autogluon.tabular 1.4.0b20250728__tar.gz → 1.4.1b20250729__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (200) hide show
  1. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/PKG-INFO +1 -1
  2. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/setup.py +1 -1
  3. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/config_helper.py +1 -1
  4. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -1
  5. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -6
  6. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/predictor/predictor.py +34 -21
  7. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/version.py +1 -1
  8. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
  9. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/requires.txt +25 -25
  10. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/setup.cfg +0 -0
  11. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/__init__.py +0 -0
  12. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/__init__.py +0 -0
  13. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  14. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  15. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  16. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  17. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  18. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +0 -0
  19. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/experimental/__init__.py +0 -0
  20. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  21. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  22. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  23. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  24. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/learner/__init__.py +0 -0
  25. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  26. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/learner/default_learner.py +0 -0
  27. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/__init__.py +0 -0
  28. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  29. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  30. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  31. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  32. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  33. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  34. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  35. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  36. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  37. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  38. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  39. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  40. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  41. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  42. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  43. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  44. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  45. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  46. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  47. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  48. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  49. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  50. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  51. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  52. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  53. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  54. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  55. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  56. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  57. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  58. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  59. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  60. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  61. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  62. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  63. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  64. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  65. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  66. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  67. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  68. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  69. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  70. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  71. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  72. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  73. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  74. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  75. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  76. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  77. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  78. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
  79. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  80. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  81. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  82. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  83. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  84. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  85. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  86. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  87. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  88. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  89. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  90. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
  91. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  92. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  93. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
  94. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
  95. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  96. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  97. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  98. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  99. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
  100. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  101. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  102. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/mitra_model.py +0 -0
  103. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
  104. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
  105. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  106. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  107. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  108. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  109. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  110. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  111. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  112. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
  113. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabicl/tabicl_model.py +0 -0
  114. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
  115. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  116. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
  117. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabm/tabm_model.py +0 -0
  118. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
  119. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  120. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  121. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  122. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  123. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  124. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  125. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  126. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  127. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  128. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  129. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  130. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  131. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  132. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  133. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  134. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  135. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  136. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  137. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  138. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  139. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  140. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  141. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  142. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  143. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  144. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  145. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
  146. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
  147. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
  148. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
  149. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
  150. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
  151. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
  152. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
  153. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  154. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  155. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  156. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  157. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  158. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  159. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  160. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  161. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  162. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  163. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  164. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  165. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  166. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  167. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  168. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  169. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  170. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  171. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  172. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  173. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  174. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  175. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  176. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  177. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  178. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  179. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/predictor/__init__.py +0 -0
  180. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  181. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/registry/__init__.py +0 -0
  182. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  183. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  184. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/testing/__init__.py +0 -0
  185. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  186. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  187. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  188. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/__init__.py +0 -0
  189. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  190. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  191. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  192. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  193. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  194. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/tuning/__init__.py +0 -0
  195. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  196. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
  197. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  198. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  199. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  200. {autogluon.tabular-1.4.0b20250728 → autogluon.tabular-1.4.1b20250729}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.0b20250728
3
+ Version: 1.4.1b20250729
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -47,7 +47,7 @@ extras_require = {
47
47
  "xgboost>=2.0,<3.1", # <{N+1} upper cap, where N is the latest released minor version
48
48
  ],
49
49
  "realmlp": [
50
- "pytabkit>=1.5,<1.6",
50
+ "pytabkit>=1.6,<1.7",
51
51
  ],
52
52
  "fastai": [
53
53
  "spacy<3.9",
@@ -326,7 +326,7 @@ class ConfigBuilder:
326
326
  """
327
327
  If True, only the best model and its ancestor models are saved in the outputted `predictor`. All other models are deleted.
328
328
  If you only care about deploying the most accurate predictor with the smallest file-size and no longer need any of the other trained models or functionality beyond prediction on new data, then set: `keep_only_best=True`, `save_space=True`.
329
- This is equivalent to calling `predictor.delete_models(models_to_keep='best', dry_run=False)` directly after `fit()`.
329
+ This is equivalent to calling `predictor.delete_models(models_to_keep='best')` directly after `fit()`.
330
330
  If used with `refit_full` and `set_best_to_refit_full`, the best model will be the refit_full model, and the original bagged best model will be deleted.
331
331
  `refit_full` will be automatically set to 'best' in this case to avoid training models which will be later deleted.
332
332
  """
@@ -359,4 +359,3 @@ class RealMLPModel(AbstractModel):
359
359
  # How to mirror RealMLP learning rate scheduler while forcing stopping at a specific epoch?
360
360
  tags = {"can_refit_full": False}
361
361
  return tags
362
- return tags
@@ -198,12 +198,6 @@ class TabPFNV2Model(AbstractModel):
198
198
  # logs "Built with PriorLabs-TabPFN"
199
199
  self._log_license(device=device)
200
200
 
201
- if num_gpus == 0:
202
- logger.log(
203
- 30,
204
- f"\tWARNING: Running TabPFNv2 on CPU. This can be very slow. We recommend using a GPU instead."
205
- )
206
-
207
201
  X = self.preprocess(X, is_train=True)
208
202
 
209
203
  hps = self._get_model_params()
@@ -437,18 +437,24 @@ class TabularPredictor:
437
437
  presets : list or str or dict, default = ['medium_quality']
438
438
  List of preset configurations for various arguments in `fit()`. Can significantly impact predictive accuracy, memory-footprint, and inference latency of trained models, and various other properties of the returned `predictor`.
439
439
  It is recommended to specify presets and avoid specifying most other `fit()` arguments or model hyperparameters prior to becoming familiar with AutoGluon.
440
- As an example, to get the most accurate overall predictor (regardless of its efficiency), set `presets='best_quality'`.
440
+ As an example, to get the most accurate overall predictor (regardless of its efficiency), set `presets='best_quality'` (or `extreme_quality` if a GPU is available).
441
441
  To get good quality with minimal disk usage, set `presets=['good_quality', 'optimize_for_deployment']`
442
442
  Any user-specified arguments in `fit()` will override the values used by presets.
443
443
  If specifying a list of presets, later presets will override earlier presets if they alter the same argument.
444
444
  For precise definitions of the provided presets, see file: `autogluon/tabular/configs/presets_configs.py`.
445
445
  Users can specify custom presets by passing in a dictionary of argument values as an element to the list.
446
446
 
447
- Available Presets: ['best_quality', 'high_quality', 'good_quality', 'medium_quality', 'experimental_quality', 'optimize_for_deployment', 'interpretable', 'ignore_text']
447
+ Available Presets: ['extreme_quality', 'best_quality', 'high_quality', 'good_quality', 'medium_quality', 'experimental_quality', 'optimize_for_deployment', 'interpretable', 'ignore_text']
448
448
 
449
449
  It is recommended to only use one `quality` based preset in a given call to `fit()` as they alter many of the same arguments and are not compatible with each-other.
450
450
 
451
451
  In-depth Preset Info:
452
+ extreme_quality={"auto_stack": True, "dynamic_stacking": "auto", "_experimental_dynamic_hyperparameters": True, "hyperparameters": None}
453
+ Significantly more accurate than `best_quality` on datasets <= 30000 samples. Requires a GPU for best results.
454
+ For datasets <= 30000 samples, will use recent tabular foundation models TabPFNv2, TabICL, and Mitra to maximize performance.
455
+ For datasets > 30000 samples, will behave identically to `best_quality`.
456
+ Recommended for applications that benefit from the best possible model accuracy.
457
+
452
458
  best_quality={'auto_stack': True, 'dynamic_stacking': 'auto', 'hyperparameters': 'zeroshot'}
453
459
  Best predictive accuracy with little consideration to inference time or disk usage. Achieve even better results by specifying a large time_limit value.
454
460
  Recommended for applications that benefit from the best possible model accuracy.
@@ -477,7 +483,7 @@ class TabularPredictor:
477
483
  Because unused models will be deleted under this preset, methods like `predictor.leaderboard()` and `predictor.fit_summary()` will no longer show the full set of models that were trained during `fit()`.
478
484
  Recommended for applications where the inner details of AutoGluon's training is not important and there is no intention of manually choosing between the final models.
479
485
  This preset pairs well with the other presets such as `good_quality` to make a very compact final model.
480
- Identical to calling `predictor.delete_models(models_to_keep='best', dry_run=False)` and `predictor.save_space()` directly after `fit()`.
486
+ Identical to calling `predictor.delete_models(models_to_keep='best')` and `predictor.save_space()` directly after `fit()`.
481
487
 
482
488
  interpretable={'auto_stack': False, 'hyperparameters': 'interpretable'}
483
489
  Fits only interpretable rule-based models from the imodels package.
@@ -491,9 +497,10 @@ class TabularPredictor:
491
497
  hyperparameters : str or dict, default = 'default'
492
498
  Determines the hyperparameters used by the models.
493
499
  If `str` is passed, will use a preset hyperparameter configuration.
494
- Valid `str` options: ['default', 'zeroshot', 'light', 'very_light', 'toy', 'multimodal']
500
+ Valid `str` options: ['default', 'zeroshot', 'zeroshot_2025_tabfm', 'light', 'very_light', 'toy', 'multimodal']
495
501
  'default': Default AutoGluon hyperparameters intended to get strong accuracy with reasonable disk usage and inference time. Used in the 'medium_quality' preset.
496
502
  'zeroshot': A powerful model portfolio learned from TabRepo's ensemble simulation on 200 datasets. Contains ~100 models and is used in 'best_quality' and 'high_quality' presets.
503
+ 'zeroshot_2025_tabfm': Absolute cutting edge portfolio learned from TabArena's ensemble simulation that leverages tabular foundation models. Contains 22 models and is used in the `extreme_quality` preset.
497
504
  'light': Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy. Used in the 'good_quality' preset.
498
505
  'very_light': Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
499
506
  'toy': Results in extremely small models. Only use this when prototyping, as the model quality will be severely reduced.
@@ -505,6 +512,11 @@ class TabularPredictor:
505
512
  'GBM' (LightGBM)
506
513
  'CAT' (CatBoost)
507
514
  'XGB' (XGBoost)
515
+ 'REALMLP' (RealMLP)
516
+ 'TABM' (TabM)
517
+ 'MITRA' (Mitra)
518
+ 'TABICL' (TabICL)
519
+ 'TABPFNV2' (TabPFNv2)
508
520
  'RF' (random forest)
509
521
  'XT' (extremely randomized trees)
510
522
  'KNN' (k-nearest neighbors)
@@ -513,9 +525,8 @@ class TabularPredictor:
513
525
  'FASTAI' (neural network with FastAI backend)
514
526
  'AG_AUTOMM' (`MultimodalPredictor` from `autogluon.multimodal`. Supports Tabular, Text, and Image modalities. GPU is required.)
515
527
  Experimental model options include:
516
- 'FT_TRANSFORMER' (Tabular Transformer, GPU is recommended. Does not scale well to >100 features.)
528
+ 'FT_TRANSFORMER' (Tabular Transformer, GPU is recommended. Does not scale well to >100 features. Recommended to use TabM instead.)
517
529
  'FASTTEXT' (FastText. Note: Has not been tested for a long time.)
518
- 'TABPFN' (TabPFN. Does not scale well to >100 features or >1000 rows, and does not support regression. Extremely slow inference speed.)
519
530
  'AG_TEXT_NN' (Multimodal Text+Tabular model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
520
531
  'AG_IMAGE_NN' (Image model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
521
532
  If a certain key is missing from hyperparameters, then `fit()` will not train any models of that type. Omitting a model key from hyperparameters is equivalent to including this model key in `excluded_model_types`.
@@ -623,6 +634,16 @@ class TabularPredictor:
623
634
  How many GPUs to use during model fit.
624
635
  If 'auto', model will decide. Some models can use GPUs but don't by default due to differences in model quality.
625
636
  Set to 0 to disable usage of GPUs.
637
+ max_rows : (int, default=None)
638
+ If train_data has more rows than `max_rows`, the model will raise an AssertionError at the start of fit.
639
+ max_features : (int, default=None)
640
+ If train_data has more features than `max_features`, the model will raise an AssertionError at the start of fit.
641
+ max_classes : (int, default==None)
642
+ If train_data has more classes than `max_classes`, the model will raise an AssertionError at the start of fit.
643
+ problem_types : (list[str], default=None)
644
+ If the task is not a problem_type in `problem_types`, the model will raise an AssertionError at the start of fit.
645
+ ignore_constraints : (bool, default=False)
646
+ If True, will ignore the values of `max_rows`, `max_features`, `max_classes`, and `problem_type`, treating them as None.
626
647
  ag_args_ensemble: Dictionary of hyperparameters shared by all models that control how they are ensembled, if bag mode is enabled.
627
648
  Valid keys:
628
649
  use_orig_features: [True, False, "never"], default True
@@ -723,6 +744,7 @@ class TabularPredictor:
723
744
  If "sequential", models will be fit sequentially. This is the most stable option with the most readable logging.
724
745
  If "parallel", models will be fit in parallel with ray, splitting available compute between them.
725
746
  Note: "parallel" is experimental and may run into issues. It was first added in version 1.2.0.
747
+ Note: "parallel" does not yet support running with GPUs.
726
748
  For machines with 16 or more CPU cores, it is likely that "parallel" will be faster than "sequential".
727
749
 
728
750
  .. versionadded:: 1.2.0
@@ -933,14 +955,14 @@ class TabularPredictor:
933
955
  This is because by default, refit_full will fall back to cloning the first fold of the bagged model in case it lacks memory to refit.
934
956
  However, if `save_bag_folds=False`, this fallback isn't possible, as there is not fold model to clone because it wasn't saved.
935
957
  In this scenario, refit will raise an exception for `save_bag_folds=False`, but will succeed if `save_bag_folds=True`.
936
- Final disk usage of predictor will be identical regardless of the setting after `predictor.delete_models(models_to_keep="best", dry_run=False)` is called post-fit.
958
+ Final disk usage of predictor will be identical regardless of the setting after `predictor.delete_models(models_to_keep="best")` is called post-fit.
937
959
  set_best_to_refit_full : bool, default = False
938
960
  If True, will change the default model that Predictor uses for prediction when model is not specified to the refit_full version of the model that exhibited the highest validation score.
939
961
  Only valid if `refit_full` is set.
940
962
  keep_only_best : bool, default = False
941
963
  If True, only the best model and its ancestor models are saved in the outputted `predictor`. All other models are deleted.
942
964
  If you only care about deploying the most accurate predictor with the smallest file-size and no longer need any of the other trained models or functionality beyond prediction on new data, then set: `keep_only_best=True`, `save_space=True`.
943
- This is equivalent to calling `predictor.delete_models(models_to_keep='best', dry_run=False)` directly after `fit()`.
965
+ This is equivalent to calling `predictor.delete_models(models_to_keep='best')` directly after `fit()`.
944
966
  If used with `refit_full` and `set_best_to_refit_full`, the best model will be the refit_full model, and the original bagged best model will be deleted.
945
967
  `refit_full` will be automatically set to 'best' in this case to avoid training models which will be later deleted.
946
968
  save_space : bool, default = False
@@ -4379,7 +4401,7 @@ class TabularPredictor:
4379
4401
  models_to_delete: str | list[str] | None = None,
4380
4402
  allow_delete_cascade: bool = False,
4381
4403
  delete_from_disk: bool = True,
4382
- dry_run: bool | None = None,
4404
+ dry_run: bool = False,
4383
4405
  ):
4384
4406
  """
4385
4407
  Deletes models from `predictor`.
@@ -4410,20 +4432,11 @@ class TabularPredictor:
4410
4432
  If `True`, deletes the models from disk if they were persisted.
4411
4433
  WARNING: This deletes the entire directory for the deleted models, and ALL FILES located there.
4412
4434
  It is highly recommended to first run with `dry_run=True` to understand which directories will be deleted.
4413
- dry_run : bool, default = True
4414
- WARNING: Starting in v1.4.0 dry_run will default to False.
4435
+ dry_run : bool, default = False
4415
4436
  If `True`, then deletions don't occur, and logging statements are printed describing what would have occurred.
4416
4437
  Set `dry_run=False` to perform the deletions.
4417
4438
 
4418
4439
  """
4419
- if dry_run is None:
4420
- warnings.warn(
4421
- f"dry_run was not specified for `TabularPredictor.delete_models`. dry_run prior to version 1.4.0 defaults to True. "
4422
- f"Starting in version 1.4, AutoGluon will default dry_run to False. "
4423
- f"If you want to maintain the current logic in future versions, explicitly specify `dry_run=True`.",
4424
- category=FutureWarning,
4425
- )
4426
- dry_run = True
4427
4440
  self._assert_is_fit("delete_models")
4428
4441
  if models_to_keep == "best":
4429
4442
  models_to_keep = self.model_best
@@ -5592,7 +5605,7 @@ class TabularPredictor:
5592
5605
  Identical to performing the following operations in order:
5593
5606
 
5594
5607
  predictor_clone = predictor.clone(path=path, return_clone=True, dirs_exist_ok=dirs_exist_ok)
5595
- predictor_clone.delete_models(models_to_keep=model, dry_run=False)
5608
+ predictor_clone.delete_models(models_to_keep=model)
5596
5609
  predictor_clone.set_model_best(model=model, save_trainer=True)
5597
5610
  predictor_clone.save_space()
5598
5611
 
@@ -5604,7 +5617,7 @@ class TabularPredictor:
5604
5617
  The model to use in the optimized predictor clone.
5605
5618
  All other unrelated models will be deleted to save disk space.
5606
5619
  Refer to the `models_to_keep` argument of `predictor.delete_models` for available options.
5607
- Internally calls `predictor_clone.delete_models(models_to_keep=model, dry_run=False)`
5620
+ Internally calls `predictor_clone.delete_models(models_to_keep=model)`
5608
5621
  return_clone : bool, default = False
5609
5622
  If True, returns the loaded cloned TabularPredictor object.
5610
5623
  If False, returns the local path to the cloned TabularPredictor object.
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.4.0b20250728"
3
+ __version__ = "1.4.1b20250729"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.4.0b20250728
3
+ Version: 1.4.1b20250729
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -3,23 +3,23 @@ scipy<1.17,>=1.5.4
3
3
  pandas<2.4.0,>=2.0.0
4
4
  scikit-learn<1.8.0,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.4.0b20250728
7
- autogluon.features==1.4.0b20250728
6
+ autogluon.core==1.4.1b20250729
7
+ autogluon.features==1.4.1b20250729
8
8
 
9
9
  [all]
10
+ catboost<1.3,>=1.2
11
+ fastai<2.9,>=2.3.1
12
+ spacy<3.9
10
13
  torch<2.8,>=2.2
11
14
  numpy<2.3.0,>=1.25
12
- spacy<3.9
13
- xgboost<3.1,>=2.0
15
+ transformers
16
+ autogluon.core[all]==1.4.1b20250729
17
+ omegaconf
14
18
  huggingface_hub[torch]
15
- loguru
16
19
  einx
17
- omegaconf
18
20
  lightgbm<4.7,>=4.0
19
- transformers
20
- fastai<2.9,>=2.3.1
21
- catboost<1.3,>=1.2
22
- autogluon.core[all]==1.4.0b20250728
21
+ loguru
22
+ xgboost<3.1,>=2.0
23
23
 
24
24
  [all:platform_system == "Windows" and python_version == "3.9"]
25
25
  blis<1.2.1,>=0.7.0
@@ -51,10 +51,10 @@ transformers
51
51
  huggingface_hub[torch]
52
52
 
53
53
  [ray]
54
- autogluon.core[all]==1.4.0b20250728
54
+ autogluon.core[all]==1.4.1b20250729
55
55
 
56
56
  [realmlp]
57
- pytabkit<1.6,>=1.5
57
+ pytabkit<1.7,>=1.6
58
58
 
59
59
  [skex]
60
60
  scikit-learn-intelex<2025.5,>=2024.0
@@ -71,22 +71,22 @@ onnx<1.18.0,>=1.13.0
71
71
  onnx<1.16.2,>=1.13.0
72
72
 
73
73
  [tabarena]
74
- torch<2.8,>=2.2
75
- numpy<2.3.0,>=1.25
76
- spacy<3.9
77
74
  tabpfn<2.2,>=2.0.9
78
- xgboost<3.1,>=2.0
79
- loguru
80
- einx
81
- omegaconf
75
+ catboost<1.3,>=1.2
76
+ fastai<2.9,>=2.3.1
82
77
  lightgbm<4.7,>=4.0
83
- tabicl<0.2,>=0.1.3
78
+ spacy<3.9
79
+ torch<2.8,>=2.2
80
+ numpy<2.3.0,>=1.25
84
81
  transformers
85
- fastai<2.9,>=2.3.1
86
- catboost<1.3,>=1.2
87
- autogluon.core[all]==1.4.0b20250728
88
- pytabkit<1.6,>=1.5
82
+ pytabkit<1.7,>=1.6
83
+ omegaconf
89
84
  huggingface_hub[torch]
85
+ einx
86
+ autogluon.core[all]==1.4.1b20250729
87
+ loguru
88
+ xgboost<3.1,>=2.0
89
+ tabicl<0.2,>=0.1.3
90
90
 
91
91
  [tabarena:platform_system == "Windows" and python_version == "3.9"]
92
92
  blis<1.2.1,>=0.7.0
@@ -108,7 +108,7 @@ einops<0.9,>=0.7
108
108
  [tests]
109
109
  tabicl<0.2,>=0.1.3
110
110
  tabpfn<2.2,>=2.0.9
111
- pytabkit<1.6,>=1.5
111
+ pytabkit<1.7,>=1.6
112
112
  torch<2.8,>=2.2
113
113
  huggingface_hub[torch]
114
114
  einops<0.9,>=0.7