autogluon.tabular 1.3.2b20250716__py3-none-any.whl → 1.3.2b20250718__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (23) hide show
  1. autogluon/tabular/models/mitra/_internal/config/config_run.py +1 -1
  2. autogluon/tabular/models/mitra/_internal/config/enums.py +1 -1
  3. autogluon/tabular/models/mitra/_internal/core/get_loss.py +1 -1
  4. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +1 -1
  5. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +1 -1
  6. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +1 -1
  7. autogluon/tabular/models/mitra/_internal/models/tab2d.py +1 -1
  8. autogluon/tabular/models/mitra/mitra_model.py +25 -9
  9. autogluon/tabular/models/mitra/sklearn_interface.py +71 -40
  10. autogluon/tabular/models/realmlp/realmlp_model.py +3 -3
  11. autogluon/tabular/models/tabicl/tabicl_model.py +2 -3
  12. autogluon/tabular/models/tabm/tabm_model.py +2 -3
  13. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +3 -3
  14. autogluon/tabular/version.py +1 -1
  15. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/METADATA +10 -10
  16. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/RECORD +23 -23
  17. /autogluon.tabular-1.3.2b20250716-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250718-py3.9-nspkg.pth +0 -0
  18. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/LICENSE +0 -0
  19. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/NOTICE +0 -0
  20. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/WHEEL +0 -0
  21. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/namespace_packages.txt +0 -0
  22. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/top_level.txt +0 -0
  23. {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/zip-safe +0 -0
@@ -29,4 +29,4 @@ class ConfigRun(ConfigSaveLoadMixin):
29
29
  seed=seed,
30
30
  model_name=model_name,
31
31
  hyperparams=hyperparams
32
- )
32
+ )
@@ -159,4 +159,4 @@ class MetricName(StrEnum):
159
159
  class LossName(StrEnum):
160
160
  CROSS_ENTROPY = "cross_entropy"
161
161
  MSE = "mse"
162
- MAE = "mae"
162
+ MAE = "mae"
@@ -51,4 +51,4 @@ def get_loss_pretrain(cfg: ConfigPretrain):
51
51
  elif cfg.data.task == Task.CLASSIFICATION:
52
52
  return CrossEntropyLossExtraBatch(cfg.optim.label_smoothing)
53
53
  else:
54
- raise ValueError(f"Unsupported task {cfg.data.task} and (regression) loss {cfg.optim.regression_loss}")
54
+ raise ValueError(f"Unsupported task {cfg.data.task} and (regression) loss {cfg.optim.regression_loss}")
@@ -129,4 +129,4 @@ class PredictionMetricsTracker():
129
129
  y_pred = np.concatenate(self.ys_pred, axis=0)
130
130
  y_true = np.concatenate(self.ys_true, axis=0)
131
131
 
132
- return PredictionMetrics.from_prediction(y_pred, y_true, self.task)
132
+ return PredictionMetrics.from_prediction(y_pred, y_true, self.task)
@@ -358,4 +358,4 @@ class TrainerFinetune(BaseEstimator):
358
358
  f"| Train acc: {metrics_train.metrics[MetricName.ACCURACY]:.4f} "
359
359
  f"| Val CE: {metrics_valid.metrics[MetricName.LOG_LOSS]:.4f} "
360
360
  f"| Val acc: {metrics_valid.metrics[MetricName.ACCURACY]:.4f}"
361
- ))
361
+ ))
@@ -417,4 +417,4 @@ class Preprocessor():
417
417
 
418
418
  x = x[:, self.new_feature_order]
419
419
 
420
- return x
420
+ return x
@@ -661,4 +661,4 @@ class MultiheadAttention(torch.nn.Module):
661
661
 
662
662
  output = self.o(output)
663
663
 
664
- return output
664
+ return output
@@ -1,8 +1,14 @@
1
+ # TODO: To ensure deterministic operations we need to set torch.use_deterministic_algorithms(True)
2
+ # and os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'. The CUBLAS environment variable configures
3
+ # the workspace size for certain CUBLAS operations to ensure reproducibility when using CUDA >= 10.2.
4
+ # Both settings are required to ensure deterministic behavior in operations such as matrix multiplications.
5
+ import os
6
+ os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
7
+
1
8
  import os
2
9
  from typing import List, Optional
3
10
 
4
11
  import pandas as pd
5
- import torch
6
12
 
7
13
  from autogluon.common.utils.resource_utils import ResourceManager
8
14
  from autogluon.core.models import AbstractModel
@@ -41,6 +47,17 @@ class MitraModel(AbstractModel):
41
47
  num_cpus: int = 1,
42
48
  **kwargs,
43
49
  ):
50
+
51
+ # TODO: Reset the number of threads based on the specified num_cpus
52
+ need_to_reset_torch_threads = False
53
+ torch_threads_og = None
54
+ if num_cpus is not None and isinstance(num_cpus, (int, float)):
55
+ torch_threads_og = torch.get_num_threads()
56
+ if torch_threads_og != num_cpus:
57
+ # reset torch threads back to original value after fit
58
+ torch.set_num_threads(num_cpus)
59
+ need_to_reset_torch_threads = True
60
+
44
61
  model_cls = self.get_model_cls()
45
62
 
46
63
  hyp = self._get_model_params()
@@ -69,6 +86,9 @@ class MitraModel(AbstractModel):
69
86
  time_limit=time_limit,
70
87
  )
71
88
 
89
+ if need_to_reset_torch_threads:
90
+ torch.set_num_threads(torch_threads_og)
91
+
72
92
  def _set_default_params(self):
73
93
  default_params = {
74
94
  "device": "cpu",
@@ -142,13 +162,9 @@ class MitraModel(AbstractModel):
142
162
  def _get_default_resources(self) -> tuple[int, int]:
143
163
  # Use only physical cores for better performance based on benchmarks
144
164
  num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
145
-
146
- # Only request GPU if CUDA is available
147
- if torch.cuda.is_available():
148
- num_gpus = 1
149
- else:
150
- num_gpus = 0
151
-
165
+
166
+ num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
167
+
152
168
  return num_cpus, num_gpus
153
169
 
154
170
  def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
@@ -233,7 +249,7 @@ class MitraModel(AbstractModel):
233
249
  **kwargs,
234
250
  ) -> int:
235
251
  rows, features = X.shape[0], X.shape[1]
236
-
252
+
237
253
  # For very small datasets, use a more conservative estimate
238
254
  if rows * features < 100: # Small dataset threshold
239
255
  # Use a simpler linear formula for small datasets
@@ -1,5 +1,6 @@
1
1
  import time
2
2
  from pathlib import Path
3
+ import contextlib
3
4
 
4
5
  import numpy as np
5
6
  import pandas as pd
@@ -311,23 +312,25 @@ class MitraClassifier(MitraBase, ClassifierMixin):
311
312
  Returns self
312
313
  """
313
314
 
314
- if isinstance(X, pd.DataFrame):
315
- X = X.values
316
- if isinstance(y, pd.Series):
317
- y = y.values
315
+ with mitra_deterministic_context():
318
316
 
319
- self.X, self.y = X, y
317
+ if isinstance(X, pd.DataFrame):
318
+ X = X.values
319
+ if isinstance(y, pd.Series):
320
+ y = y.values
320
321
 
321
- if X_val is not None and y_val is not None:
322
- if isinstance(X_val, pd.DataFrame):
323
- X_val = X_val.values
324
- if isinstance(y_val, pd.Series):
325
- y_val = y_val.values
326
- X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
327
- else:
328
- X_train, X_valid, y_train, y_valid = self._split_data(X, y)
322
+ self.X, self.y = X, y
329
323
 
330
- return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, DEFAULT_CLASSES, n_classes=DEFAULT_CLASSES, time_limit=time_limit)
324
+ if X_val is not None and y_val is not None:
325
+ if isinstance(X_val, pd.DataFrame):
326
+ X_val = X_val.values
327
+ if isinstance(y_val, pd.Series):
328
+ y_val = y_val.values
329
+ X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
330
+ else:
331
+ X_train, X_valid, y_train, y_valid = self._split_data(X, y)
332
+
333
+ return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, DEFAULT_CLASSES, n_classes=DEFAULT_CLASSES, time_limit=time_limit)
331
334
 
332
335
  def predict(self, X):
333
336
  """
@@ -363,15 +366,19 @@ class MitraClassifier(MitraBase, ClassifierMixin):
363
366
  p : ndarray of shape (n_samples, n_classes)
364
367
  The class probabilities of the input samples
365
368
  """
366
- if isinstance(X, pd.DataFrame):
367
- X = X.values
368
369
 
369
- preds = []
370
- for trainer in self.trainers:
371
- logits = trainer.predict(self.X, self.y, X)[...,:len(np.unique(self.y))] # Remove extra classes
372
- preds.append(np.exp(logits) / np.exp(logits).sum(axis=1, keepdims=True)) # Softmax
373
- preds = sum(preds) / len(preds) # Averaging ensemble predictions
374
- return preds
370
+ with mitra_deterministic_context():
371
+
372
+ if isinstance(X, pd.DataFrame):
373
+ X = X.values
374
+
375
+ preds = []
376
+ for trainer in self.trainers:
377
+ logits = trainer.predict(self.X, self.y, X)[...,:len(np.unique(self.y))] # Remove extra classes
378
+ preds.append(np.exp(logits) / np.exp(logits).sum(axis=1, keepdims=True)) # Softmax
379
+ preds = sum(preds) / len(preds) # Averaging ensemble predictions
380
+
381
+ return preds
375
382
 
376
383
 
377
384
  class MitraRegressor(MitraBase, RegressorMixin):
@@ -433,23 +440,25 @@ class MitraRegressor(MitraBase, RegressorMixin):
433
440
  Returns self
434
441
  """
435
442
 
436
- if isinstance(X, pd.DataFrame):
437
- X = X.values
438
- if isinstance(y, pd.Series):
439
- y = y.values
443
+ with mitra_deterministic_context():
440
444
 
441
- self.X, self.y = X, y
445
+ if isinstance(X, pd.DataFrame):
446
+ X = X.values
447
+ if isinstance(y, pd.Series):
448
+ y = y.values
442
449
 
443
- if X_val is not None and y_val is not None:
444
- if isinstance(X_val, pd.DataFrame):
445
- X_val = X_val.values
446
- if isinstance(y_val, pd.Series):
447
- y_val = y_val.values
448
- X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
449
- else:
450
- X_train, X_valid, y_train, y_valid = self._split_data(X, y)
450
+ self.X, self.y = X, y
451
+
452
+ if X_val is not None and y_val is not None:
453
+ if isinstance(X_val, pd.DataFrame):
454
+ X_val = X_val.values
455
+ if isinstance(y_val, pd.Series):
456
+ y_val = y_val.values
457
+ X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
458
+ else:
459
+ X_train, X_valid, y_train, y_valid = self._split_data(X, y)
451
460
 
452
- return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, 1, time_limit=time_limit)
461
+ return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, 1, time_limit=time_limit)
453
462
 
454
463
  def predict(self, X):
455
464
  """
@@ -465,8 +474,30 @@ class MitraRegressor(MitraBase, RegressorMixin):
465
474
  y : ndarray of shape (n_samples,)
466
475
  The predicted values
467
476
  """
468
- if isinstance(X, pd.DataFrame):
469
- X = X.values
470
477
 
471
- preds = [trainer.predict(self.X, self.y, X) for trainer in self.trainers]
472
- return sum(preds) / len(preds) # Averaging ensemble predictions
478
+ with mitra_deterministic_context():
479
+
480
+ if isinstance(X, pd.DataFrame):
481
+ X = X.values
482
+
483
+ preds = []
484
+ for trainer in self.trainers:
485
+ preds.append(trainer.predict(self.X, self.y, X))
486
+
487
+ return sum(preds) / len(preds) # Averaging ensemble predictions
488
+
489
+
490
+ @contextlib.contextmanager
491
+ def mitra_deterministic_context():
492
+ """Context manager to set deterministic settings only for Mitra operations."""
493
+
494
+ original_deterministic_algorithms_set = False
495
+
496
+ try:
497
+ torch.use_deterministic_algorithms(True)
498
+ original_deterministic_algorithms_set = True
499
+ yield
500
+
501
+ finally:
502
+ if original_deterministic_algorithms_set:
503
+ torch.use_deterministic_algorithms(False)
@@ -274,9 +274,9 @@ class RealMLPModel(AbstractModel):
274
274
  def _get_default_resources(self) -> tuple[int, int]:
275
275
  # Use only physical cores for better performance based on benchmarks
276
276
  num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
277
- # Only request GPU if CUDA is available (RealMLP doesn't support MPS)
278
- import torch
279
- num_gpus = 1 if torch.cuda.is_available() else 0
277
+
278
+ num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
279
+
280
280
  return num_cpus, num_gpus
281
281
 
282
282
  def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
@@ -111,9 +111,8 @@ class TabICLModel(AbstractModel):
111
111
  def _get_default_resources(self) -> tuple[int, int]:
112
112
  # Use only physical cores for better performance based on benchmarks
113
113
  num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
114
- # Only request GPU if CUDA is available (TabICL doesn't support MPS)
115
- import torch
116
- num_gpus = 1 if torch.cuda.is_available() else 0
114
+
115
+ num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
117
116
  return num_cpus, num_gpus
118
117
 
119
118
  def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
@@ -150,9 +150,8 @@ class TabMModel(AbstractModel):
150
150
  def _get_default_resources(self) -> tuple[int, int]:
151
151
  # Use only physical cores for better performance based on benchmarks
152
152
  num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
153
- # Only request GPU if CUDA is available (TabM doesn't support other accelerators such as MPS)
154
- import torch
155
- num_gpus = 1 if torch.cuda.is_available() else 0
153
+
154
+ num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
156
155
  return num_cpus, num_gpus
157
156
 
158
157
  def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
@@ -282,9 +282,9 @@ class TabPFNV2Model(AbstractModel):
282
282
  def _get_default_resources(self) -> tuple[int, int]:
283
283
  # Use only physical cores for better performance based on benchmarks
284
284
  num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
285
- # Only request GPU if CUDA is available (TabPFNV2 doesn't support other accelerators such as MPS)
286
- import torch
287
- num_gpus = 1 if torch.cuda.is_available() else 0
285
+
286
+ num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
287
+
288
288
  return num_cpus, num_gpus
289
289
 
290
290
  def _set_default_params(self):
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250716"
3
+ __version__ = "1.3.2b20250718"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250716
3
+ Version: 1.3.2b20250718
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -41,20 +41,20 @@ Requires-Dist: scipy<1.17,>=1.5.4
41
41
  Requires-Dist: pandas<2.4.0,>=2.0.0
42
42
  Requires-Dist: scikit-learn<1.8.0,>=1.4.0
43
43
  Requires-Dist: networkx<4,>=3.0
44
- Requires-Dist: autogluon.core==1.3.2b20250716
45
- Requires-Dist: autogluon.features==1.3.2b20250716
44
+ Requires-Dist: autogluon.core==1.3.2b20250718
45
+ Requires-Dist: autogluon.features==1.3.2b20250718
46
46
  Provides-Extra: all
47
- Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
48
- Requires-Dist: autogluon.core[all]==1.3.2b20250716; extra == "all"
49
- Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
47
+ Requires-Dist: einops<0.9,>=0.7; extra == "all"
50
48
  Requires-Dist: huggingface-hub[torch]; extra == "all"
49
+ Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
50
+ Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
51
51
  Requires-Dist: torch<2.8,>=2.2; extra == "all"
52
+ Requires-Dist: autogluon.core[all]==1.3.2b20250718; extra == "all"
52
53
  Requires-Dist: spacy<3.9; extra == "all"
53
- Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
54
54
  Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
55
+ Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
55
56
  Requires-Dist: catboost<1.3,>=1.2; extra == "all"
56
- Requires-Dist: einops<0.9,>=0.7; extra == "all"
57
- Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
57
+ Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
58
58
  Provides-Extra: catboost
59
59
  Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
60
60
  Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
@@ -72,7 +72,7 @@ Requires-Dist: einx; extra == "mitra"
72
72
  Requires-Dist: omegaconf; extra == "mitra"
73
73
  Requires-Dist: transformers; extra == "mitra"
74
74
  Provides-Extra: ray
75
- Requires-Dist: autogluon.core[all]==1.3.2b20250716; extra == "ray"
75
+ Requires-Dist: autogluon.core[all]==1.3.2b20250718; extra == "ray"
76
76
  Provides-Extra: realmlp
77
77
  Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
78
78
  Provides-Extra: skex
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.2b20250716-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250718-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=bPJmn8IYFHHx5wv_RbAGbiMuX0PyNDOc2m8l8Fn-Gx8,91
3
+ autogluon/tabular/version.py,sha256=t7hPQFF0BzYTBfD-vM9hoER3q-C5x0pjSWoVO1dcT0w,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -68,33 +68,33 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
70
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/mitra/mitra_model.py,sha256=6yr6r0bZB_nsoZahSX-w6c9spxBPS2-RHnfqa7IyQyQ,9029
72
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=Pc0oTosudoOpxZyaJNOlbtFRD8Bi5QsRIN2LTha9STI,17630
71
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=XiTlzy-RbbHe1t8VCU1y976zmqrDAkO_HhkBiSlk7mM,9985
72
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=nX830-_7KYjMnwJ8m8jhCfG7BXU379Ecn5Lu3RvN8Us,18513
73
73
  autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
74
74
  autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
75
75
  autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
76
- autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=guZcX9y-ffx7a-ICn8rhedE0fzAOCgUS-l7-kmt7Uq4,678
77
- autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=VBVDSMTKlm0GJdIX1H_2PIzOgyCd36x2daTWpFtXlQA,3931
76
+ autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=CVna6KOwmF-rIxcyH3mHm63jvM1C6RdFbRLgUGEXDn0,677
77
+ autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=hlyhgXHvHZKgYK1z3DHSHxEsuCHOE7Y2AdokjOG8SWs,3930
78
78
  autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=hgy4uzJfTQFt9hVlbSrOZU9LSUbLM-uZUnG04f1CUcs,31
79
79
  autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=xYkJUXiGzLvpWcj6a_wRJUK7f_zgjd1BLA8nH6Hc884,2605
80
- autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=Bpf9V9GcQHBW3JGXCUJ-wjL5WdScfynhG6BAiit9AIE,2244
80
+ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5PbKpbX_ayq8tEvuW_nJhbudMDqkDk,2243
81
81
  autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
82
82
  autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
83
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=49ofw5xdfhPSQ0Gd7EHAtVAD3e3o7u-IVVF7UoXUbio,4395
84
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=_xQoq0Kbgl8c2vpxVNdYsU9m1ejLGIQfiAYOdHKK9T4,17528
83
+ autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
84
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=LWw60of990QFYKAmKZJytERjj5_m1sveYyRFqPcb6DE,17527
85
85
  autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
86
86
  autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
87
87
  autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
88
88
  autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
89
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=BVP1bJGK_Pdo-CzJ4fmhtsZr2zPMGw4fulxZrD0ELZE,13822
89
+ autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
90
90
  autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
91
91
  autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
92
92
  autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
93
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=vs6Fe3sTzk8LwJ2nyDmRaOVdh8oFib5dLd6C092HqjU,25691
93
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=w73QQrXZA7m2fdEPpJDVx-XVZK8xWdc_Q1F38uAZiZA,25690
94
94
  autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
95
95
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
96
96
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
97
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=jlQZ78rBHHYjSPgdIMbyOUwG5y9ADC0hDUG9oxlt7IM,14407
97
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=hS3n6spbhZ2bTXqP4t73UnzrSNiUqiaQqPakNQHrS9Y,14332
98
98
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
99
99
  autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
100
100
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
@@ -103,11 +103,11 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
103
103
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
104
104
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
105
105
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
106
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=QGn4-q6nE9j_TU4drTLV7MmsRDdMqsuqDfRzFFvNYgc,6113
106
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=bOCOW2E2bcWQRik2gmebKDEzevswQO_3WAF0JVX-Sis,6038
107
107
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
108
  autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
109
109
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
110
- autogluon/tabular/models/tabm/tabm_model.py,sha256=5x1HuQx0CJ9SqZ1ZcDor2KOzXhd2G2JPdPQpLC52Odw,10252
110
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
111
111
  autogluon/tabular/models/tabm/tabm_reference.py,sha256=sZt1LGdifDfJyauVb8wBs9h6lXZJVe0fz0v6oIjXw5A,21908
112
112
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
113
113
  autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
@@ -136,7 +136,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
136
136
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
137
137
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
138
138
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
139
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=sWuC1aaIlEj_xkUxDOruSGib-YH1eLhxdXiYznQLjbE,14399
139
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dqjDUpIKQ-SIvbeaDVTq1LfmH4iJ1qRVKpb5_ZMM6oE,14296
140
140
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
141
141
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
142
142
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -188,11 +188,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
188
188
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
189
189
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
190
190
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
191
- autogluon.tabular-1.3.2b20250716.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
192
- autogluon.tabular-1.3.2b20250716.dist-info/METADATA,sha256=df9p0ej64-F7a4ocWye3srZiu4HOBqimPfppIPqAqaA,14646
193
- autogluon.tabular-1.3.2b20250716.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
194
- autogluon.tabular-1.3.2b20250716.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
195
- autogluon.tabular-1.3.2b20250716.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
196
- autogluon.tabular-1.3.2b20250716.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
- autogluon.tabular-1.3.2b20250716.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
198
- autogluon.tabular-1.3.2b20250716.dist-info/RECORD,,
191
+ autogluon.tabular-1.3.2b20250718.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
192
+ autogluon.tabular-1.3.2b20250718.dist-info/METADATA,sha256=edzh0r-bATMf-HfQBg7-Gdox3Bq8KfuT101utiZe35s,14646
193
+ autogluon.tabular-1.3.2b20250718.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
194
+ autogluon.tabular-1.3.2b20250718.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
195
+ autogluon.tabular-1.3.2b20250718.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
196
+ autogluon.tabular-1.3.2b20250718.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.3.2b20250718.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
198
+ autogluon.tabular-1.3.2b20250718.dist-info/RECORD,,