autogluon.tabular 1.4.1b20250917__tar.gz → 1.4.1b20251201__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (210) hide show
  1. autogluon_tabular-1.4.1b20251201/LICENSE +175 -0
  2. autogluon_tabular-1.4.1b20251201/NOTICE +2 -0
  3. {autogluon.tabular-1.4.1b20250917/src/autogluon.tabular.egg-info → autogluon_tabular-1.4.1b20251201}/PKG-INFO +107 -13
  4. autogluon.tabular-1.4.1b20250917/PKG-INFO → autogluon_tabular-1.4.1b20251201/README.md +7 -63
  5. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/setup.py +9 -12
  6. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_model.py +3 -4
  7. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/ebm_model.py +2 -6
  8. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +4 -2
  9. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_model.py +6 -2
  10. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_model.py +56 -24
  11. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_model.py +6 -4
  12. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +6 -7
  13. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/mitra_model.py +2 -7
  14. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/realmlp_model.py +1 -4
  15. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_model.py +6 -4
  16. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/tabicl_model.py +1 -4
  17. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_model.py +76 -3
  18. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +7 -5
  19. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +1 -4
  20. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +2 -4
  21. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_model.py +8 -5
  22. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/predictor.py +3 -2
  23. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/fit_helper.py +28 -0
  24. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/version.py +1 -1
  25. autogluon_tabular-1.4.1b20251201/src/autogluon.tabular.egg-info/PKG-INFO +252 -0
  26. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/SOURCES.txt +5 -3
  27. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/requires.txt +29 -38
  28. autogluon_tabular-1.4.1b20251201/tests/test_check_style.py +15 -0
  29. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/setup.cfg +0 -0
  30. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/__init__.py +0 -0
  31. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/__init__.py +0 -0
  32. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/config_helper.py +0 -0
  33. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  34. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  35. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/pipeline_presets.py +0 -0
  36. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  37. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  38. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  39. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
  40. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/__init__.py +0 -0
  41. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  42. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  43. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  44. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  45. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/__init__.py +0 -0
  46. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  47. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/learner/default_learner.py +0 -0
  48. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/__init__.py +0 -0
  49. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  50. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  51. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  52. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  53. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  54. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  55. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  56. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  57. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  58. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  59. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  60. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  61. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  62. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/__init__.py +0 -0
  63. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/__init__.py +0 -0
  64. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/parameters.py +0 -0
  65. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +0 -0
  66. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  67. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  68. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  69. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  70. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  71. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  72. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  73. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  74. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  75. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  76. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  77. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  78. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  79. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  80. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  81. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  82. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  83. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  84. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  85. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  86. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  87. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  88. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  89. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  90. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  91. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  92. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  93. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  94. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  95. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  96. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  97. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
  98. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  99. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  100. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  101. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  102. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  103. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  104. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  105. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  106. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  107. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  108. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  109. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
  110. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  111. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  112. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
  113. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
  114. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  115. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  116. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  117. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  118. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
  119. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  120. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  121. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
  122. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
  123. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  124. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  125. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  126. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  127. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  128. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  129. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
  130. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
  131. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  132. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
  133. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
  134. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  135. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  136. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  137. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  138. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  139. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  140. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  141. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  142. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  143. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  144. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  145. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  146. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  147. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  148. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  149. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  150. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  151. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  152. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  153. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  154. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  155. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  156. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  157. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  158. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  159. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
  160. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
  161. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
  162. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
  163. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
  164. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
  165. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
  166. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
  167. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  168. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  169. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  170. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  171. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  172. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  173. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  174. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  175. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  176. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  177. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  178. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  179. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  180. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  181. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  182. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  183. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  184. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  185. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  186. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  187. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  188. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  189. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  190. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  191. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/__init__.py +0 -0
  192. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  193. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/__init__.py +0 -0
  194. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  195. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  196. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/__init__.py +0 -0
  197. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  198. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  199. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/__init__.py +0 -0
  200. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  201. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  202. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  203. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  204. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  205. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/__init__.py +0 -0
  206. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  207. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  208. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  209. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  210. {autogluon.tabular-1.4.1b20250917 → autogluon_tabular-1.4.1b20251201}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -0,0 +1,175 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
@@ -0,0 +1,2 @@
1
+ AutoML for Text, Image, and Tabular Data
2
+ Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.tabular
3
- Version: 1.4.1b20250917
3
+ Version: 1.4.1b20251201
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -24,36 +23,130 @@ Classifier: Operating System :: Microsoft :: Windows
24
23
  Classifier: Operating System :: POSIX
25
24
  Classifier: Operating System :: Unix
26
25
  Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.9
28
26
  Classifier: Programming Language :: Python :: 3.10
29
27
  Classifier: Programming Language :: Python :: 3.11
30
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
31
30
  Classifier: Topic :: Software Development
32
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
36
35
  Description-Content-Type: text/markdown
36
+ License-File: LICENSE
37
+ License-File: NOTICE
38
+ Requires-Dist: numpy<2.4.0,>=1.25.0
39
+ Requires-Dist: scipy<1.17,>=1.5.4
40
+ Requires-Dist: pandas<2.4.0,>=2.0.0
41
+ Requires-Dist: scikit-learn<1.8.0,>=1.4.0
42
+ Requires-Dist: networkx<4,>=3.0
43
+ Requires-Dist: autogluon.core==1.4.1b20251201
44
+ Requires-Dist: autogluon.features==1.4.1b20251201
37
45
  Provides-Extra: lightgbm
46
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "lightgbm"
38
47
  Provides-Extra: catboost
48
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
49
+ Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
39
50
  Provides-Extra: xgboost
51
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "xgboost"
40
52
  Provides-Extra: realmlp
53
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "realmlp"
41
54
  Provides-Extra: interpret
55
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "interpret"
42
56
  Provides-Extra: fastai
57
+ Requires-Dist: spacy<3.9; extra == "fastai"
58
+ Requires-Dist: torch<2.8,>=2.6; extra == "fastai"
59
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "fastai"
43
60
  Provides-Extra: tabm
61
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabm"
44
62
  Provides-Extra: tabpfn
63
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabpfn"
45
64
  Provides-Extra: tabpfnmix
65
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabpfnmix"
66
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabpfnmix"
67
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabpfnmix"
46
68
  Provides-Extra: mitra
69
+ Requires-Dist: loguru; extra == "mitra"
70
+ Requires-Dist: einx; extra == "mitra"
71
+ Requires-Dist: omegaconf; extra == "mitra"
72
+ Requires-Dist: torch<2.8,>=2.6; extra == "mitra"
73
+ Requires-Dist: transformers; extra == "mitra"
74
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "mitra"
75
+ Requires-Dist: einops<0.9,>=0.7; extra == "mitra"
47
76
  Provides-Extra: tabicl
77
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabicl"
48
78
  Provides-Extra: ray
79
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "ray"
49
80
  Provides-Extra: skex
81
+ Requires-Dist: scikit-learn-intelex<2025.5,>=2024.0; extra == "skex"
50
82
  Provides-Extra: imodels
83
+ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "imodels"
51
84
  Provides-Extra: skl2onnx
85
+ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "skl2onnx"
86
+ Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "skl2onnx"
87
+ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "skl2onnx"
88
+ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "skl2onnx"
89
+ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "skl2onnx"
52
90
  Provides-Extra: all
91
+ Requires-Dist: spacy<3.9; extra == "all"
92
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
93
+ Requires-Dist: einx; extra == "all"
94
+ Requires-Dist: loguru; extra == "all"
95
+ Requires-Dist: transformers; extra == "all"
96
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "all"
97
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
98
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
99
+ Requires-Dist: omegaconf; extra == "all"
100
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "all"
101
+ Requires-Dist: catboost<1.3,>=1.2; extra == "all"
102
+ Requires-Dist: torch<2.8,>=2.6; extra == "all"
103
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
104
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
53
105
  Provides-Extra: tabarena
106
+ Requires-Dist: spacy<3.9; extra == "tabarena"
107
+ Requires-Dist: einx; extra == "tabarena"
108
+ Requires-Dist: transformers; extra == "tabarena"
109
+ Requires-Dist: loguru; extra == "tabarena"
110
+ Requires-Dist: autogluon.core[all]==1.4.1b20251201; extra == "tabarena"
111
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "tabarena"
112
+ Requires-Dist: xgboost<3.1,>=2.0; extra == "tabarena"
113
+ Requires-Dist: einops<0.9,>=0.7; extra == "tabarena"
114
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "tabarena"
115
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tabarena"
116
+ Requires-Dist: omegaconf; extra == "tabarena"
117
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tabarena"
118
+ Requires-Dist: catboost<1.3,>=1.2; extra == "tabarena"
119
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tabarena"
120
+ Requires-Dist: torch<2.8,>=2.6; extra == "tabarena"
121
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tabarena"
122
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "tabarena"
123
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "tabarena"
54
124
  Provides-Extra: tests
55
- License-File: ../LICENSE
56
- License-File: ../NOTICE
125
+ Requires-Dist: interpret-core<0.8,>=0.7.2; extra == "tests"
126
+ Requires-Dist: tabicl<0.2,>=0.1.3; extra == "tests"
127
+ Requires-Dist: tabpfn<2.2,>=2.0.9; extra == "tests"
128
+ Requires-Dist: pytabkit<1.7,>=1.6; extra == "tests"
129
+ Requires-Dist: torch<2.8,>=2.6; extra == "tests"
130
+ Requires-Dist: huggingface_hub[torch]<1.0; extra == "tests"
131
+ Requires-Dist: einops<0.9,>=0.7; extra == "tests"
132
+ Requires-Dist: imodels<2.1.0,>=1.3.10; extra == "tests"
133
+ Requires-Dist: onnx<1.16.2,>=1.13.0; platform_system == "Windows" and extra == "tests"
134
+ Requires-Dist: onnx<1.18.0,>=1.13.0; platform_system != "Windows" and extra == "tests"
135
+ Requires-Dist: skl2onnx<1.18.0,>=1.15.0; extra == "tests"
136
+ Requires-Dist: onnxruntime<1.20.0,>=1.17.0; extra == "tests"
137
+ Requires-Dist: onnxruntime-gpu<1.20.0,>=1.17.0; extra == "tests"
138
+ Dynamic: author
139
+ Dynamic: classifier
140
+ Dynamic: description
141
+ Dynamic: description-content-type
142
+ Dynamic: home-page
143
+ Dynamic: license
144
+ Dynamic: license-file
145
+ Dynamic: project-url
146
+ Dynamic: provides-extra
147
+ Dynamic: requires-dist
148
+ Dynamic: requires-python
149
+ Dynamic: summary
57
150
 
58
151
 
59
152
 
@@ -64,7 +157,7 @@ License-File: ../NOTICE
64
157
 
65
158
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
66
159
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
67
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
160
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
68
161
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
69
162
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
70
163
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -81,7 +174,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
81
174
 
82
175
  ## 💾 Installation
83
176
 
84
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
177
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
85
178
 
86
179
  You can install AutoGluon with:
87
180
 
@@ -104,8 +197,8 @@ predictions = predictor.predict("test.csv")
104
197
  | AutoGluon Task | Quickstart | API |
105
198
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
106
199
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
107
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
108
200
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
201
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
109
202
 
110
203
  ## :mag: Resources
111
204
 
@@ -128,7 +221,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
128
221
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
129
222
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
130
223
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
131
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
224
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
225
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
226
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
227
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
132
228
 
133
229
  ### Articles
134
230
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -154,5 +250,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
154
250
  ## :classical_building: License
155
251
 
156
252
  This library is licensed under the Apache 2.0 License.
157
-
158
-
@@ -1,60 +1,3 @@
1
- Metadata-Version: 2.1
2
- Name: autogluon.tabular
3
- Version: 1.4.1b20250917
4
- Summary: Fast and Accurate ML in 3 Lines of Code
5
- Home-page: https://github.com/autogluon/autogluon
6
- Author: AutoGluon Community
7
- License: Apache-2.0
8
- Project-URL: Documentation, https://auto.gluon.ai
9
- Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
- Project-URL: Source, https://github.com/autogluon/autogluon/
11
- Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
- Classifier: Development Status :: 4 - Beta
14
- Classifier: Intended Audience :: Education
15
- Classifier: Intended Audience :: Developers
16
- Classifier: Intended Audience :: Science/Research
17
- Classifier: Intended Audience :: Customer Service
18
- Classifier: Intended Audience :: Financial and Insurance Industry
19
- Classifier: Intended Audience :: Healthcare Industry
20
- Classifier: Intended Audience :: Telecommunications Industry
21
- Classifier: License :: OSI Approved :: Apache Software License
22
- Classifier: Operating System :: MacOS
23
- Classifier: Operating System :: Microsoft :: Windows
24
- Classifier: Operating System :: POSIX
25
- Classifier: Operating System :: Unix
26
- Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.9
28
- Classifier: Programming Language :: Python :: 3.10
29
- Classifier: Programming Language :: Python :: 3.11
30
- Classifier: Programming Language :: Python :: 3.12
31
- Classifier: Topic :: Software Development
32
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
- Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.9, <3.13
36
- Description-Content-Type: text/markdown
37
- Provides-Extra: lightgbm
38
- Provides-Extra: catboost
39
- Provides-Extra: xgboost
40
- Provides-Extra: realmlp
41
- Provides-Extra: interpret
42
- Provides-Extra: fastai
43
- Provides-Extra: tabm
44
- Provides-Extra: tabpfn
45
- Provides-Extra: tabpfnmix
46
- Provides-Extra: mitra
47
- Provides-Extra: tabicl
48
- Provides-Extra: ray
49
- Provides-Extra: skex
50
- Provides-Extra: imodels
51
- Provides-Extra: skl2onnx
52
- Provides-Extra: all
53
- Provides-Extra: tabarena
54
- Provides-Extra: tests
55
- License-File: ../LICENSE
56
- License-File: ../NOTICE
57
-
58
1
 
59
2
 
60
3
  <div align="center">
@@ -64,7 +7,7 @@ License-File: ../NOTICE
64
7
 
65
8
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
66
9
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
67
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
10
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
68
11
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
69
12
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
70
13
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -81,7 +24,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
81
24
 
82
25
  ## 💾 Installation
83
26
 
84
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
27
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
85
28
 
86
29
  You can install AutoGluon with:
87
30
 
@@ -104,8 +47,8 @@ predictions = predictor.predict("test.csv")
104
47
  | AutoGluon Task | Quickstart | API |
105
48
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
106
49
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
107
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
108
50
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
51
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
109
52
 
110
53
  ## :mag: Resources
111
54
 
@@ -128,7 +71,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
128
71
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
129
72
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
130
73
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
131
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
74
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
75
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
76
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
77
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
132
78
 
133
79
  ### Articles
134
80
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -154,5 +100,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
154
100
  ## :classical_building: License
155
101
 
156
102
  This library is licensed under the Apache 2.0 License.
157
-
158
-
@@ -8,9 +8,10 @@ import platform
8
8
  from setuptools import setup
9
9
 
10
10
  filepath = os.path.abspath(os.path.dirname(__file__))
11
- filepath_import = os.path.join(
12
- filepath, "..", "core", "src", "autogluon", "core", "_setup_utils.py"
13
- )
11
+ filepath_import = os.path.join(filepath, "..", "core", "src", "autogluon", "core", "_setup_utils.py")
12
+ if not os.path.exists(filepath_import):
13
+ filepath_import = os.path.join(filepath, "_setup_utils.py")
14
+
14
15
  spec = importlib.util.spec_from_file_location("ag_min_dependencies", filepath_import)
15
16
  ag = importlib.util.module_from_spec(spec)
16
17
  # Identical to `from autogluon.core import _setup_utils as ag`, but works without `autogluon.core` being installed.
@@ -56,7 +57,6 @@ extras_require = {
56
57
  "spacy<3.9",
57
58
  "torch", # version range defined in `core/_setup_utils.py`
58
59
  "fastai>=2.3.1,<2.9", # <{N+1} upper cap, where N is the latest released minor version
59
- "blis>=0.7.0,<1.2.1;platform_system=='Windows' and python_version=='3.9'", # blis not publishing Python 3.9 wheels for Windows, TODO: remove this after dropping Python 3.9 support
60
60
  ],
61
61
  "tabm": [
62
62
  "torch", # version range defined in `core/_setup_utils.py`
@@ -66,7 +66,7 @@ extras_require = {
66
66
  ],
67
67
  "tabpfnmix": [
68
68
  "torch", # version range defined in `core/_setup_utils.py`
69
- "huggingface_hub[torch]", # Only needed for HuggingFace downloads, currently uncapped to minimize future conflicts.
69
+ "huggingface_hub[torch]", # version range defined in `core/_setup_utils.py`
70
70
  "einops>=0.7,<0.9",
71
71
  ],
72
72
  "mitra": [
@@ -75,7 +75,7 @@ extras_require = {
75
75
  "omegaconf",
76
76
  "torch",
77
77
  "transformers",
78
- "huggingface_hub[torch]",
78
+ "huggingface_hub[torch]", # version range defined in `core/_setup_utils.py`
79
79
  "einops>=0.7,<0.9",
80
80
  ],
81
81
  "tabicl": [
@@ -132,7 +132,7 @@ extras_require["all"] = all_requires
132
132
 
133
133
  tabarena_requires = copy.deepcopy(all_requires)
134
134
  for extra_package in [
135
- "interpret",
135
+ "interpret",
136
136
  "tabicl",
137
137
  "tabpfn",
138
138
  "realmlp",
@@ -143,7 +143,7 @@ extras_require["tabarena"] = tabarena_requires
143
143
 
144
144
  test_requires = []
145
145
  for test_package in [
146
- "interpret",
146
+ "interpret",
147
147
  "tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
148
148
  "tabpfn",
149
149
  "realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
@@ -154,10 +154,7 @@ for test_package in [
154
154
  test_requires += extras_require[test_package]
155
155
  extras_require["tests"] = test_requires
156
156
  install_requires = ag.get_dependency_version_ranges(install_requires)
157
- extras_require = {
158
- key: ag.get_dependency_version_ranges(value)
159
- for key, value in extras_require.items()
160
- }
157
+ extras_require = {key: ag.get_dependency_version_ranges(value) for key, value in extras_require.items()}
161
158
 
162
159
  if __name__ == "__main__":
163
160
  ag.create_version_file(version=version, submodule=submodule)
@@ -39,6 +39,7 @@ class CatBoostModel(AbstractModel):
39
39
  ag_priority_by_problem_type = MappingProxyType({
40
40
  SOFTCLASS: 60
41
41
  })
42
+ seed_name = "random_seed"
42
43
 
43
44
  def __init__(self, **kwargs):
44
45
  super().__init__(**kwargs)
@@ -116,9 +117,6 @@ class CatBoostModel(AbstractModel):
116
117
  approx_mem_size_req = data_mem_usage_bytes + histogram_mem_usage_bytes + baseline_memory_bytes
117
118
  return approx_mem_size_req
118
119
 
119
- def _get_random_seed_from_hyperparameters(self, hyperparameters: dict) -> int | None | str:
120
- return hyperparameters.get("random_seed", "N/A")
121
-
122
120
  # TODO: Use Pool in preprocess, optimize bagging to do Pool.split() to avoid re-computing pool for each fold! Requires stateful + y
123
121
  # Pool is much more memory efficient, avoids copying data twice in memory
124
122
  def _fit(self, X, y, X_val=None, y_val=None, time_limit=None, num_gpus=0, num_cpus=-1, sample_weight=None, sample_weight_val=None, **kwargs):
@@ -128,7 +126,6 @@ class CatBoostModel(AbstractModel):
128
126
 
129
127
  ag_params = self._get_ag_params()
130
128
  params = self._get_model_params()
131
- params["random_seed"] = self.random_seed
132
129
 
133
130
  params["thread_count"] = num_cpus
134
131
  if self.problem_type == SOFTCLASS:
@@ -314,6 +311,8 @@ class CatBoostModel(AbstractModel):
314
311
  max_memory_iters = math.floor(available_mem * max_memory_proportion / mem_usage_per_iter)
315
312
 
316
313
  final_iters = min(default_iters, min(max_memory_iters, estimated_iters_in_time))
314
+ if final_iters < 1:
315
+ raise TimeLimitExceeded
317
316
  return final_iters
318
317
 
319
318
  def _predict_proba(self, X, **kwargs):
@@ -56,6 +56,7 @@ class EBMModel(AbstractModel):
56
56
  ag_key = "EBM"
57
57
  ag_name = "EBM"
58
58
  ag_priority = 35
59
+ seed_name = "random_state"
59
60
 
60
61
  def _fit(
61
62
  self,
@@ -89,7 +90,7 @@ class EBMModel(AbstractModel):
89
90
 
90
91
  # Init Class
91
92
  model_cls = get_class_from_problem_type(self.problem_type)
92
- self.model = model_cls(random_state=self.random_seed, **params)
93
+ self.model = model_cls(**params)
93
94
 
94
95
  # Handle validation data format for EBM
95
96
  fit_X = X
@@ -112,11 +113,6 @@ class EBMModel(AbstractModel):
112
113
  )
113
114
  self.model.fit(fit_X, fit_y, sample_weight=fit_sample_weight, bags=bags)
114
115
 
115
- def _get_random_seed_from_hyperparameters(
116
- self, hyperparameters: dict
117
- ) -> int | None | str:
118
- return hyperparameters.get("random_state", "N/A")
119
-
120
116
  def _set_default_params(self):
121
117
  default_params = get_param_baseline(problem_type=self.problem_type, num_classes=self.num_classes)
122
118
  for param, val in default_params.items():
@@ -103,6 +103,7 @@ class NNFastAiTabularModel(AbstractModel):
103
103
  ag_priority_by_problem_type = MappingProxyType({
104
104
  MULTICLASS: 95,
105
105
  })
106
+ seed_name = "random_seed"
106
107
 
107
108
  model_internals_file_name = "model-internals.pkl"
108
109
 
@@ -322,8 +323,9 @@ class NNFastAiTabularModel(AbstractModel):
322
323
  # Make deterministic
323
324
  from fastai.torch_core import set_seed
324
325
 
325
- set_seed(self.random_seed, True)
326
- dls.rng.seed(self.random_seed)
326
+ random_seed = params.pop(self.seed_name, self.default_random_seed)
327
+ set_seed(random_seed, True)
328
+ dls.rng.seed(random_seed)
327
329
 
328
330
  if self.problem_type == QUANTILE:
329
331
  dls.c = len(self.quantile_levels)