autogluon.tabular 1.4.0b20250724__tar.gz → 1.4.0b20250726__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/PKG-INFO +2 -2
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/presets_configs.py +8 -6
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +1 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/automm/automm_model.py +2 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/automm/ft_transformer.py +4 -1
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/mitra_model.py +20 -18
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/realmlp/realmlp_model.py +13 -6
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabicl/tabicl_model.py +14 -5
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabm/tabm_model.py +14 -6
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +14 -6
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/predictor/predictor.py +6 -6
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/PKG-INFO +2 -2
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/requires.txt +24 -24
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/setup.cfg +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/setup.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/mitra/sklearn_interface.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabm/tabm_reference.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/testing/fit_helper.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.4.0b20250724 → autogluon.tabular-1.4.0b20250726}/src/autogluon.tabular.egg-info/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.0b20250726
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -96,7 +96,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
|
96
96
|
|
|
97
97
|
```python
|
|
98
98
|
from autogluon.tabular import TabularPredictor
|
|
99
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
|
99
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
|
100
100
|
predictions = predictor.predict("test.csv")
|
|
101
101
|
```
|
|
102
102
|
|
|
@@ -75,7 +75,7 @@ tabular_presets_dict = dict(
|
|
|
75
75
|
# Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
|
|
76
76
|
# Experimental presets can be removed or changed without warning.
|
|
77
77
|
|
|
78
|
-
# [EXPERIMENTAL PRESET] The `
|
|
78
|
+
# [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
|
|
79
79
|
# This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
|
|
80
80
|
# Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
|
|
81
81
|
# Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
|
|
@@ -83,9 +83,9 @@ tabular_presets_dict = dict(
|
|
|
83
83
|
# Significantly stronger than `best_quality`, but can be over 10x slower in inference.
|
|
84
84
|
# Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
|
|
85
85
|
# For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
|
|
86
|
-
# Aliases: experimental
|
|
86
|
+
# Aliases: extreme, experimental, experimental_quality
|
|
87
87
|
# GPU STRONGLY RECOMMENDED
|
|
88
|
-
|
|
88
|
+
extreme_quality={
|
|
89
89
|
"auto_stack": True,
|
|
90
90
|
"dynamic_stacking": "auto",
|
|
91
91
|
"num_bag_sets": 1,
|
|
@@ -128,7 +128,7 @@ tabular_presets_dict = dict(
|
|
|
128
128
|
|
|
129
129
|
# Alias preset name alternatives
|
|
130
130
|
tabular_presets_alias = dict(
|
|
131
|
-
|
|
131
|
+
extreme="extreme_quality",
|
|
132
132
|
best="best_quality",
|
|
133
133
|
high="high_quality",
|
|
134
134
|
high_quality_fast_inference_only_refit="high_quality",
|
|
@@ -136,10 +136,12 @@ tabular_presets_alias = dict(
|
|
|
136
136
|
good_quality_faster_inference_only_refit="good_quality",
|
|
137
137
|
medium="medium_quality",
|
|
138
138
|
medium_quality_faster_train="medium_quality",
|
|
139
|
-
eq="
|
|
139
|
+
eq="extreme_quality",
|
|
140
140
|
bq="best_quality",
|
|
141
141
|
hq="high_quality",
|
|
142
142
|
gq="good_quality",
|
|
143
143
|
mq="medium_quality",
|
|
144
|
-
|
|
144
|
+
experimental="extreme_quality",
|
|
145
|
+
experimental_quality="extreme_quality",
|
|
146
|
+
experimental_quality_v140="extreme_quality",
|
|
145
147
|
)
|
|
@@ -17,7 +17,8 @@ class FTTransformerModel(MultiModalPredictorModel):
|
|
|
17
17
|
ag_name = "FTTransformer"
|
|
18
18
|
|
|
19
19
|
def __init__(self, **kwargs):
|
|
20
|
-
"""
|
|
20
|
+
"""
|
|
21
|
+
FT-Transformer model.
|
|
21
22
|
|
|
22
23
|
The features can be a mix of
|
|
23
24
|
- categorical column
|
|
@@ -48,6 +49,8 @@ class FTTransformerModel(MultiModalPredictorModel):
|
|
|
48
49
|
Names of the features.
|
|
49
50
|
feature_metadata
|
|
50
51
|
The feature metadata.
|
|
52
|
+
|
|
53
|
+
.. versionadded:: 0.6.0
|
|
51
54
|
"""
|
|
52
55
|
super().__init__(**kwargs)
|
|
53
56
|
|
|
@@ -15,6 +15,19 @@ logger = logging.getLogger(__name__)
|
|
|
15
15
|
|
|
16
16
|
|
|
17
17
|
class MitraModel(AbstractModel):
|
|
18
|
+
"""
|
|
19
|
+
Mitra is a tabular foundation model pre-trained purely on synthetic data with the goal
|
|
20
|
+
of optimizing fine-tuning performance over in-context learning performance.
|
|
21
|
+
Mitra was developed by the AutoGluon team @ AWS AI.
|
|
22
|
+
|
|
23
|
+
Mitra's default hyperparameters outperforms all methods for small datasets on TabArena-v0.1 (excluding ensembling): https://tabarena.ai
|
|
24
|
+
|
|
25
|
+
Authors: Xiyuan Zhang, Danielle C. Maddix, Junming Yin, Nick Erickson, Abdul Fatir Ansari, Boran Han, Shuai Zhang, Leman Akoglu, Christos Faloutsos, Michael W. Mahoney, Cuixiong Hu, Huzefa Rangwala, George Karypis, Bernie Wang
|
|
26
|
+
Blog Post: https://www.amazon.science/blog/mitra-mixed-synthetic-priors-for-enhancing-tabular-foundation-models
|
|
27
|
+
License: Apache-2.0
|
|
28
|
+
|
|
29
|
+
.. versionadded:: 1.4.0
|
|
30
|
+
"""
|
|
18
31
|
ag_key = "MITRA"
|
|
19
32
|
ag_name = "Mitra"
|
|
20
33
|
weights_file_name = "model.pt"
|
|
@@ -106,6 +119,13 @@ class MitraModel(AbstractModel):
|
|
|
106
119
|
else:
|
|
107
120
|
hyp["device"] = self._get_default_device()
|
|
108
121
|
|
|
122
|
+
if hyp["device"] == "cpu" and hyp.get("fine_tune", True):
|
|
123
|
+
logger.log(
|
|
124
|
+
30,
|
|
125
|
+
f"\tWarning: Attempting to fine-tune Mitra on CPU. This will be very slow. "
|
|
126
|
+
f"We strongly recommend using a GPU instance to fine-tune Mitra."
|
|
127
|
+
)
|
|
128
|
+
|
|
109
129
|
if "state_dict_classification" in hyp:
|
|
110
130
|
state_dict_classification = hyp.pop("state_dict_classification")
|
|
111
131
|
if self.problem_type in ["binary", "multiclass"]:
|
|
@@ -216,24 +236,6 @@ class MitraModel(AbstractModel):
|
|
|
216
236
|
|
|
217
237
|
return num_cpus, num_gpus
|
|
218
238
|
|
|
219
|
-
def get_minimum_resources(self, is_gpu_available: bool = False) -> dict[str, int | float]:
|
|
220
|
-
"""
|
|
221
|
-
Parameters
|
|
222
|
-
----------
|
|
223
|
-
is_gpu_available : bool, default = False
|
|
224
|
-
Whether gpu is available in the system.
|
|
225
|
-
Model that can be trained both on cpu and gpu can decide the minimum resources based on this.
|
|
226
|
-
|
|
227
|
-
Returns a dictionary of minimum resource requirements to fit the model.
|
|
228
|
-
Subclass should consider overriding this method if it requires more resources to train.
|
|
229
|
-
If a resource is not part of the output dictionary, it is considered unnecessary.
|
|
230
|
-
Valid keys: 'num_cpus', 'num_gpus'.
|
|
231
|
-
"""
|
|
232
|
-
return {
|
|
233
|
-
"num_cpus": 1,
|
|
234
|
-
"num_gpus": 0.5,
|
|
235
|
-
}
|
|
236
|
-
|
|
237
239
|
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
|
238
240
|
return self.estimate_memory_usage_static(
|
|
239
241
|
X=X, problem_type=self.problem_type, num_classes=self.num_classes, **kwargs
|
|
@@ -1,11 +1,5 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/realmlp/realmlp_model.py
|
|
3
|
-
|
|
4
|
-
Model: RealMLP
|
|
5
|
-
Paper: Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
|
|
6
|
-
Authors: David Holzmüller, Léo Grinsztajn, Ingo Steinwart
|
|
7
|
-
Codebase: https://github.com/dholzmueller/pytabkit
|
|
8
|
-
License: Apache-2.0
|
|
9
3
|
"""
|
|
10
4
|
|
|
11
5
|
from __future__ import annotations
|
|
@@ -41,6 +35,19 @@ def set_logger_level(logger_name: str, level: int):
|
|
|
41
35
|
|
|
42
36
|
# pip install pytabkit
|
|
43
37
|
class RealMLPModel(AbstractModel):
|
|
38
|
+
"""
|
|
39
|
+
RealMLP is an improved multilayer perception (MLP) model
|
|
40
|
+
through a bag of tricks and better default hyperparameters.
|
|
41
|
+
|
|
42
|
+
RealMLP is the top performing method overall on TabArena-v0.1: https://tabarena.ai
|
|
43
|
+
|
|
44
|
+
Paper: Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
|
|
45
|
+
Authors: David Holzmüller, Léo Grinsztajn, Ingo Steinwart
|
|
46
|
+
Codebase: https://github.com/dholzmueller/pytabkit
|
|
47
|
+
License: Apache-2.0
|
|
48
|
+
|
|
49
|
+
.. versionadded:: 1.4.0
|
|
50
|
+
"""
|
|
44
51
|
ag_key = "REALMLP"
|
|
45
52
|
ag_name = "RealMLP"
|
|
46
53
|
ag_priority = 75
|
|
@@ -1,10 +1,5 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/tabicl/tabicl_model.py
|
|
3
|
-
Model: TabICL
|
|
4
|
-
Paper: TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
|
|
5
|
-
Authors: Jingang Qu, David Holzmüller, Gaël Varoquaux, Marine Le Morvan
|
|
6
|
-
Codebase: https://github.com/soda-inria/tabicl
|
|
7
|
-
License: BSD-3-Clause
|
|
8
3
|
"""
|
|
9
4
|
|
|
10
5
|
from __future__ import annotations
|
|
@@ -23,6 +18,20 @@ logger = logging.getLogger(__name__)
|
|
|
23
18
|
|
|
24
19
|
# TODO: Verify if crashes when weights are not yet downloaded and fit in parallel
|
|
25
20
|
class TabICLModel(AbstractModel):
|
|
21
|
+
"""
|
|
22
|
+
TabICL is a foundation model for tabular data using in-context learning
|
|
23
|
+
that is scalable to larger datasets than TabPFNv2. It is pretrained purely on synthetic data.
|
|
24
|
+
TabICL currently only supports classification tasks.
|
|
25
|
+
|
|
26
|
+
TabICL is one of the top performing methods overall on TabArena-v0.1: https://tabarena.ai
|
|
27
|
+
|
|
28
|
+
Paper: TabICL: A Tabular Foundation Model for In-Context Learning on Large Data
|
|
29
|
+
Authors: Jingang Qu, David Holzmüller, Gaël Varoquaux, Marine Le Morvan
|
|
30
|
+
Codebase: https://github.com/soda-inria/tabicl
|
|
31
|
+
License: BSD-3-Clause
|
|
32
|
+
|
|
33
|
+
.. versionadded:: 1.4.0
|
|
34
|
+
"""
|
|
26
35
|
ag_key = "TABICL"
|
|
27
36
|
ag_name = "TabICL"
|
|
28
37
|
ag_priority = 65
|
|
@@ -4,12 +4,6 @@ Note: This is a custom implementation of TabM based on TabArena. Because the Aut
|
|
|
4
4
|
the same time as TabM became available on PyPi, we chose to use TabArena's implementation
|
|
5
5
|
for the AutoGluon 1.4 release as it has already been benchmarked.
|
|
6
6
|
|
|
7
|
-
Model: TabM
|
|
8
|
-
Paper: TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
|
|
9
|
-
Authors: Yury Gorishniy, Akim Kotelnikov, Artem Babenko
|
|
10
|
-
Codebase: https://github.com/yandex-research/tabm
|
|
11
|
-
License: Apache-2.0
|
|
12
|
-
|
|
13
7
|
Partially adapted from pytabkit's TabM implementation.
|
|
14
8
|
"""
|
|
15
9
|
|
|
@@ -28,6 +22,20 @@ logger = logging.getLogger(__name__)
|
|
|
28
22
|
|
|
29
23
|
|
|
30
24
|
class TabMModel(AbstractModel):
|
|
25
|
+
"""
|
|
26
|
+
TabM is an efficient ensemble of MLPs that is trained simultaneously with mostly shared parameters.
|
|
27
|
+
|
|
28
|
+
TabM is one of the top performing methods overall on TabArena-v0.1: https://tabarena.ai
|
|
29
|
+
|
|
30
|
+
Paper: TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
|
|
31
|
+
Authors: Yury Gorishniy, Akim Kotelnikov, Artem Babenko
|
|
32
|
+
Codebase: https://github.com/yandex-research/tabm
|
|
33
|
+
License: Apache-2.0
|
|
34
|
+
|
|
35
|
+
Partially adapted from pytabkit's TabM implementation.
|
|
36
|
+
|
|
37
|
+
.. versionadded:: 1.4.0
|
|
38
|
+
"""
|
|
31
39
|
ag_key = "TABM"
|
|
32
40
|
ag_name = "TabM"
|
|
33
41
|
ag_priority = 85
|
|
@@ -26,6 +26,8 @@ class TabPFNMixModel(AbstractModel):
|
|
|
26
26
|
|
|
27
27
|
TabPFNMix is based off of the TabPFN and TabForestPFN models.
|
|
28
28
|
|
|
29
|
+
We recommend using Mitra instead, as it is an improved version of TabPFNMix.
|
|
30
|
+
|
|
29
31
|
It is a tabular transformer model pre-trained on purely synthetic data.
|
|
30
32
|
|
|
31
33
|
It currently has several limitations:
|
|
@@ -34,6 +36,8 @@ class TabPFNMixModel(AbstractModel):
|
|
|
34
36
|
3. Does not support GPU
|
|
35
37
|
|
|
36
38
|
For more information, refer to the `./_internals/README.md` file.
|
|
39
|
+
|
|
40
|
+
.. versionadded:: 1.2.0
|
|
37
41
|
"""
|
|
38
42
|
ag_key = "TABPFNMIX"
|
|
39
43
|
ag_name = "TabPFNMix"
|
|
@@ -1,11 +1,5 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Code Adapted from TabArena: https://github.com/autogluon/tabrepo/blob/main/tabrepo/benchmark/models/ag/tabpfnv2/tabpfnv2_model.py
|
|
3
|
-
|
|
4
|
-
Model: TabPFNv2
|
|
5
|
-
Paper: Accurate predictions on small data with a tabular foundation model
|
|
6
|
-
Authors: Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister & Frank Hutter
|
|
7
|
-
Codebase: https://github.com/PriorLabs/TabPFN
|
|
8
|
-
License: https://github.com/PriorLabs/TabPFN/blob/main/LICENSE
|
|
9
3
|
"""
|
|
10
4
|
|
|
11
5
|
from __future__ import annotations
|
|
@@ -111,6 +105,20 @@ class FixedSafePowerTransformer(PowerTransformer):
|
|
|
111
105
|
|
|
112
106
|
|
|
113
107
|
class TabPFNV2Model(AbstractModel):
|
|
108
|
+
"""
|
|
109
|
+
TabPFNv2 is a tabular foundation model pre-trained purely on synthetic data that achieves
|
|
110
|
+
state-of-the-art results with in-context learning on small datasets with <=10000 samples and <=500 features.
|
|
111
|
+
TabPFNv2 is developed and maintained by PriorLabs: https://priorlabs.ai/
|
|
112
|
+
|
|
113
|
+
TabPFNv2 is the top performing method for small datasets on TabArena-v0.1: https://tabarena.ai
|
|
114
|
+
|
|
115
|
+
Paper: Accurate predictions on small data with a tabular foundation model
|
|
116
|
+
Authors: Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo, Robin Tibor Schirrmeister & Frank Hutter
|
|
117
|
+
Codebase: https://github.com/PriorLabs/TabPFN
|
|
118
|
+
License: https://github.com/PriorLabs/TabPFN/blob/main/LICENSE
|
|
119
|
+
|
|
120
|
+
.. versionadded:: 1.4.0
|
|
121
|
+
"""
|
|
114
122
|
ag_key = "TABPFNV2"
|
|
115
123
|
ag_name = "TabPFNv2"
|
|
116
124
|
ag_priority = 105
|
|
@@ -1068,11 +1068,11 @@ class TabularPredictor:
|
|
|
1068
1068
|
20,
|
|
1069
1069
|
"No presets specified! To achieve strong results with AutoGluon, it is recommended to use the available presets. Defaulting to `'medium'`...\n"
|
|
1070
1070
|
"\tRecommended Presets (For more details refer to https://auto.gluon.ai/stable/tutorials/tabular/tabular-essentials.html#presets):\n"
|
|
1071
|
-
"\tpresets='
|
|
1072
|
-
"\tpresets='best'
|
|
1073
|
-
"\tpresets='high'
|
|
1074
|
-
"\tpresets='good'
|
|
1075
|
-
"\tpresets='medium'
|
|
1071
|
+
"\tpresets='extreme' : New in v1.4: Massively better than 'best' on datasets <30000 samples by using new models meta-learned on https://tabarena.ai: TabPFNv2, TabICL, Mitra, and TabM. Absolute best accuracy. Requires a GPU. Recommended 64 GB CPU memory and 32+ GB GPU memory.\n"
|
|
1072
|
+
"\tpresets='best' : Maximize accuracy. Recommended for most users. Use in competitions and benchmarks.\n"
|
|
1073
|
+
"\tpresets='high' : Strong accuracy with fast inference speed.\n"
|
|
1074
|
+
"\tpresets='good' : Good accuracy with very fast inference speed.\n"
|
|
1075
|
+
"\tpresets='medium' : Fast training time, ideal for initial prototyping.",
|
|
1076
1076
|
)
|
|
1077
1077
|
|
|
1078
1078
|
kwargs_orig = kwargs.copy()
|
|
@@ -1130,7 +1130,7 @@ class TabularPredictor:
|
|
|
1130
1130
|
# TODO: Temporary for v1.4. Make this more extensible for v1.5 by letting users make their own dynamic hyperparameters.
|
|
1131
1131
|
dynamic_hyperparameters = kwargs["_experimental_dynamic_hyperparameters"]
|
|
1132
1132
|
if dynamic_hyperparameters:
|
|
1133
|
-
logger.log(20, f"
|
|
1133
|
+
logger.log(20, f"`extreme` preset uses a dynamic portfolio based on dataset size...")
|
|
1134
1134
|
assert hyperparameters is None, f"hyperparameters must be unspecified when `_experimental_dynamic_hyperparameters=True`."
|
|
1135
1135
|
n_samples = len(train_data)
|
|
1136
1136
|
if n_samples > 30000:
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.4.
|
|
3
|
+
Version: 1.4.0b20250726
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -96,7 +96,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
|
96
96
|
|
|
97
97
|
```python
|
|
98
98
|
from autogluon.tabular import TabularPredictor
|
|
99
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
|
99
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
|
100
100
|
predictions = predictor.predict("test.csv")
|
|
101
101
|
```
|
|
102
102
|
|
|
@@ -3,23 +3,23 @@ scipy<1.17,>=1.5.4
|
|
|
3
3
|
pandas<2.4.0,>=2.0.0
|
|
4
4
|
scikit-learn<1.8.0,>=1.4.0
|
|
5
5
|
networkx<4,>=3.0
|
|
6
|
-
autogluon.core==1.4.
|
|
7
|
-
autogluon.features==1.4.
|
|
6
|
+
autogluon.core==1.4.0b20250726
|
|
7
|
+
autogluon.features==1.4.0b20250726
|
|
8
8
|
|
|
9
9
|
[all]
|
|
10
|
-
|
|
11
|
-
huggingface_hub[torch]
|
|
12
|
-
numpy<2.3.0,>=1.25
|
|
13
|
-
autogluon.core[all]==1.4.0b20250724
|
|
14
|
-
spacy<3.9
|
|
15
|
-
fastai<2.9,>=2.3.1
|
|
16
|
-
torch<2.8,>=2.2
|
|
17
|
-
catboost<1.3,>=1.2
|
|
10
|
+
lightgbm<4.7,>=4.0
|
|
18
11
|
xgboost<3.1,>=2.0
|
|
12
|
+
torch<2.8,>=2.2
|
|
19
13
|
loguru
|
|
14
|
+
numpy<2.3.0,>=1.25
|
|
15
|
+
transformers
|
|
16
|
+
huggingface_hub[torch]
|
|
20
17
|
einx
|
|
21
|
-
|
|
18
|
+
fastai<2.9,>=2.3.1
|
|
19
|
+
spacy<3.9
|
|
22
20
|
omegaconf
|
|
21
|
+
autogluon.core[all]==1.4.0b20250726
|
|
22
|
+
catboost<1.3,>=1.2
|
|
23
23
|
|
|
24
24
|
[all:platform_system == "Windows" and python_version == "3.9"]
|
|
25
25
|
blis<1.2.1,>=0.7.0
|
|
@@ -51,7 +51,7 @@ transformers
|
|
|
51
51
|
huggingface_hub[torch]
|
|
52
52
|
|
|
53
53
|
[ray]
|
|
54
|
-
autogluon.core[all]==1.4.
|
|
54
|
+
autogluon.core[all]==1.4.0b20250726
|
|
55
55
|
|
|
56
56
|
[realmlp]
|
|
57
57
|
pytabkit<1.6,>=1.5
|
|
@@ -71,22 +71,22 @@ onnx<1.18.0,>=1.13.0
|
|
|
71
71
|
onnx<1.16.2,>=1.13.0
|
|
72
72
|
|
|
73
73
|
[tabarena]
|
|
74
|
-
|
|
75
|
-
transformers
|
|
76
|
-
huggingface_hub[torch]
|
|
77
|
-
pytabkit<1.6,>=1.5
|
|
78
|
-
tabicl<0.2,>=0.1.3
|
|
79
|
-
numpy<2.3.0,>=1.25
|
|
80
|
-
autogluon.core[all]==1.4.0b20250724
|
|
81
|
-
spacy<3.9
|
|
82
|
-
fastai<2.9,>=2.3.1
|
|
83
|
-
torch<2.8,>=2.2
|
|
84
|
-
catboost<1.3,>=1.2
|
|
74
|
+
lightgbm<4.7,>=4.0
|
|
85
75
|
xgboost<3.1,>=2.0
|
|
76
|
+
torch<2.8,>=2.2
|
|
86
77
|
loguru
|
|
78
|
+
numpy<2.3.0,>=1.25
|
|
79
|
+
transformers
|
|
80
|
+
huggingface_hub[torch]
|
|
81
|
+
tabpfn<2.2,>=2.0.9
|
|
87
82
|
einx
|
|
88
|
-
|
|
83
|
+
fastai<2.9,>=2.3.1
|
|
84
|
+
spacy<3.9
|
|
89
85
|
omegaconf
|
|
86
|
+
tabicl<0.2,>=0.1.3
|
|
87
|
+
pytabkit<1.6,>=1.5
|
|
88
|
+
autogluon.core[all]==1.4.0b20250726
|
|
89
|
+
catboost<1.3,>=1.2
|
|
90
90
|
|
|
91
91
|
[tabarena:platform_system == "Windows" and python_version == "3.9"]
|
|
92
92
|
blis<1.2.1,>=0.7.0
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|