autogluon.tabular 1.3.2b20250723__tar.gz → 1.4.0b20250725__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/PKG-INFO +3 -2
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/setup.py +21 -5
- autogluon.tabular-1.4.0b20250725/src/autogluon/tabular/configs/hyperparameter_configs.py +144 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/presets_configs.py +51 -23
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -1
- autogluon.tabular-1.4.0b20250725/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +309 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/automm/automm_model.py +2 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/automm/ft_transformer.py +4 -1
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +18 -6
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +8 -4
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +5 -1
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +3 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/mitra_model.py +85 -21
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/sklearn_interface.py +15 -13
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/realmlp/realmlp_model.py +13 -6
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabicl/tabicl_model.py +17 -8
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +3 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabm/tabm_model.py +14 -6
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabm/tabm_reference.py +2 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +29 -12
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/predictor/predictor.py +45 -5
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/abstract_trainer.py +2 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/PKG-INFO +3 -2
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/SOURCES.txt +1 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/requires.txt +41 -16
- autogluon.tabular-1.3.2b20250723/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -407
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/setup.cfg +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/registry/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/registry/_model_registry.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/testing/fit_helper.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250723 → autogluon.tabular-1.4.0b20250725}/src/autogluon.tabular.egg-info/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogluon.tabular
|
|
3
|
-
Version: 1.
|
|
3
|
+
Version: 1.4.0b20250725
|
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
|
6
6
|
Author: AutoGluon Community
|
|
@@ -49,6 +49,7 @@ Provides-Extra: skex
|
|
|
49
49
|
Provides-Extra: imodels
|
|
50
50
|
Provides-Extra: skl2onnx
|
|
51
51
|
Provides-Extra: all
|
|
52
|
+
Provides-Extra: tabarena
|
|
52
53
|
Provides-Extra: tests
|
|
53
54
|
License-File: ../LICENSE
|
|
54
55
|
License-File: ../NOTICE
|
|
@@ -95,7 +96,7 @@ Build accurate end-to-end ML models in just 3 lines of code!
|
|
|
95
96
|
|
|
96
97
|
```python
|
|
97
98
|
from autogluon.tabular import TabularPredictor
|
|
98
|
-
predictor = TabularPredictor(label="class").fit("train.csv")
|
|
99
|
+
predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
|
|
99
100
|
predictions = predictor.predict("test.csv")
|
|
100
101
|
```
|
|
101
102
|
|
|
@@ -17,6 +17,7 @@ ag = importlib.util.module_from_spec(spec)
|
|
|
17
17
|
spec.loader.exec_module(ag)
|
|
18
18
|
###########################
|
|
19
19
|
|
|
20
|
+
import copy
|
|
20
21
|
import sys
|
|
21
22
|
|
|
22
23
|
version = ag.load_version_file()
|
|
@@ -69,8 +70,9 @@ extras_require = {
|
|
|
69
70
|
"loguru",
|
|
70
71
|
"einx",
|
|
71
72
|
"omegaconf",
|
|
73
|
+
"torch",
|
|
72
74
|
"transformers",
|
|
73
|
-
|
|
75
|
+
"huggingface_hub[torch]",
|
|
74
76
|
],
|
|
75
77
|
"tabicl": [
|
|
76
78
|
"tabicl>=0.1.3,<0.2", # 0.1.3 added a major bug fix to multithreading.
|
|
@@ -111,24 +113,38 @@ else:
|
|
|
111
113
|
|
|
112
114
|
# TODO: v1.0: Rename `all` to `core`, make `all` contain everything.
|
|
113
115
|
all_requires = []
|
|
114
|
-
# TODO: Consider adding 'skex' to 'all'
|
|
115
116
|
for extra_package in [
|
|
116
117
|
"lightgbm",
|
|
117
118
|
"catboost",
|
|
118
119
|
"xgboost",
|
|
119
120
|
"fastai",
|
|
120
121
|
"tabm",
|
|
121
|
-
"
|
|
122
|
-
"realmlp",
|
|
122
|
+
"mitra",
|
|
123
123
|
"ray",
|
|
124
124
|
]:
|
|
125
125
|
all_requires += extras_require[extra_package]
|
|
126
126
|
all_requires = list(set(all_requires))
|
|
127
127
|
extras_require["all"] = all_requires
|
|
128
128
|
|
|
129
|
+
tabarena_requires = copy.deepcopy(all_requires)
|
|
130
|
+
for extra_package in [
|
|
131
|
+
"tabicl",
|
|
132
|
+
"tabpfn",
|
|
133
|
+
"realmlp",
|
|
134
|
+
]:
|
|
135
|
+
tabarena_requires += extras_require[extra_package]
|
|
136
|
+
tabarena_requires = list(set(tabarena_requires))
|
|
137
|
+
extras_require["tabarena"] = tabarena_requires
|
|
129
138
|
|
|
130
139
|
test_requires = []
|
|
131
|
-
for test_package in [
|
|
140
|
+
for test_package in [
|
|
141
|
+
"tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
|
|
142
|
+
"tabpfn",
|
|
143
|
+
"realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
|
|
144
|
+
"tabpfnmix", # Refer to `mitra`, which is an improved version of `tabpfnmix`
|
|
145
|
+
"imodels",
|
|
146
|
+
"skl2onnx",
|
|
147
|
+
]:
|
|
132
148
|
test_requires += extras_require[test_package]
|
|
133
149
|
extras_require["tests"] = test_requires
|
|
134
150
|
install_requires = ag.get_dependency_version_ranges(install_requires)
|
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
import copy
|
|
2
|
+
|
|
3
|
+
from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
|
|
4
|
+
from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
|
|
5
|
+
|
|
6
|
+
# Dictionary of preset hyperparameter configurations.
|
|
7
|
+
hyperparameter_config_dict = dict(
|
|
8
|
+
# Default AutoGluon hyperparameters intended to maximize accuracy without significant regard to inference time or disk usage.
|
|
9
|
+
default={
|
|
10
|
+
"NN_TORCH": {},
|
|
11
|
+
"GBM": [
|
|
12
|
+
{"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
|
|
13
|
+
{},
|
|
14
|
+
{
|
|
15
|
+
"learning_rate": 0.03,
|
|
16
|
+
"num_leaves": 128,
|
|
17
|
+
"feature_fraction": 0.9,
|
|
18
|
+
"min_data_in_leaf": 3,
|
|
19
|
+
"ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
|
|
20
|
+
},
|
|
21
|
+
],
|
|
22
|
+
"CAT": {},
|
|
23
|
+
"XGB": {},
|
|
24
|
+
"FASTAI": {},
|
|
25
|
+
"RF": [
|
|
26
|
+
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
27
|
+
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
28
|
+
{"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
29
|
+
],
|
|
30
|
+
"XT": [
|
|
31
|
+
{"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
32
|
+
{"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
33
|
+
{"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
34
|
+
],
|
|
35
|
+
},
|
|
36
|
+
# Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
|
|
37
|
+
light={
|
|
38
|
+
"NN_TORCH": {},
|
|
39
|
+
"GBM": [
|
|
40
|
+
{"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
|
|
41
|
+
{},
|
|
42
|
+
{
|
|
43
|
+
"learning_rate": 0.03,
|
|
44
|
+
"num_leaves": 128,
|
|
45
|
+
"feature_fraction": 0.9,
|
|
46
|
+
"min_data_in_leaf": 3,
|
|
47
|
+
"ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
|
|
48
|
+
},
|
|
49
|
+
],
|
|
50
|
+
"CAT": {},
|
|
51
|
+
"XGB": {},
|
|
52
|
+
"FASTAI": {},
|
|
53
|
+
"RF": [
|
|
54
|
+
{"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
55
|
+
{"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
56
|
+
{"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
57
|
+
],
|
|
58
|
+
"XT": [
|
|
59
|
+
{"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
|
|
60
|
+
{"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
|
|
61
|
+
{"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
|
|
62
|
+
],
|
|
63
|
+
},
|
|
64
|
+
# Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
|
|
65
|
+
very_light={
|
|
66
|
+
"NN_TORCH": {},
|
|
67
|
+
"GBM": [
|
|
68
|
+
{"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
|
|
69
|
+
{},
|
|
70
|
+
{
|
|
71
|
+
"learning_rate": 0.03,
|
|
72
|
+
"num_leaves": 128,
|
|
73
|
+
"feature_fraction": 0.9,
|
|
74
|
+
"min_data_in_leaf": 3,
|
|
75
|
+
"ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
|
|
76
|
+
},
|
|
77
|
+
],
|
|
78
|
+
"CAT": {},
|
|
79
|
+
"XGB": {},
|
|
80
|
+
"FASTAI": {},
|
|
81
|
+
},
|
|
82
|
+
# Results in extremely quick to train models. Only use this when prototyping, as the model accuracy will be severely reduced.
|
|
83
|
+
toy={
|
|
84
|
+
"NN_TORCH": {"num_epochs": 5},
|
|
85
|
+
"GBM": {"num_boost_round": 10},
|
|
86
|
+
"CAT": {"iterations": 10},
|
|
87
|
+
"XGB": {"n_estimators": 10},
|
|
88
|
+
},
|
|
89
|
+
# Default AutoGluon hyperparameters intended to maximize accuracy in multimodal tabular + text datasets. Requires GPU.
|
|
90
|
+
multimodal={
|
|
91
|
+
"NN_TORCH": {},
|
|
92
|
+
"GBM": [
|
|
93
|
+
{},
|
|
94
|
+
{"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
|
|
95
|
+
{
|
|
96
|
+
"learning_rate": 0.03,
|
|
97
|
+
"num_leaves": 128,
|
|
98
|
+
"feature_fraction": 0.9,
|
|
99
|
+
"min_data_in_leaf": 3,
|
|
100
|
+
"ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
|
|
101
|
+
},
|
|
102
|
+
],
|
|
103
|
+
"CAT": {},
|
|
104
|
+
"XGB": {},
|
|
105
|
+
# 'FASTAI': {}, # FastAI gets killed if the dataset is large (400K rows).
|
|
106
|
+
"AG_AUTOMM": {},
|
|
107
|
+
},
|
|
108
|
+
# Hyperparameters intended to find an interpretable model which doesn't sacrifice predictive accuracy
|
|
109
|
+
interpretable={
|
|
110
|
+
"IM_RULEFIT": [{"max_rules": 7}, {"max_rules": 12}, {"max_rules": 18}],
|
|
111
|
+
"IM_FIGS": [{"max_rules": 6}, {"max_rules": 10}, {"max_rules": 15}],
|
|
112
|
+
# Note: Below are commented out because they are not meaningfully interpretable via the existing API
|
|
113
|
+
# 'IM_GREEDYTREE': [{'max_leaf_nodes': 7, 'max_leaf_nodes': 18}],
|
|
114
|
+
# 'IM_BOOSTEDRULES': [{'n_estimators': 5}, {'n_estimators': 10}],
|
|
115
|
+
# 'IM_HSTREE': [{'max_rules': 6}, {'max_rules': 12}, {'max_rules': 18}],
|
|
116
|
+
},
|
|
117
|
+
zeroshot=hyperparameter_portfolio_zeroshot_2023,
|
|
118
|
+
zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
|
|
119
|
+
zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
tabpfnmix_default = {
|
|
123
|
+
"model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
|
|
124
|
+
"model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
|
|
125
|
+
"n_ensembles": 1,
|
|
126
|
+
"max_epochs": 30,
|
|
127
|
+
"ag.sample_rows_val": 5000, # Beyond 5k val rows fine-tuning becomes very slow
|
|
128
|
+
"ag.max_rows": 50000, # Beyond 50k rows, the time taken is longer than most users would like (hours), while the model is very weak at this size
|
|
129
|
+
"ag_args": {"name_suffix": "_v1"},
|
|
130
|
+
}
|
|
131
|
+
|
|
132
|
+
hyperparameter_config_dict["experimental_2024"] = {"TABPFNMIX": tabpfnmix_default}
|
|
133
|
+
hyperparameter_config_dict["experimental_2024"].update(hyperparameter_config_dict["zeroshot_2023"])
|
|
134
|
+
hyperparameter_config_dict["experimental"] = hyperparameter_config_dict["experimental_2024"]
|
|
135
|
+
|
|
136
|
+
def get_hyperparameter_config_options():
|
|
137
|
+
return list(hyperparameter_config_dict.keys())
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
def get_hyperparameter_config(config_name):
|
|
141
|
+
config_options = get_hyperparameter_config_options()
|
|
142
|
+
if config_name not in config_options:
|
|
143
|
+
raise ValueError(f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead.")
|
|
144
|
+
return copy.deepcopy(hyperparameter_config_dict[config_name])
|
|
@@ -1,25 +1,5 @@
|
|
|
1
1
|
# Dictionary of preset fit() parameter configurations.
|
|
2
2
|
tabular_presets_dict = dict(
|
|
3
|
-
# [EXPERIMENTAL PRESET] The `experimental_quality` preset may be changed or removed without warning.
|
|
4
|
-
# This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
|
|
5
|
-
# Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
|
|
6
|
-
# Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
|
|
7
|
-
# Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
|
|
8
|
-
# Significantly stronger than `best_quality`, but can be over 10x slower in inference.
|
|
9
|
-
# Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
|
|
10
|
-
# For best results, use as large of an instance as possible with as many CPU cores as possible (ideally 64+ cores)
|
|
11
|
-
# DOES NOT SUPPORT GPU.
|
|
12
|
-
# Aliases: experimental
|
|
13
|
-
experimental_quality={
|
|
14
|
-
"auto_stack": True,
|
|
15
|
-
"dynamic_stacking": "auto",
|
|
16
|
-
"num_bag_sets": 1,
|
|
17
|
-
"hyperparameters": "experimental",
|
|
18
|
-
"fit_strategy": "parallel",
|
|
19
|
-
"num_gpus": 0,
|
|
20
|
-
"time_limit": 3600,
|
|
21
|
-
},
|
|
22
|
-
|
|
23
3
|
# Best predictive accuracy with little consideration to inference time or disk usage. Achieve even better results by specifying a large time_limit value.
|
|
24
4
|
# Recommended for applications that benefit from the best possible model accuracy.
|
|
25
5
|
# Aliases: best
|
|
@@ -94,7 +74,52 @@ tabular_presets_dict = dict(
|
|
|
94
74
|
# ------------------------------------------
|
|
95
75
|
# Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
|
|
96
76
|
# Experimental presets can be removed or changed without warning.
|
|
97
|
-
|
|
77
|
+
|
|
78
|
+
# [EXPERIMENTAL PRESET] The `extreme` preset may be changed or removed without warning.
|
|
79
|
+
# This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
|
|
80
|
+
# Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
|
|
81
|
+
# Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
|
|
82
|
+
# Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
|
|
83
|
+
# Significantly stronger than `best_quality`, but can be over 10x slower in inference.
|
|
84
|
+
# Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
|
|
85
|
+
# For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
|
|
86
|
+
# Aliases: extreme, experimental, experimental_quality
|
|
87
|
+
# GPU STRONGLY RECOMMENDED
|
|
88
|
+
extreme_quality={
|
|
89
|
+
"auto_stack": True,
|
|
90
|
+
"dynamic_stacking": "auto",
|
|
91
|
+
"num_bag_sets": 1,
|
|
92
|
+
"_experimental_dynamic_hyperparameters": True,
|
|
93
|
+
"hyperparameters": None,
|
|
94
|
+
"time_limit": 3600,
|
|
95
|
+
},
|
|
96
|
+
|
|
97
|
+
# Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
|
|
98
|
+
# Uses tabular foundation models: TabPFNv2, TabICL, Mitra
|
|
99
|
+
# Uses deep learning model: TabM
|
|
100
|
+
# Uses tree models: LightGBM, CatBoost, XGBoost
|
|
101
|
+
# Extremely powerful on small datasets with <= 10000 training samples.
|
|
102
|
+
# Requires a GPU for best results.
|
|
103
|
+
tabarena={
|
|
104
|
+
"auto_stack": True,
|
|
105
|
+
"dynamic_stacking": "auto",
|
|
106
|
+
"num_bag_sets": 1,
|
|
107
|
+
"num_stack_levels": 0,
|
|
108
|
+
"hyperparameters": "zeroshot_2025_tabfm",
|
|
109
|
+
"time_limit": 3600,
|
|
110
|
+
},
|
|
111
|
+
|
|
112
|
+
# DOES NOT SUPPORT GPU.
|
|
113
|
+
experimental_quality_v120={
|
|
114
|
+
"auto_stack": True,
|
|
115
|
+
"dynamic_stacking": "auto",
|
|
116
|
+
"num_bag_sets": 1,
|
|
117
|
+
"hyperparameters": "experimental",
|
|
118
|
+
"fit_strategy": "parallel",
|
|
119
|
+
"num_gpus": 0,
|
|
120
|
+
"time_limit": 3600,
|
|
121
|
+
},
|
|
122
|
+
|
|
98
123
|
# ------------------------------------------
|
|
99
124
|
# ------------------------------------------
|
|
100
125
|
# ------------------------------------------
|
|
@@ -103,7 +128,7 @@ tabular_presets_dict = dict(
|
|
|
103
128
|
|
|
104
129
|
# Alias preset name alternatives
|
|
105
130
|
tabular_presets_alias = dict(
|
|
106
|
-
|
|
131
|
+
extreme="extreme_quality",
|
|
107
132
|
best="best_quality",
|
|
108
133
|
high="high_quality",
|
|
109
134
|
high_quality_fast_inference_only_refit="high_quality",
|
|
@@ -111,9 +136,12 @@ tabular_presets_alias = dict(
|
|
|
111
136
|
good_quality_faster_inference_only_refit="good_quality",
|
|
112
137
|
medium="medium_quality",
|
|
113
138
|
medium_quality_faster_train="medium_quality",
|
|
114
|
-
eq="
|
|
139
|
+
eq="extreme_quality",
|
|
115
140
|
bq="best_quality",
|
|
116
141
|
hq="high_quality",
|
|
117
142
|
gq="good_quality",
|
|
118
143
|
mq="medium_quality",
|
|
144
|
+
experimental="extreme_quality",
|
|
145
|
+
experimental_quality="extreme_quality",
|
|
146
|
+
experimental_quality_v140="extreme_quality",
|
|
119
147
|
)
|
|
@@ -793,5 +793,4 @@ hyperparameter_portfolio_zeroshot_2023 = {
|
|
|
793
793
|
{"max_features": 1.0, "max_leaf_nodes": 40459, "min_samples_leaf": 1, "ag_args": {"name_suffix": "_r197", "priority": -78}},
|
|
794
794
|
{"max_features": "sqrt", "max_leaf_nodes": 29702, "min_samples_leaf": 2, "ag_args": {"name_suffix": "_r126", "priority": -86}},
|
|
795
795
|
],
|
|
796
|
-
"KNN": [{"weights": "uniform", "ag_args": {"name_suffix": "Unif"}}, {"weights": "distance", "ag_args": {"name_suffix": "Dist"}}],
|
|
797
796
|
}
|
autogluon.tabular-1.4.0b20250725/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
1
|
+
# optimized for <=10000 samples and <=500 features, with a GPU present
|
|
2
|
+
hyperparameter_portfolio_zeroshot_2025_small = {
|
|
3
|
+
"TABPFNV2": [
|
|
4
|
+
{
|
|
5
|
+
"ag_args": {'name_suffix': '_r143', 'priority': -1},
|
|
6
|
+
"average_before_softmax": False,
|
|
7
|
+
"classification_model_path": 'tabpfn-v2-classifier-od3j1g5m.ckpt',
|
|
8
|
+
"inference_config/FINGERPRINT_FEATURE": False,
|
|
9
|
+
"inference_config/OUTLIER_REMOVAL_STD": None,
|
|
10
|
+
"inference_config/POLYNOMIAL_FEATURES": 'no',
|
|
11
|
+
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'safepower', 'subsample_features': -1}, {'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': -1}],
|
|
12
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None, 'power'],
|
|
13
|
+
"inference_config/SUBSAMPLE_SAMPLES": 0.99,
|
|
14
|
+
"model_type": 'single',
|
|
15
|
+
"n_ensemble_repeats": 4,
|
|
16
|
+
"regression_model_path": 'tabpfn-v2-regressor-wyl4o83o.ckpt',
|
|
17
|
+
"softmax_temperature": 0.75,
|
|
18
|
+
},
|
|
19
|
+
{
|
|
20
|
+
"ag_args": {'name_suffix': '_r94', 'priority': -3},
|
|
21
|
+
"average_before_softmax": True,
|
|
22
|
+
"classification_model_path": 'tabpfn-v2-classifier-vutqq28w.ckpt',
|
|
23
|
+
"inference_config/FINGERPRINT_FEATURE": True,
|
|
24
|
+
"inference_config/OUTLIER_REMOVAL_STD": None,
|
|
25
|
+
"inference_config/POLYNOMIAL_FEATURES": 'no',
|
|
26
|
+
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': 0.99}],
|
|
27
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
|
|
28
|
+
"inference_config/SUBSAMPLE_SAMPLES": None,
|
|
29
|
+
"model_type": 'single',
|
|
30
|
+
"n_ensemble_repeats": 4,
|
|
31
|
+
"regression_model_path": 'tabpfn-v2-regressor-5wof9ojf.ckpt',
|
|
32
|
+
"softmax_temperature": 0.9,
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"ag_args": {'name_suffix': '_r181', 'priority': -4},
|
|
36
|
+
"average_before_softmax": False,
|
|
37
|
+
"classification_model_path": 'tabpfn-v2-classifier-llderlii.ckpt',
|
|
38
|
+
"inference_config/FINGERPRINT_FEATURE": False,
|
|
39
|
+
"inference_config/OUTLIER_REMOVAL_STD": 9.0,
|
|
40
|
+
"inference_config/POLYNOMIAL_FEATURES": 50,
|
|
41
|
+
"inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'onehot', 'global_transformer_name': 'svd', 'name': 'quantile_uni_coarse', 'subsample_features': 0.99}],
|
|
42
|
+
"inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": ['power'],
|
|
43
|
+
"inference_config/SUBSAMPLE_SAMPLES": None,
|
|
44
|
+
"model_type": 'single',
|
|
45
|
+
"n_ensemble_repeats": 4,
|
|
46
|
+
"regression_model_path": 'tabpfn-v2-regressor.ckpt',
|
|
47
|
+
"softmax_temperature": 0.95,
|
|
48
|
+
},
|
|
49
|
+
],
|
|
50
|
+
"GBM": [
|
|
51
|
+
{
|
|
52
|
+
"ag_args": {'name_suffix': '_r33', 'priority': -2},
|
|
53
|
+
"bagging_fraction": 0.9625293420216,
|
|
54
|
+
"bagging_freq": 1,
|
|
55
|
+
"cat_l2": 0.1236875455555,
|
|
56
|
+
"cat_smooth": 68.8584757332856,
|
|
57
|
+
"extra_trees": False,
|
|
58
|
+
"feature_fraction": 0.6189215809382,
|
|
59
|
+
"lambda_l1": 0.1641757352921,
|
|
60
|
+
"lambda_l2": 0.6937755557881,
|
|
61
|
+
"learning_rate": 0.0154031028561,
|
|
62
|
+
"max_cat_to_onehot": 17,
|
|
63
|
+
"min_data_in_leaf": 1,
|
|
64
|
+
"min_data_per_group": 30,
|
|
65
|
+
"num_leaves": 68,
|
|
66
|
+
},
|
|
67
|
+
{
|
|
68
|
+
"ag_args": {'name_suffix': '_r21', 'priority': -16},
|
|
69
|
+
"bagging_fraction": 0.7218730663234,
|
|
70
|
+
"bagging_freq": 1,
|
|
71
|
+
"cat_l2": 0.0296205152578,
|
|
72
|
+
"cat_smooth": 0.0010255271303,
|
|
73
|
+
"extra_trees": False,
|
|
74
|
+
"feature_fraction": 0.4557131604374,
|
|
75
|
+
"lambda_l1": 0.5219704038237,
|
|
76
|
+
"lambda_l2": 0.1070959487853,
|
|
77
|
+
"learning_rate": 0.0055891584996,
|
|
78
|
+
"max_cat_to_onehot": 71,
|
|
79
|
+
"min_data_in_leaf": 50,
|
|
80
|
+
"min_data_per_group": 10,
|
|
81
|
+
"num_leaves": 30,
|
|
82
|
+
},
|
|
83
|
+
{
|
|
84
|
+
"ag_args": {'name_suffix': '_r11', 'priority': -19},
|
|
85
|
+
"bagging_fraction": 0.775784726514,
|
|
86
|
+
"bagging_freq": 1,
|
|
87
|
+
"cat_l2": 0.3888471449178,
|
|
88
|
+
"cat_smooth": 0.0057144748021,
|
|
89
|
+
"extra_trees": True,
|
|
90
|
+
"feature_fraction": 0.7732354787904,
|
|
91
|
+
"lambda_l1": 0.2211002452568,
|
|
92
|
+
"lambda_l2": 1.1318405980187,
|
|
93
|
+
"learning_rate": 0.0090151778542,
|
|
94
|
+
"max_cat_to_onehot": 15,
|
|
95
|
+
"min_data_in_leaf": 4,
|
|
96
|
+
"min_data_per_group": 15,
|
|
97
|
+
"num_leaves": 2,
|
|
98
|
+
},
|
|
99
|
+
],
|
|
100
|
+
"CAT": [
|
|
101
|
+
{
|
|
102
|
+
"ag_args": {'priority': -5},
|
|
103
|
+
},
|
|
104
|
+
{
|
|
105
|
+
"ag_args": {'name_suffix': '_r51', 'priority': -10},
|
|
106
|
+
"boosting_type": 'Plain',
|
|
107
|
+
"bootstrap_type": 'Bernoulli',
|
|
108
|
+
"colsample_bylevel": 0.8771035272558,
|
|
109
|
+
"depth": 7,
|
|
110
|
+
"grow_policy": 'SymmetricTree',
|
|
111
|
+
"l2_leaf_reg": 2.0107286863021,
|
|
112
|
+
"leaf_estimation_iterations": 2,
|
|
113
|
+
"learning_rate": 0.0058424016622,
|
|
114
|
+
"max_bin": 254,
|
|
115
|
+
"max_ctr_complexity": 4,
|
|
116
|
+
"model_size_reg": 0.1307400355809,
|
|
117
|
+
"one_hot_max_size": 23,
|
|
118
|
+
"subsample": 0.809527841437,
|
|
119
|
+
},
|
|
120
|
+
{
|
|
121
|
+
"ag_args": {'name_suffix': '_r10', 'priority': -12},
|
|
122
|
+
"boosting_type": 'Plain',
|
|
123
|
+
"bootstrap_type": 'Bernoulli',
|
|
124
|
+
"colsample_bylevel": 0.8994502668431,
|
|
125
|
+
"depth": 6,
|
|
126
|
+
"grow_policy": 'Depthwise',
|
|
127
|
+
"l2_leaf_reg": 1.8187025215896,
|
|
128
|
+
"leaf_estimation_iterations": 7,
|
|
129
|
+
"learning_rate": 0.005177304142,
|
|
130
|
+
"max_bin": 254,
|
|
131
|
+
"max_ctr_complexity": 4,
|
|
132
|
+
"model_size_reg": 0.5247386875068,
|
|
133
|
+
"one_hot_max_size": 53,
|
|
134
|
+
"subsample": 0.8705228845742,
|
|
135
|
+
},
|
|
136
|
+
{
|
|
137
|
+
"ag_args": {'name_suffix': '_r24', 'priority': -15},
|
|
138
|
+
"boosting_type": 'Plain',
|
|
139
|
+
"bootstrap_type": 'Bernoulli',
|
|
140
|
+
"colsample_bylevel": 0.8597809376276,
|
|
141
|
+
"depth": 8,
|
|
142
|
+
"grow_policy": 'Depthwise',
|
|
143
|
+
"l2_leaf_reg": 0.3628261923976,
|
|
144
|
+
"leaf_estimation_iterations": 5,
|
|
145
|
+
"learning_rate": 0.016851077771,
|
|
146
|
+
"max_bin": 254,
|
|
147
|
+
"max_ctr_complexity": 4,
|
|
148
|
+
"model_size_reg": 0.1253820547902,
|
|
149
|
+
"one_hot_max_size": 20,
|
|
150
|
+
"subsample": 0.8120271122061,
|
|
151
|
+
},
|
|
152
|
+
{
|
|
153
|
+
"ag_args": {'name_suffix': '_r91', 'priority': -17},
|
|
154
|
+
"boosting_type": 'Plain',
|
|
155
|
+
"bootstrap_type": 'Bernoulli',
|
|
156
|
+
"colsample_bylevel": 0.8959275863514,
|
|
157
|
+
"depth": 4,
|
|
158
|
+
"grow_policy": 'SymmetricTree',
|
|
159
|
+
"l2_leaf_reg": 0.0026915894253,
|
|
160
|
+
"leaf_estimation_iterations": 12,
|
|
161
|
+
"learning_rate": 0.0475233791203,
|
|
162
|
+
"max_bin": 254,
|
|
163
|
+
"max_ctr_complexity": 5,
|
|
164
|
+
"model_size_reg": 0.1633175256924,
|
|
165
|
+
"one_hot_max_size": 11,
|
|
166
|
+
"subsample": 0.798554178926,
|
|
167
|
+
},
|
|
168
|
+
],
|
|
169
|
+
"TABM": [
|
|
170
|
+
{
|
|
171
|
+
"ag_args": {'name_suffix': '_r184', 'priority': -6},
|
|
172
|
+
"amp": False,
|
|
173
|
+
"arch_type": 'tabm-mini',
|
|
174
|
+
"batch_size": 'auto',
|
|
175
|
+
"d_block": 864,
|
|
176
|
+
"d_embedding": 24,
|
|
177
|
+
"dropout": 0.0,
|
|
178
|
+
"gradient_clipping_norm": 1.0,
|
|
179
|
+
"lr": 0.0019256819924656217,
|
|
180
|
+
"n_blocks": 3,
|
|
181
|
+
"num_emb_n_bins": 3,
|
|
182
|
+
"num_emb_type": 'pwl',
|
|
183
|
+
"patience": 16,
|
|
184
|
+
"share_training_batches": False,
|
|
185
|
+
"tabm_k": 32,
|
|
186
|
+
"weight_decay": 0.0,
|
|
187
|
+
},
|
|
188
|
+
{
|
|
189
|
+
"ag_args": {'name_suffix': '_r69', 'priority': -7},
|
|
190
|
+
"amp": False,
|
|
191
|
+
"arch_type": 'tabm-mini',
|
|
192
|
+
"batch_size": 'auto',
|
|
193
|
+
"d_block": 848,
|
|
194
|
+
"d_embedding": 28,
|
|
195
|
+
"dropout": 0.40215621636031007,
|
|
196
|
+
"gradient_clipping_norm": 1.0,
|
|
197
|
+
"lr": 0.0010413640454559532,
|
|
198
|
+
"n_blocks": 3,
|
|
199
|
+
"num_emb_n_bins": 18,
|
|
200
|
+
"num_emb_type": 'pwl',
|
|
201
|
+
"patience": 16,
|
|
202
|
+
"share_training_batches": False,
|
|
203
|
+
"tabm_k": 32,
|
|
204
|
+
"weight_decay": 0.0,
|
|
205
|
+
},
|
|
206
|
+
{
|
|
207
|
+
"ag_args": {'name_suffix': '_r52', 'priority': -11},
|
|
208
|
+
"amp": False,
|
|
209
|
+
"arch_type": 'tabm-mini',
|
|
210
|
+
"batch_size": 'auto',
|
|
211
|
+
"d_block": 1024,
|
|
212
|
+
"d_embedding": 32,
|
|
213
|
+
"dropout": 0.0,
|
|
214
|
+
"gradient_clipping_norm": 1.0,
|
|
215
|
+
"lr": 0.0006297851297842611,
|
|
216
|
+
"n_blocks": 4,
|
|
217
|
+
"num_emb_n_bins": 22,
|
|
218
|
+
"num_emb_type": 'pwl',
|
|
219
|
+
"patience": 16,
|
|
220
|
+
"share_training_batches": False,
|
|
221
|
+
"tabm_k": 32,
|
|
222
|
+
"weight_decay": 0.06900108498839816,
|
|
223
|
+
},
|
|
224
|
+
{
|
|
225
|
+
"ag_args": {'priority': -13},
|
|
226
|
+
},
|
|
227
|
+
{
|
|
228
|
+
"ag_args": {'name_suffix': '_r191', 'priority': -14},
|
|
229
|
+
"amp": False,
|
|
230
|
+
"arch_type": 'tabm-mini',
|
|
231
|
+
"batch_size": 'auto',
|
|
232
|
+
"d_block": 864,
|
|
233
|
+
"d_embedding": 8,
|
|
234
|
+
"dropout": 0.45321529282058803,
|
|
235
|
+
"gradient_clipping_norm": 1.0,
|
|
236
|
+
"lr": 0.0003781238075322413,
|
|
237
|
+
"n_blocks": 4,
|
|
238
|
+
"num_emb_n_bins": 27,
|
|
239
|
+
"num_emb_type": 'pwl',
|
|
240
|
+
"patience": 16,
|
|
241
|
+
"share_training_batches": False,
|
|
242
|
+
"tabm_k": 32,
|
|
243
|
+
"weight_decay": 0.01766851962579851,
|
|
244
|
+
},
|
|
245
|
+
{
|
|
246
|
+
"ag_args": {'name_suffix': '_r49', 'priority': -20},
|
|
247
|
+
"amp": False,
|
|
248
|
+
"arch_type": 'tabm-mini',
|
|
249
|
+
"batch_size": 'auto',
|
|
250
|
+
"d_block": 640,
|
|
251
|
+
"d_embedding": 28,
|
|
252
|
+
"dropout": 0.15296207419190627,
|
|
253
|
+
"gradient_clipping_norm": 1.0,
|
|
254
|
+
"lr": 0.002277678490593717,
|
|
255
|
+
"n_blocks": 3,
|
|
256
|
+
"num_emb_n_bins": 48,
|
|
257
|
+
"num_emb_type": 'pwl',
|
|
258
|
+
"patience": 16,
|
|
259
|
+
"share_training_batches": False,
|
|
260
|
+
"tabm_k": 32,
|
|
261
|
+
"weight_decay": 0.0578159148243893,
|
|
262
|
+
},
|
|
263
|
+
],
|
|
264
|
+
"TABICL": [
|
|
265
|
+
{
|
|
266
|
+
"ag_args": {'priority': -8},
|
|
267
|
+
},
|
|
268
|
+
],
|
|
269
|
+
"XGB": [
|
|
270
|
+
{
|
|
271
|
+
"ag_args": {'name_suffix': '_r171', 'priority': -9},
|
|
272
|
+
"colsample_bylevel": 0.9213705632288,
|
|
273
|
+
"colsample_bynode": 0.6443385965381,
|
|
274
|
+
"enable_categorical": True,
|
|
275
|
+
"grow_policy": 'lossguide',
|
|
276
|
+
"learning_rate": 0.0068171645251,
|
|
277
|
+
"max_cat_to_onehot": 8,
|
|
278
|
+
"max_depth": 6,
|
|
279
|
+
"max_leaves": 10,
|
|
280
|
+
"min_child_weight": 0.0507304250576,
|
|
281
|
+
"reg_alpha": 4.2446346389037,
|
|
282
|
+
"reg_lambda": 1.4800570021253,
|
|
283
|
+
"subsample": 0.9656290596647,
|
|
284
|
+
},
|
|
285
|
+
{
|
|
286
|
+
"ag_args": {'name_suffix': '_r40', 'priority': -18},
|
|
287
|
+
"colsample_bylevel": 0.6377491713202,
|
|
288
|
+
"colsample_bynode": 0.9237625621103,
|
|
289
|
+
"enable_categorical": True,
|
|
290
|
+
"grow_policy": 'lossguide',
|
|
291
|
+
"learning_rate": 0.0112462621131,
|
|
292
|
+
"max_cat_to_onehot": 33,
|
|
293
|
+
"max_depth": 10,
|
|
294
|
+
"max_leaves": 35,
|
|
295
|
+
"min_child_weight": 0.1403464856034,
|
|
296
|
+
"reg_alpha": 3.4960653958503,
|
|
297
|
+
"reg_lambda": 1.3062320805235,
|
|
298
|
+
"subsample": 0.6948898835178,
|
|
299
|
+
},
|
|
300
|
+
],
|
|
301
|
+
"MITRA": [
|
|
302
|
+
{
|
|
303
|
+
"n_estimators": 1,
|
|
304
|
+
"fine_tune": True,
|
|
305
|
+
"fine_tune_steps": 50,
|
|
306
|
+
"ag_args": {'priority': -21},
|
|
307
|
+
},
|
|
308
|
+
],
|
|
309
|
+
}
|