autogluon.tabular 1.4.1b20250919__tar.gz → 1.4.1b20251205__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon_tabular-1.4.1b20251205/LICENSE +175 -0
- autogluon_tabular-1.4.1b20251205/NOTICE +2 -0
- {autogluon.tabular-1.4.1b20250919/src/autogluon.tabular.egg-info → autogluon_tabular-1.4.1b20251205}/PKG-INFO +107 -13
- autogluon.tabular-1.4.1b20250919/PKG-INFO → autogluon_tabular-1.4.1b20251205/README.md +7 -63
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/setup.py +19 -34
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/catboost_model.py +3 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/ebm/ebm_model.py +2 -6
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -2
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/knn/knn_model.py +6 -2
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/lgb_model.py +56 -24
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/lr_model.py +6 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/mitra_model.py +2 -7
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/realmlp/realmlp_model.py +1 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/rf_model.py +6 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabicl/tabicl_model.py +1 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabm/tabm_model.py +76 -3
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +7 -5
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +1 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -4
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/xgboost_model.py +8 -5
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/predictor/predictor.py +3 -2
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/testing/fit_helper.py +28 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/version.py +1 -1
- autogluon_tabular-1.4.1b20251205/src/autogluon.tabular.egg-info/PKG-INFO +252 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/SOURCES.txt +5 -3
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/requires.txt +47 -52
- autogluon_tabular-1.4.1b20251205/tests/test_check_style.py +15 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/setup.cfg +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.4.1b20250919 → autogluon_tabular-1.4.1b20251205}/src/autogluon.tabular.egg-info/zip-safe +0 -0
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
|
|
2
|
+
Apache License
|
|
3
|
+
Version 2.0, January 2004
|
|
4
|
+
http://www.apache.org/licenses/
|
|
5
|
+
|
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
|
7
|
+
|
|
8
|
+
1. Definitions.
|
|
9
|
+
|
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
|
12
|
+
|
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
|
14
|
+
the copyright owner that is granting the License.
|
|
15
|
+
|
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
|
17
|
+
other entities that control, are controlled by, or are under common
|
|
18
|
+
control with that entity. For the purposes of this definition,
|
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
|
20
|
+
direction or management of such entity, whether by contract or
|
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
|
23
|
+
|
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
|
25
|
+
exercising permissions granted by this License.
|
|
26
|
+
|
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
|
28
|
+
including but not limited to software source code, documentation
|
|
29
|
+
source, and configuration files.
|
|
30
|
+
|
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
|
32
|
+
transformation or translation of a Source form, including but
|
|
33
|
+
not limited to compiled object code, generated documentation,
|
|
34
|
+
and conversions to other media types.
|
|
35
|
+
|
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
|
37
|
+
Object form, made available under the License, as indicated by a
|
|
38
|
+
copyright notice that is included in or attached to the work
|
|
39
|
+
(an example is provided in the Appendix below).
|
|
40
|
+
|
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
|
47
|
+
the Work and Derivative Works thereof.
|
|
48
|
+
|
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
|
50
|
+
the original version of the Work and any modifications or additions
|
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
|
62
|
+
|
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
|
65
|
+
subsequently incorporated within the Work.
|
|
66
|
+
|
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
|
73
|
+
|
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
|
79
|
+
where such license applies only to those patent claims licensable
|
|
80
|
+
by such Contributor that are necessarily infringed by their
|
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
|
83
|
+
institute patent litigation against any entity (including a
|
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
|
86
|
+
or contributory patent infringement, then any patent licenses
|
|
87
|
+
granted to You under this License for that Work shall terminate
|
|
88
|
+
as of the date such litigation is filed.
|
|
89
|
+
|
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
|
92
|
+
modifications, and in Source or Object form, provided that You
|
|
93
|
+
meet the following conditions:
|
|
94
|
+
|
|
95
|
+
(a) You must give any other recipients of the Work or
|
|
96
|
+
Derivative Works a copy of this License; and
|
|
97
|
+
|
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
|
99
|
+
stating that You changed the files; and
|
|
100
|
+
|
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
|
103
|
+
attribution notices from the Source form of the Work,
|
|
104
|
+
excluding those notices that do not pertain to any part of
|
|
105
|
+
the Derivative Works; and
|
|
106
|
+
|
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
|
109
|
+
include a readable copy of the attribution notices contained
|
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
|
112
|
+
of the following places: within a NOTICE text file distributed
|
|
113
|
+
as part of the Derivative Works; within the Source form or
|
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
|
115
|
+
within a display generated by the Derivative Works, if and
|
|
116
|
+
wherever such third-party notices normally appear. The contents
|
|
117
|
+
of the NOTICE file are for informational purposes only and
|
|
118
|
+
do not modify the License. You may add Your own attribution
|
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
|
121
|
+
that such additional attribution notices cannot be construed
|
|
122
|
+
as modifying the License.
|
|
123
|
+
|
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
|
125
|
+
may provide additional or different license terms and conditions
|
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
|
129
|
+
the conditions stated in this License.
|
|
130
|
+
|
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
|
134
|
+
this License, without any additional terms or conditions.
|
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
|
136
|
+
the terms of any separate license agreement you may have executed
|
|
137
|
+
with Licensor regarding such Contributions.
|
|
138
|
+
|
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
|
141
|
+
except as required for reasonable and customary use in describing the
|
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
|
143
|
+
|
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
|
153
|
+
|
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
|
159
|
+
incidental, or consequential damages of any character arising as a
|
|
160
|
+
result of this License or out of the use or inability to use the
|
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
|
163
|
+
other commercial damages or losses), even if such Contributor
|
|
164
|
+
has been advised of the possibility of such damages.
|
|
165
|
+
|
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
|
169
|
+
or other liability obligations and/or rights consistent with this
|
|
170
|
+
License. However, in accepting such obligations, You may act only
|
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
|
175
|
+
of your accepting any such warranty or additional liability.
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.1b20251205
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
|
|
|
9
9
|
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
10
|
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
11
|
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
12
|
Classifier: Development Status :: 4 - Beta
|
|
14
13
|
Classifier: Intended Audience :: Education
|
|
15
14
|
Classifier: Intended Audience :: Developers
|
|
@@ -24,36 +23,130 @@ Classifier: Operating System :: Microsoft :: Windows
|
|
|
24
23
|
Classifier: Operating System :: POSIX
|
|
25
24
|
Classifier: Operating System :: Unix
|
|
26
25
|
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
28
26
|
Classifier: Programming Language :: Python :: 3.10
|
|
29
27
|
Classifier: Programming Language :: Python :: 3.11
|
|
30
28
|
Classifier: Programming Language :: Python :: 3.12
|
|
29
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
31
30
|
Classifier: Topic :: Software Development
|
|
32
31
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
32
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
33
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.
|
|
34
|
+
Requires-Python: >=3.10, <3.14
|
|
36
35
|
Description-Content-Type: text/markdown
|
|
36
|
+
License-File: LICENSE
|
|
37
|
+
License-File: NOTICE
|
|
38
|
+
Requires-Dist: numpy<2.4.0,>=1.25.0
|
|
39
|
+
Requires-Dist: scipy<1.17,>=1.5.4
|
|
40
|
+
Requires-Dist: pandas<2.4.0,>=2.0.0
|
|
41
|
+
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
|
42
|
+
Requires-Dist: networkx<4,>=3.0
|
|
43
|
+
Requires-Dist: autogluon.core==1.4.1b20251205
|
|
44
|
+
Requires-Dist: autogluon.features==1.4.1b20251205
|
|
37
45
|
Provides-Extra: lightgbm
|
|
46
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
|
|
38
47
|
Provides-Extra: catboost
|
|
48
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
|
49
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
|
39
50
|
Provides-Extra: xgboost
|
|
51
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
|
|
40
52
|
Provides-Extra: realmlp
|
|
53
|
+
Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
|
|
41
54
|
Provides-Extra: interpret
|
|
55
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
|
|
42
56
|
Provides-Extra: fastai
|
|
57
|
+
Requires-Dist: spacy<3.9; extra == "fastai"
|
|
58
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "fastai"
|
|
59
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
|
|
43
60
|
Provides-Extra: tabm
|
|
61
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabm"
|
|
44
62
|
Provides-Extra: tabpfn
|
|
63
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
|
|
45
64
|
Provides-Extra: tabpfnmix
|
|
65
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabpfnmix"
|
|
66
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
|
|
67
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
|
|
46
68
|
Provides-Extra: mitra
|
|
69
|
+
Requires-Dist: loguru; extra == "mitra"
|
|
70
|
+
Requires-Dist: einx; extra == "mitra"
|
|
71
|
+
Requires-Dist: omegaconf; extra == "mitra"
|
|
72
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "mitra"
|
|
73
|
+
Requires-Dist: transformers; extra == "mitra"
|
|
74
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
|
|
75
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
|
|
47
76
|
Provides-Extra: tabicl
|
|
77
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
|
|
48
78
|
Provides-Extra: ray
|
|
79
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251205; extra == "ray"
|
|
49
80
|
Provides-Extra: skex
|
|
81
|
+
Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
|
|
50
82
|
Provides-Extra: imodels
|
|
83
|
+
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
|
|
51
84
|
Provides-Extra: skl2onnx
|
|
85
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "skl2onnx"
|
|
86
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
|
|
87
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
|
|
88
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "skl2onnx"
|
|
89
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "skl2onnx"
|
|
52
90
|
Provides-Extra: all
|
|
91
|
+
Requires-Dist: omegaconf; extra == "all"
|
|
92
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
|
93
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
|
94
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251205; extra == "all"
|
|
95
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "all"
|
|
96
|
+
Requires-Dist: einx; extra == "all"
|
|
97
|
+
Requires-Dist: loguru; extra == "all"
|
|
98
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
|
99
|
+
Requires-Dist: spacy<3.9; extra == "all"
|
|
100
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
|
101
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
|
|
102
|
+
Requires-Dist: transformers; extra == "all"
|
|
103
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
|
104
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
|
53
105
|
Provides-Extra: tabarena
|
|
106
|
+
Requires-Dist: omegaconf; extra == "tabarena"
|
|
107
|
+
Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
|
|
108
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
|
|
109
|
+
Requires-Dist: autogluon.core[all]==1.4.1b20251205; extra == "tabarena"
|
|
110
|
+
Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
|
|
111
|
+
Requires-Dist: einx; extra == "tabarena"
|
|
112
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
|
|
113
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
|
|
114
|
+
Requires-Dist: loguru; extra == "tabarena"
|
|
115
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
|
|
116
|
+
Requires-Dist: spacy<3.9; extra == "tabarena"
|
|
117
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
|
|
118
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
|
|
119
|
+
Requires-Dist: transformers; extra == "tabarena"
|
|
120
|
+
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
|
|
121
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tabarena"
|
|
122
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
|
|
123
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
|
|
54
124
|
Provides-Extra: tests
|
|
55
|
-
|
|
56
|
-
|
|
125
|
+
Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
|
|
126
|
+
Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
|
|
127
|
+
Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
|
|
128
|
+
Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
|
|
129
|
+
Requires-Dist: torch<2.10,>=2.6; extra == "tests"
|
|
130
|
+
Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
|
|
131
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "tests"
|
|
132
|
+
Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
|
|
133
|
+
Requires-Dist: skl2onnx<1.20.0,>=1.15.0; extra == "tests"
|
|
134
|
+
Requires-Dist: onnx!=1.16.2,<1.21.0,>=1.13.0; platform_system == "Windows" and extra == "tests"
|
|
135
|
+
Requires-Dist: onnx<1.21.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
|
|
136
|
+
Requires-Dist: onnxruntime<1.24.0,>=1.17.0; extra == "tests"
|
|
137
|
+
Requires-Dist: onnxruntime-gpu<1.24.0,>=1.17.0; (platform_system != "Darwin" and platform_machine != "aarch64") and extra == "tests"
|
|
138
|
+
Dynamic: author
|
|
139
|
+
Dynamic: classifier
|
|
140
|
+
Dynamic: description
|
|
141
|
+
Dynamic: description-content-type
|
|
142
|
+
Dynamic: home-page
|
|
143
|
+
Dynamic: license
|
|
144
|
+
Dynamic: license-file
|
|
145
|
+
Dynamic: project-url
|
|
146
|
+
Dynamic: provides-extra
|
|
147
|
+
Dynamic: requires-dist
|
|
148
|
+
Dynamic: requires-python
|
|
149
|
+
Dynamic: summary
|
|
57
150
|
|
|
58
151
|
|
|
59
152
|
|
|
@@ -64,7 +157,7 @@ License-File: ../NOTICE
|
|
|
64
157
|
|
|
65
158
|
[](https://github.com/autogluon/autogluon/releases)
|
|
66
159
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
67
|
-
[](https://pypi.org/project/autogluon/)
|
|
68
161
|
[](https://pepy.tech/project/autogluon)
|
|
69
162
|
[](./LICENSE)
|
|
70
163
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -81,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
81
174
|
|
|
82
175
|
## 💾 Installation
|
|
83
176
|
|
|
84
|
-
AutoGluon is supported on Python 3.
|
|
177
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
85
178
|
|
|
86
179
|
You can install AutoGluon with:
|
|
87
180
|
|
|
@@ -104,8 +197,8 @@ predictions = predictor.predict("test.csv")
|
|
|
104
197
|
| AutoGluon Task | Quickstart | API |
|
|
105
198
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
106
199
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
107
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
108
200
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
201
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
109
202
|
|
|
110
203
|
## :mag: Resources
|
|
111
204
|
|
|
@@ -128,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
128
221
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
129
222
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
130
223
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
131
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
224
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
225
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
226
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
227
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
132
228
|
|
|
133
229
|
### Articles
|
|
134
230
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -154,5 +250,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
154
250
|
## :classical_building: License
|
|
155
251
|
|
|
156
252
|
This library is licensed under the Apache 2.0 License.
|
|
157
|
-
|
|
158
|
-
|
|
@@ -1,60 +1,3 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.1b20250919
|
|
4
|
-
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
|
-
Home-page: https://github.com/autogluon/autogluon
|
|
6
|
-
Author: AutoGluon Community
|
|
7
|
-
License: Apache-2.0
|
|
8
|
-
Project-URL: Documentation, https://auto.gluon.ai
|
|
9
|
-
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
|
10
|
-
Project-URL: Source, https://github.com/autogluon/autogluon/
|
|
11
|
-
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
|
12
|
-
Platform: UNKNOWN
|
|
13
|
-
Classifier: Development Status :: 4 - Beta
|
|
14
|
-
Classifier: Intended Audience :: Education
|
|
15
|
-
Classifier: Intended Audience :: Developers
|
|
16
|
-
Classifier: Intended Audience :: Science/Research
|
|
17
|
-
Classifier: Intended Audience :: Customer Service
|
|
18
|
-
Classifier: Intended Audience :: Financial and Insurance Industry
|
|
19
|
-
Classifier: Intended Audience :: Healthcare Industry
|
|
20
|
-
Classifier: Intended Audience :: Telecommunications Industry
|
|
21
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
22
|
-
Classifier: Operating System :: MacOS
|
|
23
|
-
Classifier: Operating System :: Microsoft :: Windows
|
|
24
|
-
Classifier: Operating System :: POSIX
|
|
25
|
-
Classifier: Operating System :: Unix
|
|
26
|
-
Classifier: Programming Language :: Python :: 3
|
|
27
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
28
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
29
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
30
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
31
|
-
Classifier: Topic :: Software Development
|
|
32
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
33
|
-
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
|
34
|
-
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
|
35
|
-
Requires-Python: >=3.9, <3.13
|
|
36
|
-
Description-Content-Type: text/markdown
|
|
37
|
-
Provides-Extra: lightgbm
|
|
38
|
-
Provides-Extra: catboost
|
|
39
|
-
Provides-Extra: xgboost
|
|
40
|
-
Provides-Extra: realmlp
|
|
41
|
-
Provides-Extra: interpret
|
|
42
|
-
Provides-Extra: fastai
|
|
43
|
-
Provides-Extra: tabm
|
|
44
|
-
Provides-Extra: tabpfn
|
|
45
|
-
Provides-Extra: tabpfnmix
|
|
46
|
-
Provides-Extra: mitra
|
|
47
|
-
Provides-Extra: tabicl
|
|
48
|
-
Provides-Extra: ray
|
|
49
|
-
Provides-Extra: skex
|
|
50
|
-
Provides-Extra: imodels
|
|
51
|
-
Provides-Extra: skl2onnx
|
|
52
|
-
Provides-Extra: all
|
|
53
|
-
Provides-Extra: tabarena
|
|
54
|
-
Provides-Extra: tests
|
|
55
|
-
License-File: ../LICENSE
|
|
56
|
-
License-File: ../NOTICE
|
|
57
|
-
|
|
58
1
|
|
|
59
2
|
|
|
60
3
|
<div align="center">
|
|
@@ -64,7 +7,7 @@ License-File: ../NOTICE
|
|
|
64
7
|
|
|
65
8
|
[](https://github.com/autogluon/autogluon/releases)
|
|
66
9
|
[](https://anaconda.org/conda-forge/autogluon)
|
|
67
|
-
[](https://pypi.org/project/autogluon/)
|
|
68
11
|
[](https://pepy.tech/project/autogluon)
|
|
69
12
|
[](./LICENSE)
|
|
70
13
|
[](https://discord.gg/wjUmjqAc2N)
|
|
@@ -81,7 +24,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
|
|
|
81
24
|
|
|
82
25
|
## 💾 Installation
|
|
83
26
|
|
|
84
|
-
AutoGluon is supported on Python 3.
|
|
27
|
+
AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
|
|
85
28
|
|
|
86
29
|
You can install AutoGluon with:
|
|
87
30
|
|
|
@@ -104,8 +47,8 @@ predictions = predictor.predict("test.csv")
|
|
|
104
47
|
| AutoGluon Task | Quickstart | API |
|
|
105
48
|
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
106
49
|
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
|
107
|
-
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
108
50
|
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
|
51
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
|
109
52
|
|
|
110
53
|
## :mag: Resources
|
|
111
54
|
|
|
@@ -128,7 +71,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
|
|
|
128
71
|
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
129
72
|
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
|
130
73
|
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
|
131
|
-
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*
|
|
74
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
|
|
75
|
+
- [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
|
|
76
|
+
- [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
77
|
+
- [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
|
|
132
78
|
|
|
133
79
|
### Articles
|
|
134
80
|
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
|
@@ -154,5 +100,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
|
|
|
154
100
|
## :classical_building: License
|
|
155
101
|
|
|
156
102
|
This library is licensed under the Apache 2.0 License.
|
|
157
|
-
|
|
158
|
-
|
|
@@ -8,9 +8,10 @@ import platform
|
|
|
8
8
|
from setuptools import setup
|
|
9
9
|
|
|
10
10
|
filepath = os.path.abspath(os.path.dirname(__file__))
|
|
11
|
-
filepath_import = os.path.join(
|
|
12
|
-
|
|
13
|
-
)
|
|
11
|
+
filepath_import = os.path.join(filepath, "..", "core", "src", "autogluon", "core", "_setup_utils.py")
|
|
12
|
+
if not os.path.exists(filepath_import):
|
|
13
|
+
filepath_import = os.path.join(filepath, "_setup_utils.py")
|
|
14
|
+
|
|
14
15
|
spec = importlib.util.spec_from_file_location("ag_min_dependencies", filepath_import)
|
|
15
16
|
ag = importlib.util.module_from_spec(spec)
|
|
16
17
|
# Identical to `from autogluon.core import _setup_utils as ag`, but works without `autogluon.core` being installed.
|
|
@@ -56,7 +57,6 @@ extras_require = {
|
|
|
56
57
|
"spacy<3.9",
|
|
57
58
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
58
59
|
"fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
|
|
59
|
-
"blis>=0.7.0,<1.2.1;platform_system=='Windows' and python_version=='3.9'", # blis not publishing Python 3.9 wheels for Windows, TODO: remove this after dropping Python 3.9 support
|
|
60
60
|
],
|
|
61
61
|
"tabm": [
|
|
62
62
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
@@ -66,7 +66,7 @@ extras_require = {
|
|
|
66
66
|
],
|
|
67
67
|
"tabpfnmix": [
|
|
68
68
|
"torch", # version range defined in `core/_setup_utils.py`
|
|
69
|
-
"huggingface_hub[torch]", #
|
|
69
|
+
"huggingface_hub[torch]", # version range defined in `core/_setup_utils.py`
|
|
70
70
|
"einops>=0.7,<0.9",
|
|
71
71
|
],
|
|
72
72
|
"mitra": [
|
|
@@ -75,7 +75,7 @@ extras_require = {
|
|
|
75
75
|
"omegaconf",
|
|
76
76
|
"torch",
|
|
77
77
|
"transformers",
|
|
78
|
-
"huggingface_hub[torch]",
|
|
78
|
+
"huggingface_hub[torch]", # version range defined in `core/_setup_utils.py`
|
|
79
79
|
"einops>=0.7,<0.9",
|
|
80
80
|
],
|
|
81
81
|
"tabicl": [
|
|
@@ -92,28 +92,16 @@ extras_require = {
|
|
|
92
92
|
],
|
|
93
93
|
}
|
|
94
94
|
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
# Therefore, we install onnxruntime explicitly here just for macOS.
|
|
106
|
-
"onnxruntime>=1.17.0,<1.20.0",
|
|
107
|
-
]
|
|
108
|
-
else:
|
|
109
|
-
# For other platforms, include both CPU and GPU versions
|
|
110
|
-
extras_require["skl2onnx"] = [
|
|
111
|
-
"onnx>=1.13.0,<1.16.2;platform_system=='Windows'", # cap at 1.16.1 for issue https://github.com/onnx/onnx/issues/6267
|
|
112
|
-
"onnx>=1.13.0,<1.18.0;platform_system!='Windows'",
|
|
113
|
-
"skl2onnx>=1.15.0,<1.18.0",
|
|
114
|
-
"onnxruntime>=1.17.0,<1.20.0", # install for gpu system due to https://github.com/autogluon/autogluon/issues/3804
|
|
115
|
-
"onnxruntime-gpu>=1.17.0,<1.20.0",
|
|
116
|
-
]
|
|
95
|
+
extras_require["skl2onnx"] = [
|
|
96
|
+
"skl2onnx>=1.15.0,<1.20.0",
|
|
97
|
+
# Sync ONNX requirements with multimodal/setup.py
|
|
98
|
+
"onnx>=1.13.0,!=1.16.2,<1.21.0;platform_system=='Windows'", # exclude 1.16.2 for issue https://github.com/onnx/onnx/issues/6267
|
|
99
|
+
"onnx>=1.13.0,<1.21.0;platform_system!='Windows'",
|
|
100
|
+
# For macOS, there isn't a onnxruntime-gpu package installed with skl2onnx.
|
|
101
|
+
# Therefore, we install onnxruntime explicitly here just for macOS.
|
|
102
|
+
"onnxruntime>=1.17.0,<1.24.0",
|
|
103
|
+
"onnxruntime-gpu>=1.17.0,<1.24.0; platform_system != 'Darwin' and platform_machine != 'aarch64'",
|
|
104
|
+
]
|
|
117
105
|
|
|
118
106
|
# TODO: v1.0: Rename `all` to `core`, make `all` contain everything.
|
|
119
107
|
all_requires = []
|
|
@@ -132,7 +120,7 @@ extras_require["all"] = all_requires
|
|
|
132
120
|
|
|
133
121
|
tabarena_requires = copy.deepcopy(all_requires)
|
|
134
122
|
for extra_package in [
|
|
135
|
-
"interpret",
|
|
123
|
+
"interpret",
|
|
136
124
|
"tabicl",
|
|
137
125
|
"tabpfn",
|
|
138
126
|
"realmlp",
|
|
@@ -143,7 +131,7 @@ extras_require["tabarena"] = tabarena_requires
|
|
|
143
131
|
|
|
144
132
|
test_requires = []
|
|
145
133
|
for test_package in [
|
|
146
|
-
"interpret",
|
|
134
|
+
"interpret",
|
|
147
135
|
"tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
|
|
148
136
|
"tabpfn",
|
|
149
137
|
"realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
|
|
@@ -154,10 +142,7 @@ for test_package in [
|
|
|
154
142
|
test_requires += extras_require[test_package]
|
|
155
143
|
extras_require["tests"] = test_requires
|
|
156
144
|
install_requires = ag.get_dependency_version_ranges(install_requires)
|
|
157
|
-
extras_require = {
|
|
158
|
-
key: ag.get_dependency_version_ranges(value)
|
|
159
|
-
for key, value in extras_require.items()
|
|
160
|
-
}
|
|
145
|
+
extras_require = {key: ag.get_dependency_version_ranges(value) for key, value in extras_require.items()}
|
|
161
146
|
|
|
162
147
|
if __name__ == "__main__":
|
|
163
148
|
ag.create_version_file(version=version, submodule=submodule)
|
|
@@ -39,6 +39,7 @@ class CatBoostModel(AbstractModel):
|
|
|
39
39
|
ag_priority_by_problem_type = MappingProxyType({
|
|
40
40
|
SOFTCLASS: 60
|
|
41
41
|
})
|
|
42
|
+
seed_name = "random_seed"
|
|
42
43
|
|
|
43
44
|
def __init__(self, **kwargs):
|
|
44
45
|
super().__init__(**kwargs)
|
|
@@ -116,9 +117,6 @@ class CatBoostModel(AbstractModel):
|
|
|
116
117
|
approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + baseline_memory_bytes
|
|
117
118
|
return approx_mem_size_req
|
|
118
119
|
|
|
119
|
-
def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
|
|
120
|
-
return hyperparameters.get("random_seed", "N/A")
|
|
121
|
-
|
|
122
120
|
# TODO: Use Pool in preprocess, optimize bagging to do Pool.split() to avoid re-computing pool for each fold! Requires stateful + y
|
|
123
121
|
# Pool is much more memory efficient, avoids copying data twice in memory
|
|
124
122
|
def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=-1, sample_weight=None, sample_weight_val=None, **kwargs):
|
|
@@ -128,7 +126,6 @@ class CatBoostModel(AbstractModel):
|
|
|
128
126
|
|
|
129
127
|
ag_params = self._get_ag_params()
|
|
130
128
|
params = self._get_model_params()
|
|
131
|
-
params["random_seed"] = self.random_seed
|
|
132
129
|
|
|
133
130
|
params["thread_count"] = num_cpus
|
|
134
131
|
if self.problem_type == SOFTCLASS:
|
|
@@ -314,6 +311,8 @@ class CatBoostModel(AbstractModel):
|
|
|
314
311
|
max_memory_iters = math.floor(available_mem * max_memory_proportion / mem_usage_per_iter)
|
|
315
312
|
|
|
316
313
|
final_iters = min(default_iters, min(max_memory_iters, estimated_iters_in_time))
|
|
314
|
+
if final_iters < 1:
|
|
315
|
+
raise TimeLimitExceeded
|
|
317
316
|
return final_iters
|
|
318
317
|
|
|
319
318
|
def _predict_proba(self, X, **kwargs):
|