy<2.3.0,>=1.25
12
- loguru
13
- omegaconf
14
10
  spacy<3.9
11
+ fastai<2.9,>=2.3.1
15
12
  einx
16
- catboost<1.3,>=1.2
13
+ loguru
14
+ transformers
15
+ autogluon.core[all]==1.4.1b20251201
17
16
  xgboost<3.1,>=2.0
18
- fastai<2.9,>=2.3.1
19
- autogluon.core[all]==1.4.1b20251116
17
+ einops<0.9,>=0.7
18
+ omegaconf
20
19
  huggingface_hub[torch]<1.0
20
+ catboost<1.3,>=1.2
21
21
  torch<2.8,>=2.6
22
+ numpy<2.3.0,>=1.25
22
23
  lightgbm<4.7,>=4.0
23
- transformers
24
-
25
- [all:platform_system == "Windows" and python_version == "3.9"]
26
- blis<1.2.1,>=0.7.0
27
24
 
28
25
  [catboost]
29
26
  numpy<2.3.0,>=1.25
@@ -34,9 +31,6 @@ spacy<3.9
34
31
  torch<2.8,>=2.6
35
32
  fastai<2.9,>=2.3.1
36
33
 
37
- [fastai:platform_system == "Windows" and python_version == "3.9"]
38
- blis<1.2.1,>=0.7.0
39
-
40
34
  [imodels]
41
35
  imodels<2.1.0,>=1.3.10
42
36
 
@@ -56,7 +50,7 @@ huggingface_hub[torch]<1.0
56
50
  einops<0.9,>=0.7
57
51
 
58
52
  [ray]
59
- autogluon.core[all]==1.4.1b20251116
53
+ autogluon.core[all]==1.4.1b20251201
60
54
 
61
55
  [realmlp]
62
56
  pytabkit<1.7,>=1.6
@@ -76,27 +70,24 @@ onnx<1.18.0,>=1.13.0
76
70
  onnx<1.16.2,>=1.13.0
77
71
 
78
72
  [tabarena]
79
- tabicl<0.2,>=0.1.3
80
- omegaconf
81
73
  spacy<3.9
82
- catboost<1.3,>=1.2
83
- torch<2.8,>=2.6
84
- lightgbm<4.7,>=4.0
74
+ einx
75
+ transformers
85
76
  loguru
86
- interpret-core<0.8,>=0.7.2
87
- tabpfn<2.2,>=2.0.9
77
+ autogluon.core[all]==1.4.1b20251201
88
78
  pytabkit<1.7,>=1.6
89
- transformers
79
+ xgboost<3.1,>=2.0
90
80
  einops<0.9,>=0.7
81
+ lightgbm<4.7,>=4.0
82
+ interpret-core<0.8,>=0.7.2
83
+ omegaconf
84
+ huggingface_hub[torch]<1.0
85
+ catboost<1.3,>=1.2
86
+ tabicl<0.2,>=0.1.3
87
+ torch<2.8,>=2.6
88
+ tabpfn<2.2,>=2.0.9
91
89
  numpy<2.3.0,>=1.25
92
- xgboost<3.1,>=2.0
93
- autogluon.core[all]==1.4.1b20251116
94
- einx
95
90
  fastai<2.9,>=2.3.1
96
- huggingface_hub[torch]<1.0
97
-
98
- [tabarena:platform_system == "Windows" and python_version == "3.9"]
99
- blis<1.2.1,>=0.7.0
100
91
 
101
92
  [tabicl]
102
93
  tabicl<0.2,>=0.1.3