autogluon.tabular 1.3.2b20250722__tar.gz → 1.4.0b20250724__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (201) hide show
  1. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/PKG-INFO +2 -1
  2. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/setup.py +21 -5
  3. autogluon.tabular-1.4.0b20250724/src/autogluon/tabular/configs/hyperparameter_configs.py +144 -0
  4. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/presets_configs.py +47 -21
  5. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -1
  6. autogluon.tabular-1.4.0b20250724/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +309 -0
  7. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +18 -6
  8. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +8 -4
  9. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/data/dataset_split.py +5 -1
  10. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/models/tab2d.py +3 -0
  11. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/mitra_model.py +72 -21
  12. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/sklearn_interface.py +15 -13
  13. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabicl/tabicl_model.py +3 -3
  14. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabm/rtdl_num_embeddings.py +3 -0
  15. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabm/tabm_reference.py +2 -0
  16. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +15 -6
  17. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/predictor/predictor.py +41 -1
  18. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/abstract_trainer.py +2 -0
  19. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/version.py +1 -1
  20. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/PKG-INFO +2 -1
  21. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/SOURCES.txt +1 -0
  22. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/requires.txt +39 -14
  23. autogluon.tabular-1.3.2b20250722/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -407
  24. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/setup.cfg +0 -0
  25. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/__init__.py +0 -0
  26. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/__init__.py +0 -0
  27. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/config_helper.py +0 -0
  28. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  29. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  30. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/experimental/__init__.py +0 -0
  31. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  32. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  33. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  34. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  35. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/learner/__init__.py +0 -0
  36. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  37. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/learner/default_learner.py +0 -0
  38. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/__init__.py +0 -0
  39. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  40. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  41. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  42. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  43. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  44. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  45. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  46. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  47. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  48. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  49. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  50. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  51. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  52. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  53. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  54. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  55. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  56. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  57. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  58. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  59. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  60. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  61. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  62. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  63. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  64. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  65. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  66. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  67. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  68. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  69. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  70. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  71. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  72. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  73. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  74. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  75. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  76. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  77. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  78. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  79. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  80. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  81. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  82. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  83. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  84. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  85. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  86. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  87. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  88. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  89. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/__init__.py +0 -0
  90. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/__init__.py +0 -0
  91. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/config/__init__.py +0 -0
  92. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +0 -0
  93. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/config/config_run.py +0 -0
  94. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/config/enums.py +0 -0
  95. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/__init__.py +0 -0
  96. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/callbacks.py +0 -0
  97. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/get_loss.py +0 -0
  98. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +0 -0
  99. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +0 -0
  100. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +0 -0
  101. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/data/__init__.py +0 -0
  102. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/data/collator.py +0 -0
  103. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/data/preprocessor.py +0 -0
  104. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/models/__init__.py +0 -0
  105. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/models/base.py +0 -0
  106. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/models/embedding.py +0 -0
  107. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/utils/__init__.py +0 -0
  108. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/mitra/_internal/utils/set_seed.py +0 -0
  109. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/realmlp/__init__.py +0 -0
  110. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/realmlp/realmlp_model.py +0 -0
  111. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  112. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  113. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  114. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  115. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  116. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  117. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  118. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabicl/__init__.py +0 -0
  119. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabm/__init__.py +0 -0
  120. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabm/_tabm_internal.py +0 -0
  121. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabm/tabm_model.py +0 -0
  122. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  123. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  124. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  125. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  126. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  127. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  128. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  129. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  130. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  131. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  132. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  133. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  134. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  135. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  136. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  137. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  138. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  139. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  140. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  141. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  142. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  143. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  144. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  145. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  146. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  147. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  148. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/__init__.py +0 -0
  149. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -0
  150. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -0
  151. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -0
  152. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -0
  153. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -0
  154. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -0
  155. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -0
  156. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  157. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  158. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  159. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  160. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  161. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  162. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  163. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  164. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  165. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  166. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  167. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  168. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  169. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  170. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  171. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  172. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  173. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  174. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  175. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  176. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  177. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  178. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  179. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  180. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  181. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  182. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/predictor/__init__.py +0 -0
  183. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  184. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/registry/__init__.py +0 -0
  185. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  186. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  187. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/testing/__init__.py +0 -0
  188. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  189. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  190. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  191. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/__init__.py +0 -0
  192. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  193. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  194. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  195. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  196. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/tuning/__init__.py +0 -0
  197. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  198. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  199. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  200. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  201. {autogluon.tabular-1.3.2b20250722 → autogluon.tabular-1.4.0b20250724}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250722
3
+ Version: 1.4.0b20250724
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -49,6 +49,7 @@ Provides-Extra: skex
49
49
  Provides-Extra: imodels
50
50
  Provides-Extra: skl2onnx
51
51
  Provides-Extra: all
52
+ Provides-Extra: tabarena
52
53
  Provides-Extra: tests
53
54
  License-File: ../LICENSE
54
55
  License-File: ../NOTICE
@@ -17,6 +17,7 @@ ag = importlib.util.module_from_spec(spec)
17
17
  spec.loader.exec_module(ag)
18
18
  ###########################
19
19
 
20
+ import copy
20
21
  import sys
21
22
 
22
23
  version = ag.load_version_file()
@@ -69,8 +70,9 @@ extras_require = {
69
70
  "loguru",
70
71
  "einx",
71
72
  "omegaconf",
73
+ "torch",
72
74
  "transformers",
73
- # "flash-attn>2.6.3,<2.8", # TODO: flash-attn installation requires --no-build-isolation and torch, python and cuda version compatibility.
75
+ "huggingface_hub[torch]",
74
76
  ],
75
77
  "tabicl": [
76
78
  "tabicl>=0.1.3,<0.2", # 0.1.3 added a major bug fix to multithreading.
@@ -111,24 +113,38 @@ else:
111
113
 
112
114
  # TODO: v1.0: Rename `all` to `core`, make `all` contain everything.
113
115
  all_requires = []
114
- # TODO: Consider adding 'skex' to 'all'
115
116
  for extra_package in [
116
117
  "lightgbm",
117
118
  "catboost",
118
119
  "xgboost",
119
120
  "fastai",
120
121
  "tabm",
121
- "tabpfnmix",
122
- "realmlp",
122
+ "mitra",
123
123
  "ray",
124
124
  ]:
125
125
  all_requires += extras_require[extra_package]
126
126
  all_requires = list(set(all_requires))
127
127
  extras_require["all"] = all_requires
128
128
 
129
+ tabarena_requires = copy.deepcopy(all_requires)
130
+ for extra_package in [
131
+ "tabicl",
132
+ "tabpfn",
133
+ "realmlp",
134
+ ]:
135
+ tabarena_requires += extras_require[extra_package]
136
+ tabarena_requires = list(set(tabarena_requires))
137
+ extras_require["tabarena"] = tabarena_requires
129
138
 
130
139
  test_requires = []
131
- for test_package in ["tabpfn", "imodels", "skl2onnx", "tabicl", "mitra"]:
140
+ for test_package in [
141
+ "tabicl", # Currently has unnecessary extra dependencies such as xgboost and wandb
142
+ "tabpfn",
143
+ "realmlp", # Will consider to put as part of `all_requires` once part of a portfolio
144
+ "tabpfnmix", # Refer to `mitra`, which is an improved version of `tabpfnmix`
145
+ "imodels",
146
+ "skl2onnx",
147
+ ]:
132
148
  test_requires += extras_require[test_package]
133
149
  extras_require["tests"] = test_requires
134
150
  install_requires = ag.get_dependency_version_ranges(install_requires)
@@ -0,0 +1,144 @@
1
+ import copy
2
+
3
+ from .zeroshot.zeroshot_portfolio_2023 import hyperparameter_portfolio_zeroshot_2023
4
+ from .zeroshot.zeroshot_portfolio_2025 import hyperparameter_portfolio_zeroshot_2025_small
5
+
6
+ # Dictionary of preset hyperparameter configurations.
7
+ hyperparameter_config_dict = dict(
8
+ # Default AutoGluon hyperparameters intended to maximize accuracy without significant regard to inference time or disk usage.
9
+ default={
10
+ "NN_TORCH": {},
11
+ "GBM": [
12
+ {"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
13
+ {},
14
+ {
15
+ "learning_rate": 0.03,
16
+ "num_leaves": 128,
17
+ "feature_fraction": 0.9,
18
+ "min_data_in_leaf": 3,
19
+ "ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
20
+ },
21
+ ],
22
+ "CAT": {},
23
+ "XGB": {},
24
+ "FASTAI": {},
25
+ "RF": [
26
+ {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
27
+ {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
28
+ {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
29
+ ],
30
+ "XT": [
31
+ {"criterion": "gini", "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
32
+ {"criterion": "entropy", "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
33
+ {"criterion": "squared_error", "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
34
+ ],
35
+ },
36
+ # Results in smaller models. Generally will make inference speed much faster and disk usage much lower, but with worse accuracy.
37
+ light={
38
+ "NN_TORCH": {},
39
+ "GBM": [
40
+ {"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
41
+ {},
42
+ {
43
+ "learning_rate": 0.03,
44
+ "num_leaves": 128,
45
+ "feature_fraction": 0.9,
46
+ "min_data_in_leaf": 3,
47
+ "ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
48
+ },
49
+ ],
50
+ "CAT": {},
51
+ "XGB": {},
52
+ "FASTAI": {},
53
+ "RF": [
54
+ {"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
55
+ {"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
56
+ {"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
57
+ ],
58
+ "XT": [
59
+ {"criterion": "gini", "max_depth": 15, "ag_args": {"name_suffix": "Gini", "problem_types": ["binary", "multiclass"]}},
60
+ {"criterion": "entropy", "max_depth": 15, "ag_args": {"name_suffix": "Entr", "problem_types": ["binary", "multiclass"]}},
61
+ {"criterion": "squared_error", "max_depth": 15, "ag_args": {"name_suffix": "MSE", "problem_types": ["regression", "quantile"]}},
62
+ ],
63
+ },
64
+ # Results in much smaller models. Behaves similarly to 'light', but in many cases with over 10x less disk usage and a further reduction in accuracy.
65
+ very_light={
66
+ "NN_TORCH": {},
67
+ "GBM": [
68
+ {"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
69
+ {},
70
+ {
71
+ "learning_rate": 0.03,
72
+ "num_leaves": 128,
73
+ "feature_fraction": 0.9,
74
+ "min_data_in_leaf": 3,
75
+ "ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
76
+ },
77
+ ],
78
+ "CAT": {},
79
+ "XGB": {},
80
+ "FASTAI": {},
81
+ },
82
+ # Results in extremely quick to train models. Only use this when prototyping, as the model accuracy will be severely reduced.
83
+ toy={
84
+ "NN_TORCH": {"num_epochs": 5},
85
+ "GBM": {"num_boost_round": 10},
86
+ "CAT": {"iterations": 10},
87
+ "XGB": {"n_estimators": 10},
88
+ },
89
+ # Default AutoGluon hyperparameters intended to maximize accuracy in multimodal tabular + text datasets. Requires GPU.
90
+ multimodal={
91
+ "NN_TORCH": {},
92
+ "GBM": [
93
+ {},
94
+ {"extra_trees": True, "ag_args": {"name_suffix": "XT"}},
95
+ {
96
+ "learning_rate": 0.03,
97
+ "num_leaves": 128,
98
+ "feature_fraction": 0.9,
99
+ "min_data_in_leaf": 3,
100
+ "ag_args": {"name_suffix": "Large", "priority": 0, "hyperparameter_tune_kwargs": None},
101
+ },
102
+ ],
103
+ "CAT": {},
104
+ "XGB": {},
105
+ # 'FASTAI': {}, # FastAI gets killed if the dataset is large (400K rows).
106
+ "AG_AUTOMM": {},
107
+ },
108
+ # Hyperparameters intended to find an interpretable model which doesn't sacrifice predictive accuracy
109
+ interpretable={
110
+ "IM_RULEFIT": [{"max_rules": 7}, {"max_rules": 12}, {"max_rules": 18}],
111
+ "IM_FIGS": [{"max_rules": 6}, {"max_rules": 10}, {"max_rules": 15}],
112
+ # Note: Below are commented out because they are not meaningfully interpretable via the existing API
113
+ # 'IM_GREEDYTREE': [{'max_leaf_nodes': 7, 'max_leaf_nodes': 18}],
114
+ # 'IM_BOOSTEDRULES': [{'n_estimators': 5}, {'n_estimators': 10}],
115
+ # 'IM_HSTREE': [{'max_rules': 6}, {'max_rules': 12}, {'max_rules': 18}],
116
+ },
117
+ zeroshot=hyperparameter_portfolio_zeroshot_2023,
118
+ zeroshot_2023=hyperparameter_portfolio_zeroshot_2023,
119
+ zeroshot_2025_tabfm=hyperparameter_portfolio_zeroshot_2025_small,
120
+ )
121
+
122
+ tabpfnmix_default = {
123
+ "model_path_classifier": "autogluon/tabpfn-mix-1.0-classifier",
124
+ "model_path_regressor": "autogluon/tabpfn-mix-1.0-regressor",
125
+ "n_ensembles": 1,
126
+ "max_epochs": 30,
127
+ "ag.sample_rows_val": 5000, # Beyond 5k val rows fine-tuning becomes very slow
128
+ "ag.max_rows": 50000, # Beyond 50k rows, the time taken is longer than most users would like (hours), while the model is very weak at this size
129
+ "ag_args": {"name_suffix": "_v1"},
130
+ }
131
+
132
+ hyperparameter_config_dict["experimental_2024"] = {"TABPFNMIX": tabpfnmix_default}
133
+ hyperparameter_config_dict["experimental_2024"].update(hyperparameter_config_dict["zeroshot_2023"])
134
+ hyperparameter_config_dict["experimental"] = hyperparameter_config_dict["experimental_2024"]
135
+
136
+ def get_hyperparameter_config_options():
137
+ return list(hyperparameter_config_dict.keys())
138
+
139
+
140
+ def get_hyperparameter_config(config_name):
141
+ config_options = get_hyperparameter_config_options()
142
+ if config_name not in config_options:
143
+ raise ValueError(f"Valid hyperparameter config names are: {config_options}, but '{config_name}' was given instead.")
144
+ return copy.deepcopy(hyperparameter_config_dict[config_name])
@@ -1,25 +1,5 @@
1
1
  # Dictionary of preset fit() parameter configurations.
2
2
  tabular_presets_dict = dict(
3
- # [EXPERIMENTAL PRESET] The `experimental_quality` preset may be changed or removed without warning.
4
- # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
5
- # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
6
- # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
7
- # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
8
- # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
9
- # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
10
- # For best results, use as large of an instance as possible with as many CPU cores as possible (ideally 64+ cores)
11
- # DOES NOT SUPPORT GPU.
12
- # Aliases: experimental
13
- experimental_quality={
14
- "auto_stack": True,
15
- "dynamic_stacking": "auto",
16
- "num_bag_sets": 1,
17
- "hyperparameters": "experimental",
18
- "fit_strategy": "parallel",
19
- "num_gpus": 0,
20
- "time_limit": 3600,
21
- },
22
-
23
3
  # Best predictive accuracy with little consideration to inference time or disk usage. Achieve even better results by specifying a large time_limit value.
24
4
  # Recommended for applications that benefit from the best possible model accuracy.
25
5
  # Aliases: best
@@ -94,7 +74,52 @@ tabular_presets_dict = dict(
94
74
  # ------------------------------------------
95
75
  # Experimental presets. Only use these presets if you are ok with unstable and potentially poor performing presets.
96
76
  # Experimental presets can be removed or changed without warning.
97
- # No Experimental Presets in v1.0
77
+
78
+ # [EXPERIMENTAL PRESET] The `experimental_quality` preset may be changed or removed without warning.
79
+ # This preset acts as a testing ground for cutting edge features and models which could later be added to the `best_quality` preset in future releases.
80
+ # Using this preset can lead to unexpected crashes, as it hasn't been as thoroughly tested as other presets.
81
+ # Absolute best predictive accuracy with **zero** consideration to inference time or disk usage.
82
+ # Recommended for applications that benefit from the best possible model accuracy and **do not** care about inference speed.
83
+ # Significantly stronger than `best_quality`, but can be over 10x slower in inference.
84
+ # Uses pre-trained tabular foundation models, which add a minimum of 1-2 GB to the predictor artifact's size.
85
+ # For best results, use as large of an instance as possible with a GPU and as many CPU cores as possible (ideally 64+ cores)
86
+ # Aliases: experimental
87
+ # GPU STRONGLY RECOMMENDED
88
+ experimental_quality={
89
+ "auto_stack": True,
90
+ "dynamic_stacking": "auto",
91
+ "num_bag_sets": 1,
92
+ "_experimental_dynamic_hyperparameters": True,
93
+ "hyperparameters": None,
94
+ "time_limit": 3600,
95
+ },
96
+
97
+ # Preset with a portfolio learned from TabArena v0.1: https://tabarena.ai/
98
+ # Uses tabular foundation models: TabPFNv2, TabICL, Mitra
99
+ # Uses deep learning model: TabM
100
+ # Uses tree models: LightGBM, CatBoost, XGBoost
101
+ # Extremely powerful on small datasets with <= 10000 training samples.
102
+ # Requires a GPU for best results.
103
+ tabarena={
104
+ "auto_stack": True,
105
+ "dynamic_stacking": "auto",
106
+ "num_bag_sets": 1,
107
+ "num_stack_levels": 0,
108
+ "hyperparameters": "zeroshot_2025_tabfm",
109
+ "time_limit": 3600,
110
+ },
111
+
112
+ # DOES NOT SUPPORT GPU.
113
+ experimental_quality_v120={
114
+ "auto_stack": True,
115
+ "dynamic_stacking": "auto",
116
+ "num_bag_sets": 1,
117
+ "hyperparameters": "experimental",
118
+ "fit_strategy": "parallel",
119
+ "num_gpus": 0,
120
+ "time_limit": 3600,
121
+ },
122
+
98
123
  # ------------------------------------------
99
124
  # ------------------------------------------
100
125
  # ------------------------------------------
@@ -116,4 +141,5 @@ tabular_presets_alias = dict(
116
141
  hq="high_quality",
117
142
  gq="good_quality",
118
143
  mq="medium_quality",
144
+ experimental_quality_v140="experimental_quality",
119
145
  )
@@ -793,5 +793,4 @@ hyperparameter_portfolio_zeroshot_2023 = {
793
793
  {"max_features": 1.0, "max_leaf_nodes": 40459, "min_samples_leaf": 1, "ag_args": {"name_suffix": "_r197", "priority": -78}},
794
794
  {"max_features": "sqrt", "max_leaf_nodes": 29702, "min_samples_leaf": 2, "ag_args": {"name_suffix": "_r126", "priority": -86}},
795
795
  ],
796
- "KNN": [{"weights": "uniform", "ag_args": {"name_suffix": "Unif"}}, {"weights": "distance", "ag_args": {"name_suffix": "Dist"}}],
797
796
  }
@@ -0,0 +1,309 @@
1
+ # optimized for <=10000 samples and <=500 features, with a GPU present
2
+ hyperparameter_portfolio_zeroshot_2025_small = {
3
+ "TABPFNV2": [
4
+ {
5
+ "ag_args": {'name_suffix': '_r143', 'priority': -1},
6
+ "average_before_softmax": False,
7
+ "classification_model_path": 'tabpfn-v2-classifier-od3j1g5m.ckpt',
8
+ "inference_config/FINGERPRINT_FEATURE": False,
9
+ "inference_config/OUTLIER_REMOVAL_STD": None,
10
+ "inference_config/POLYNOMIAL_FEATURES": 'no',
11
+ "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'safepower', 'subsample_features': -1}, {'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': -1}],
12
+ "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None, 'power'],
13
+ "inference_config/SUBSAMPLE_SAMPLES": 0.99,
14
+ "model_type": 'single',
15
+ "n_ensemble_repeats": 4,
16
+ "regression_model_path": 'tabpfn-v2-regressor-wyl4o83o.ckpt',
17
+ "softmax_temperature": 0.75,
18
+ },
19
+ {
20
+ "ag_args": {'name_suffix': '_r94', 'priority': -3},
21
+ "average_before_softmax": True,
22
+ "classification_model_path": 'tabpfn-v2-classifier-vutqq28w.ckpt',
23
+ "inference_config/FINGERPRINT_FEATURE": True,
24
+ "inference_config/OUTLIER_REMOVAL_STD": None,
25
+ "inference_config/POLYNOMIAL_FEATURES": 'no',
26
+ "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'ordinal_very_common_categories_shuffled', 'global_transformer_name': None, 'name': 'quantile_uni', 'subsample_features': 0.99}],
27
+ "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": [None],
28
+ "inference_config/SUBSAMPLE_SAMPLES": None,
29
+ "model_type": 'single',
30
+ "n_ensemble_repeats": 4,
31
+ "regression_model_path": 'tabpfn-v2-regressor-5wof9ojf.ckpt',
32
+ "softmax_temperature": 0.9,
33
+ },
34
+ {
35
+ "ag_args": {'name_suffix': '_r181', 'priority': -4},
36
+ "average_before_softmax": False,
37
+ "classification_model_path": 'tabpfn-v2-classifier-llderlii.ckpt',
38
+ "inference_config/FINGERPRINT_FEATURE": False,
39
+ "inference_config/OUTLIER_REMOVAL_STD": 9.0,
40
+ "inference_config/POLYNOMIAL_FEATURES": 50,
41
+ "inference_config/PREPROCESS_TRANSFORMS": [{'append_original': True, 'categorical_name': 'onehot', 'global_transformer_name': 'svd', 'name': 'quantile_uni_coarse', 'subsample_features': 0.99}],
42
+ "inference_config/REGRESSION_Y_PREPROCESS_TRANSFORMS": ['power'],
43
+ "inference_config/SUBSAMPLE_SAMPLES": None,
44
+ "model_type": 'single',
45
+ "n_ensemble_repeats": 4,
46
+ "regression_model_path": 'tabpfn-v2-regressor.ckpt',
47
+ "softmax_temperature": 0.95,
48
+ },
49
+ ],
50
+ "GBM": [
51
+ {
52
+ "ag_args": {'name_suffix': '_r33', 'priority': -2},
53
+ "bagging_fraction": 0.9625293420216,
54
+ "bagging_freq": 1,
55
+ "cat_l2": 0.1236875455555,
56
+ "cat_smooth": 68.8584757332856,
57
+ "extra_trees": False,
58
+ "feature_fraction": 0.6189215809382,
59
+ "lambda_l1": 0.1641757352921,
60
+ "lambda_l2": 0.6937755557881,
61
+ "learning_rate": 0.0154031028561,
62
+ "max_cat_to_onehot": 17,
63
+ "min_data_in_leaf": 1,
64
+ "min_data_per_group": 30,
65
+ "num_leaves": 68,
66
+ },
67
+ {
68
+ "ag_args": {'name_suffix': '_r21', 'priority': -16},
69
+ "bagging_fraction": 0.7218730663234,
70
+ "bagging_freq": 1,
71
+ "cat_l2": 0.0296205152578,
72
+ "cat_smooth": 0.0010255271303,
73
+ "extra_trees": False,
74
+ "feature_fraction": 0.4557131604374,
75
+ "lambda_l1": 0.5219704038237,
76
+ "lambda_l2": 0.1070959487853,
77
+ "learning_rate": 0.0055891584996,
78
+ "max_cat_to_onehot": 71,
79
+ "min_data_in_leaf": 50,
80
+ "min_data_per_group": 10,
81
+ "num_leaves": 30,
82
+ },
83
+ {
84
+ "ag_args": {'name_suffix': '_r11', 'priority': -19},
85
+ "bagging_fraction": 0.775784726514,
86
+ "bagging_freq": 1,
87
+ "cat_l2": 0.3888471449178,
88
+ "cat_smooth": 0.0057144748021,
89
+ "extra_trees": True,
90
+ "feature_fraction": 0.7732354787904,
91
+ "lambda_l1": 0.2211002452568,
92
+ "lambda_l2": 1.1318405980187,
93
+ "learning_rate": 0.0090151778542,
94
+ "max_cat_to_onehot": 15,
95
+ "min_data_in_leaf": 4,
96
+ "min_data_per_group": 15,
97
+ "num_leaves": 2,
98
+ },
99
+ ],
100
+ "CAT": [
101
+ {
102
+ "ag_args": {'priority': -5},
103
+ },
104
+ {
105
+ "ag_args": {'name_suffix': '_r51', 'priority': -10},
106
+ "boosting_type": 'Plain',
107
+ "bootstrap_type": 'Bernoulli',
108
+ "colsample_bylevel": 0.8771035272558,
109
+ "depth": 7,
110
+ "grow_policy": 'SymmetricTree',
111
+ "l2_leaf_reg": 2.0107286863021,
112
+ "leaf_estimation_iterations": 2,
113
+ "learning_rate": 0.0058424016622,
114
+ "max_bin": 254,
115
+ "max_ctr_complexity": 4,
116
+ "model_size_reg": 0.1307400355809,
117
+ "one_hot_max_size": 23,
118
+ "subsample": 0.809527841437,
119
+ },
120
+ {
121
+ "ag_args": {'name_suffix': '_r10', 'priority': -12},
122
+ "boosting_type": 'Plain',
123
+ "bootstrap_type": 'Bernoulli',
124
+ "colsample_bylevel": 0.8994502668431,
125
+ "depth": 6,
126
+ "grow_policy": 'Depthwise',
127
+ "l2_leaf_reg": 1.8187025215896,
128
+ "leaf_estimation_iterations": 7,
129
+ "learning_rate": 0.005177304142,
130
+ "max_bin": 254,
131
+ "max_ctr_complexity": 4,
132
+ "model_size_reg": 0.5247386875068,
133
+ "one_hot_max_size": 53,
134
+ "subsample": 0.8705228845742,
135
+ },
136
+ {
137
+ "ag_args": {'name_suffix': '_r24', 'priority': -15},
138
+ "boosting_type": 'Plain',
139
+ "bootstrap_type": 'Bernoulli',
140
+ "colsample_bylevel": 0.8597809376276,
141
+ "depth": 8,
142
+ "grow_policy": 'Depthwise',
143
+ "l2_leaf_reg": 0.3628261923976,
144
+ "leaf_estimation_iterations": 5,
145
+ "learning_rate": 0.016851077771,
146
+ "max_bin": 254,
147
+ "max_ctr_complexity": 4,
148
+ "model_size_reg": 0.1253820547902,
149
+ "one_hot_max_size": 20,
150
+ "subsample": 0.8120271122061,
151
+ },
152
+ {
153
+ "ag_args": {'name_suffix': '_r91', 'priority': -17},
154
+ "boosting_type": 'Plain',
155
+ "bootstrap_type": 'Bernoulli',
156
+ "colsample_bylevel": 0.8959275863514,
157
+ "depth": 4,
158
+ "grow_policy": 'SymmetricTree',
159
+ "l2_leaf_reg": 0.0026915894253,
160
+ "leaf_estimation_iterations": 12,
161
+ "learning_rate": 0.0475233791203,
162
+ "max_bin": 254,
163
+ "max_ctr_complexity": 5,
164
+ "model_size_reg": 0.1633175256924,
165
+ "one_hot_max_size": 11,
166
+ "subsample": 0.798554178926,
167
+ },
168
+ ],
169
+ "TABM": [
170
+ {
171
+ "ag_args": {'name_suffix': '_r184', 'priority': -6},
172
+ "amp": False,
173
+ "arch_type": 'tabm-mini',
174
+ "batch_size": 'auto',
175
+ "d_block": 864,
176
+ "d_embedding": 24,
177
+ "dropout": 0.0,
178
+ "gradient_clipping_norm": 1.0,
179
+ "lr": 0.0019256819924656217,
180
+ "n_blocks": 3,
181
+ "num_emb_n_bins": 3,
182
+ "num_emb_type": 'pwl',
183
+ "patience": 16,
184
+ "share_training_batches": False,
185
+ "tabm_k": 32,
186
+ "weight_decay": 0.0,
187
+ },
188
+ {
189
+ "ag_args": {'name_suffix': '_r69', 'priority': -7},
190
+ "amp": False,
191
+ "arch_type": 'tabm-mini',
192
+ "batch_size": 'auto',
193
+ "d_block": 848,
194
+ "d_embedding": 28,
195
+ "dropout": 0.40215621636031007,
196
+ "gradient_clipping_norm": 1.0,
197
+ "lr": 0.0010413640454559532,
198
+ "n_blocks": 3,
199
+ "num_emb_n_bins": 18,
200
+ "num_emb_type": 'pwl',
201
+ "patience": 16,
202
+ "share_training_batches": False,
203
+ "tabm_k": 32,
204
+ "weight_decay": 0.0,
205
+ },
206
+ {
207
+ "ag_args": {'name_suffix': '_r52', 'priority': -11},
208
+ "amp": False,
209
+ "arch_type": 'tabm-mini',
210
+ "batch_size": 'auto',
211
+ "d_block": 1024,
212
+ "d_embedding": 32,
213
+ "dropout": 0.0,
214
+ "gradient_clipping_norm": 1.0,
215
+ "lr": 0.0006297851297842611,
216
+ "n_blocks": 4,
217
+ "num_emb_n_bins": 22,
218
+ "num_emb_type": 'pwl',
219
+ "patience": 16,
220
+ "share_training_batches": False,
221
+ "tabm_k": 32,
222
+ "weight_decay": 0.06900108498839816,
223
+ },
224
+ {
225
+ "ag_args": {'priority': -13},
226
+ },
227
+ {
228
+ "ag_args": {'name_suffix': '_r191', 'priority': -14},
229
+ "amp": False,
230
+ "arch_type": 'tabm-mini',
231
+ "batch_size": 'auto',
232
+ "d_block": 864,
233
+ "d_embedding": 8,
234
+ "dropout": 0.45321529282058803,
235
+ "gradient_clipping_norm": 1.0,
236
+ "lr": 0.0003781238075322413,
237
+ "n_blocks": 4,
238
+ "num_emb_n_bins": 27,
239
+ "num_emb_type": 'pwl',
240
+ "patience": 16,
241
+ "share_training_batches": False,
242
+ "tabm_k": 32,
243
+ "weight_decay": 0.01766851962579851,
244
+ },
245
+ {
246
+ "ag_args": {'name_suffix': '_r49', 'priority': -20},
247
+ "amp": False,
248
+ "arch_type": 'tabm-mini',
249
+ "batch_size": 'auto',
250
+ "d_block": 640,
251
+ "d_embedding": 28,
252
+ "dropout": 0.15296207419190627,
253
+ "gradient_clipping_norm": 1.0,
254
+ "lr": 0.002277678490593717,
255
+ "n_blocks": 3,
256
+ "num_emb_n_bins": 48,
257
+ "num_emb_type": 'pwl',
258
+ "patience": 16,
259
+ "share_training_batches": False,
260
+ "tabm_k": 32,
261
+ "weight_decay": 0.0578159148243893,
262
+ },
263
+ ],
264
+ "TABICL": [
265
+ {
266
+ "ag_args": {'priority': -8},
267
+ },
268
+ ],
269
+ "XGB": [
270
+ {
271
+ "ag_args": {'name_suffix': '_r171', 'priority': -9},
272
+ "colsample_bylevel": 0.9213705632288,
273
+ "colsample_bynode": 0.6443385965381,
274
+ "enable_categorical": True,
275
+ "grow_policy": 'lossguide',
276
+ "learning_rate": 0.0068171645251,
277
+ "max_cat_to_onehot": 8,
278
+ "max_depth": 6,
279
+ "max_leaves": 10,
280
+ "min_child_weight": 0.0507304250576,
281
+ "reg_alpha": 4.2446346389037,
282
+ "reg_lambda": 1.4800570021253,
283
+ "subsample": 0.9656290596647,
284
+ },
285
+ {
286
+ "ag_args": {'name_suffix': '_r40', 'priority': -18},
287
+ "colsample_bylevel": 0.6377491713202,
288
+ "colsample_bynode": 0.9237625621103,
289
+ "enable_categorical": True,
290
+ "grow_policy": 'lossguide',
291
+ "learning_rate": 0.0112462621131,
292
+ "max_cat_to_onehot": 33,
293
+ "max_depth": 10,
294
+ "max_leaves": 35,
295
+ "min_child_weight": 0.1403464856034,
296
+ "reg_alpha": 3.4960653958503,
297
+ "reg_lambda": 1.3062320805235,
298
+ "subsample": 0.6948898835178,
299
+ },
300
+ ],
301
+ "MITRA": [
302
+ {
303
+ "n_estimators": 1,
304
+ "fine_tune": True,
305
+ "fine_tune_steps": 50,
306
+ "ag_args": {'priority': -21},
307
+ },
308
+ ],
309
+ }