autogluon.tabular 1.3.2b20250716__py3-none-any.whl → 1.3.2b20250718__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon/tabular/models/mitra/_internal/config/config_run.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/enums.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +1 -1
- autogluon/tabular/models/mitra/mitra_model.py +25 -9
- autogluon/tabular/models/mitra/sklearn_interface.py +71 -40
- autogluon/tabular/models/realmlp/realmlp_model.py +3 -3
- autogluon/tabular/models/tabicl/tabicl_model.py +2 -3
- autogluon/tabular/models/tabm/tabm_model.py +2 -3
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +3 -3
- autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/METADATA +10 -10
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/RECORD +23 -23
- /autogluon.tabular-1.3.2b20250716-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250718-py3.9-nspkg.pth +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/LICENSE +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/NOTICE +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/WHEEL +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/namespace_packages.txt +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/top_level.txt +0 -0
- {autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/zip-safe +0 -0
@@ -51,4 +51,4 @@ def get_loss_pretrain(cfg: ConfigPretrain):
|
|
51
51
|
elif cfg.data.task == Task.CLASSIFICATION:
|
52
52
|
return CrossEntropyLossExtraBatch(cfg.optim.label_smoothing)
|
53
53
|
else:
|
54
|
-
raise ValueError(f"Unsupported task {cfg.data.task} and (regression) loss {cfg.optim.regression_loss}")
|
54
|
+
raise ValueError(f"Unsupported task {cfg.data.task} and (regression) loss {cfg.optim.regression_loss}")
|
@@ -129,4 +129,4 @@ class PredictionMetricsTracker():
|
|
129
129
|
y_pred = np.concatenate(self.ys_pred, axis=0)
|
130
130
|
y_true = np.concatenate(self.ys_true, axis=0)
|
131
131
|
|
132
|
-
return PredictionMetrics.from_prediction(y_pred, y_true, self.task)
|
132
|
+
return PredictionMetrics.from_prediction(y_pred, y_true, self.task)
|
@@ -1,8 +1,14 @@
|
|
1
|
+
# TODO: To ensure deterministic operations we need to set torch.use_deterministic_algorithms(True)
|
2
|
+
# and os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'. The CUBLAS environment variable configures
|
3
|
+
# the workspace size for certain CUBLAS operations to ensure reproducibility when using CUDA >= 10.2.
|
4
|
+
# Both settings are required to ensure deterministic behavior in operations such as matrix multiplications.
|
5
|
+
import os
|
6
|
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
7
|
+
|
1
8
|
import os
|
2
9
|
from typing import List, Optional
|
3
10
|
|
4
11
|
import pandas as pd
|
5
|
-
import torch
|
6
12
|
|
7
13
|
from autogluon.common.utils.resource_utils import ResourceManager
|
8
14
|
from autogluon.core.models import AbstractModel
|
@@ -41,6 +47,17 @@ class MitraModel(AbstractModel):
|
|
41
47
|
num_cpus: int = 1,
|
42
48
|
**kwargs,
|
43
49
|
):
|
50
|
+
|
51
|
+
# TODO: Reset the number of threads based on the specified num_cpus
|
52
|
+
need_to_reset_torch_threads = False
|
53
|
+
torch_threads_og = None
|
54
|
+
if num_cpus is not None and isinstance(num_cpus, (int, float)):
|
55
|
+
torch_threads_og = torch.get_num_threads()
|
56
|
+
if torch_threads_og != num_cpus:
|
57
|
+
# reset torch threads back to original value after fit
|
58
|
+
torch.set_num_threads(num_cpus)
|
59
|
+
need_to_reset_torch_threads = True
|
60
|
+
|
44
61
|
model_cls = self.get_model_cls()
|
45
62
|
|
46
63
|
hyp = self._get_model_params()
|
@@ -69,6 +86,9 @@ class MitraModel(AbstractModel):
|
|
69
86
|
time_limit=time_limit,
|
70
87
|
)
|
71
88
|
|
89
|
+
if need_to_reset_torch_threads:
|
90
|
+
torch.set_num_threads(torch_threads_og)
|
91
|
+
|
72
92
|
def _set_default_params(self):
|
73
93
|
default_params = {
|
74
94
|
"device": "cpu",
|
@@ -142,13 +162,9 @@ class MitraModel(AbstractModel):
|
|
142
162
|
def _get_default_resources(self) -> tuple[int, int]:
|
143
163
|
# Use only physical cores for better performance based on benchmarks
|
144
164
|
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
num_gpus = 1
|
149
|
-
else:
|
150
|
-
num_gpus = 0
|
151
|
-
|
165
|
+
|
166
|
+
num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
|
167
|
+
|
152
168
|
return num_cpus, num_gpus
|
153
169
|
|
154
170
|
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
@@ -233,7 +249,7 @@ class MitraModel(AbstractModel):
|
|
233
249
|
**kwargs,
|
234
250
|
) -> int:
|
235
251
|
rows, features = X.shape[0], X.shape[1]
|
236
|
-
|
252
|
+
|
237
253
|
# For very small datasets, use a more conservative estimate
|
238
254
|
if rows * features < 100: # Small dataset threshold
|
239
255
|
# Use a simpler linear formula for small datasets
|
@@ -1,5 +1,6 @@
|
|
1
1
|
import time
|
2
2
|
from pathlib import Path
|
3
|
+
import contextlib
|
3
4
|
|
4
5
|
import numpy as np
|
5
6
|
import pandas as pd
|
@@ -311,23 +312,25 @@ class MitraClassifier(MitraBase, ClassifierMixin):
|
|
311
312
|
Returns self
|
312
313
|
"""
|
313
314
|
|
314
|
-
|
315
|
-
X = X.values
|
316
|
-
if isinstance(y, pd.Series):
|
317
|
-
y = y.values
|
315
|
+
with mitra_deterministic_context():
|
318
316
|
|
319
|
-
|
317
|
+
if isinstance(X, pd.DataFrame):
|
318
|
+
X = X.values
|
319
|
+
if isinstance(y, pd.Series):
|
320
|
+
y = y.values
|
320
321
|
|
321
|
-
|
322
|
-
if isinstance(X_val, pd.DataFrame):
|
323
|
-
X_val = X_val.values
|
324
|
-
if isinstance(y_val, pd.Series):
|
325
|
-
y_val = y_val.values
|
326
|
-
X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
|
327
|
-
else:
|
328
|
-
X_train, X_valid, y_train, y_valid = self._split_data(X, y)
|
322
|
+
self.X, self.y = X, y
|
329
323
|
|
330
|
-
|
324
|
+
if X_val is not None and y_val is not None:
|
325
|
+
if isinstance(X_val, pd.DataFrame):
|
326
|
+
X_val = X_val.values
|
327
|
+
if isinstance(y_val, pd.Series):
|
328
|
+
y_val = y_val.values
|
329
|
+
X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
|
330
|
+
else:
|
331
|
+
X_train, X_valid, y_train, y_valid = self._split_data(X, y)
|
332
|
+
|
333
|
+
return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, DEFAULT_CLASSES, n_classes=DEFAULT_CLASSES, time_limit=time_limit)
|
331
334
|
|
332
335
|
def predict(self, X):
|
333
336
|
"""
|
@@ -363,15 +366,19 @@ class MitraClassifier(MitraBase, ClassifierMixin):
|
|
363
366
|
p : ndarray of shape (n_samples, n_classes)
|
364
367
|
The class probabilities of the input samples
|
365
368
|
"""
|
366
|
-
if isinstance(X, pd.DataFrame):
|
367
|
-
X = X.values
|
368
369
|
|
369
|
-
|
370
|
-
|
371
|
-
|
372
|
-
|
373
|
-
|
374
|
-
|
370
|
+
with mitra_deterministic_context():
|
371
|
+
|
372
|
+
if isinstance(X, pd.DataFrame):
|
373
|
+
X = X.values
|
374
|
+
|
375
|
+
preds = []
|
376
|
+
for trainer in self.trainers:
|
377
|
+
logits = trainer.predict(self.X, self.y, X)[...,:len(np.unique(self.y))] # Remove extra classes
|
378
|
+
preds.append(np.exp(logits) / np.exp(logits).sum(axis=1, keepdims=True)) # Softmax
|
379
|
+
preds = sum(preds) / len(preds) # Averaging ensemble predictions
|
380
|
+
|
381
|
+
return preds
|
375
382
|
|
376
383
|
|
377
384
|
class MitraRegressor(MitraBase, RegressorMixin):
|
@@ -433,23 +440,25 @@ class MitraRegressor(MitraBase, RegressorMixin):
|
|
433
440
|
Returns self
|
434
441
|
"""
|
435
442
|
|
436
|
-
|
437
|
-
X = X.values
|
438
|
-
if isinstance(y, pd.Series):
|
439
|
-
y = y.values
|
443
|
+
with mitra_deterministic_context():
|
440
444
|
|
441
|
-
|
445
|
+
if isinstance(X, pd.DataFrame):
|
446
|
+
X = X.values
|
447
|
+
if isinstance(y, pd.Series):
|
448
|
+
y = y.values
|
442
449
|
|
443
|
-
|
444
|
-
|
445
|
-
|
446
|
-
|
447
|
-
|
448
|
-
|
449
|
-
|
450
|
-
|
450
|
+
self.X, self.y = X, y
|
451
|
+
|
452
|
+
if X_val is not None and y_val is not None:
|
453
|
+
if isinstance(X_val, pd.DataFrame):
|
454
|
+
X_val = X_val.values
|
455
|
+
if isinstance(y_val, pd.Series):
|
456
|
+
y_val = y_val.values
|
457
|
+
X_train, X_valid, y_train, y_valid = X, X_val, y, y_val
|
458
|
+
else:
|
459
|
+
X_train, X_valid, y_train, y_valid = self._split_data(X, y)
|
451
460
|
|
452
|
-
|
461
|
+
return self._train_ensemble(X_train, y_train, X_valid, y_valid, self.task, 1, time_limit=time_limit)
|
453
462
|
|
454
463
|
def predict(self, X):
|
455
464
|
"""
|
@@ -465,8 +474,30 @@ class MitraRegressor(MitraBase, RegressorMixin):
|
|
465
474
|
y : ndarray of shape (n_samples,)
|
466
475
|
The predicted values
|
467
476
|
"""
|
468
|
-
if isinstance(X, pd.DataFrame):
|
469
|
-
X = X.values
|
470
477
|
|
471
|
-
|
472
|
-
|
478
|
+
with mitra_deterministic_context():
|
479
|
+
|
480
|
+
if isinstance(X, pd.DataFrame):
|
481
|
+
X = X.values
|
482
|
+
|
483
|
+
preds = []
|
484
|
+
for trainer in self.trainers:
|
485
|
+
preds.append(trainer.predict(self.X, self.y, X))
|
486
|
+
|
487
|
+
return sum(preds) / len(preds) # Averaging ensemble predictions
|
488
|
+
|
489
|
+
|
490
|
+
@contextlib.contextmanager
|
491
|
+
def mitra_deterministic_context():
|
492
|
+
"""Context manager to set deterministic settings only for Mitra operations."""
|
493
|
+
|
494
|
+
original_deterministic_algorithms_set = False
|
495
|
+
|
496
|
+
try:
|
497
|
+
torch.use_deterministic_algorithms(True)
|
498
|
+
original_deterministic_algorithms_set = True
|
499
|
+
yield
|
500
|
+
|
501
|
+
finally:
|
502
|
+
if original_deterministic_algorithms_set:
|
503
|
+
torch.use_deterministic_algorithms(False)
|
@@ -274,9 +274,9 @@ class RealMLPModel(AbstractModel):
|
|
274
274
|
def _get_default_resources(self) -> tuple[int, int]:
|
275
275
|
# Use only physical cores for better performance based on benchmarks
|
276
276
|
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
277
|
-
|
278
|
-
|
279
|
-
|
277
|
+
|
278
|
+
num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
|
279
|
+
|
280
280
|
return num_cpus, num_gpus
|
281
281
|
|
282
282
|
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
@@ -111,9 +111,8 @@ class TabICLModel(AbstractModel):
|
|
111
111
|
def _get_default_resources(self) -> tuple[int, int]:
|
112
112
|
# Use only physical cores for better performance based on benchmarks
|
113
113
|
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
114
|
-
|
115
|
-
|
116
|
-
num_gpus = 1 if torch.cuda.is_available() else 0
|
114
|
+
|
115
|
+
num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
|
117
116
|
return num_cpus, num_gpus
|
118
117
|
|
119
118
|
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
@@ -150,9 +150,8 @@ class TabMModel(AbstractModel):
|
|
150
150
|
def _get_default_resources(self) -> tuple[int, int]:
|
151
151
|
# Use only physical cores for better performance based on benchmarks
|
152
152
|
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
153
|
-
|
154
|
-
|
155
|
-
num_gpus = 1 if torch.cuda.is_available() else 0
|
153
|
+
|
154
|
+
num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
|
156
155
|
return num_cpus, num_gpus
|
157
156
|
|
158
157
|
def _estimate_memory_usage(self, X: pd.DataFrame, **kwargs) -> int:
|
@@ -282,9 +282,9 @@ class TabPFNV2Model(AbstractModel):
|
|
282
282
|
def _get_default_resources(self) -> tuple[int, int]:
|
283
283
|
# Use only physical cores for better performance based on benchmarks
|
284
284
|
num_cpus = ResourceManager.get_cpu_count(only_physical_cores=True)
|
285
|
-
|
286
|
-
|
287
|
-
|
285
|
+
|
286
|
+
num_gpus = min(1, ResourceManager.get_gpu_count_torch(cuda_only=True))
|
287
|
+
|
288
288
|
return num_cpus, num_gpus
|
289
289
|
|
290
290
|
def _set_default_params(self):
|
autogluon/tabular/version.py
CHANGED
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/METADATA
RENAMED
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: autogluon.tabular
|
3
|
-
Version: 1.3.
|
3
|
+
Version: 1.3.2b20250718
|
4
4
|
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
5
|
Home-page: https://github.com/autogluon/autogluon
|
6
6
|
Author: AutoGluon Community
|
@@ -41,20 +41,20 @@ Requires-Dist: scipy<1.17,>=1.5.4
|
|
41
41
|
Requires-Dist: pandas<2.4.0,>=2.0.0
|
42
42
|
Requires-Dist: scikit-learn<1.8.0,>=1.4.0
|
43
43
|
Requires-Dist: networkx<4,>=3.0
|
44
|
-
Requires-Dist: autogluon.core==1.3.
|
45
|
-
Requires-Dist: autogluon.features==1.3.
|
44
|
+
Requires-Dist: autogluon.core==1.3.2b20250718
|
45
|
+
Requires-Dist: autogluon.features==1.3.2b20250718
|
46
46
|
Provides-Extra: all
|
47
|
-
Requires-Dist:
|
48
|
-
Requires-Dist: autogluon.core[all]==1.3.2b20250716; extra == "all"
|
49
|
-
Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
|
47
|
+
Requires-Dist: einops<0.9,>=0.7; extra == "all"
|
50
48
|
Requires-Dist: huggingface-hub[torch]; extra == "all"
|
49
|
+
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
50
|
+
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
51
51
|
Requires-Dist: torch<2.8,>=2.2; extra == "all"
|
52
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250718; extra == "all"
|
52
53
|
Requires-Dist: spacy<3.9; extra == "all"
|
53
|
-
Requires-Dist: numpy<2.3.0,>=1.25; extra == "all"
|
54
54
|
Requires-Dist: xgboost<3.1,>=2.0; extra == "all"
|
55
|
+
Requires-Dist: pytabkit<1.6,>=1.5; extra == "all"
|
55
56
|
Requires-Dist: catboost<1.3,>=1.2; extra == "all"
|
56
|
-
Requires-Dist:
|
57
|
-
Requires-Dist: fastai<2.9,>=2.3.1; extra == "all"
|
57
|
+
Requires-Dist: lightgbm<4.7,>=4.0; extra == "all"
|
58
58
|
Provides-Extra: catboost
|
59
59
|
Requires-Dist: numpy<2.3.0,>=1.25; extra == "catboost"
|
60
60
|
Requires-Dist: catboost<1.3,>=1.2; extra == "catboost"
|
@@ -72,7 +72,7 @@ Requires-Dist: einx; extra == "mitra"
|
|
72
72
|
Requires-Dist: omegaconf; extra == "mitra"
|
73
73
|
Requires-Dist: transformers; extra == "mitra"
|
74
74
|
Provides-Extra: ray
|
75
|
-
Requires-Dist: autogluon.core[all]==1.3.
|
75
|
+
Requires-Dist: autogluon.core[all]==1.3.2b20250718; extra == "ray"
|
76
76
|
Provides-Extra: realmlp
|
77
77
|
Requires-Dist: pytabkit<1.6,>=1.5; extra == "realmlp"
|
78
78
|
Provides-Extra: skex
|
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/RECORD
RENAMED
@@ -1,6 +1,6 @@
|
|
1
|
-
autogluon.tabular-1.3.
|
1
|
+
autogluon.tabular-1.3.2b20250718-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
|
2
2
|
autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
|
3
|
-
autogluon/tabular/version.py,sha256=
|
3
|
+
autogluon/tabular/version.py,sha256=t7hPQFF0BzYTBfD-vM9hoER3q-C5x0pjSWoVO1dcT0w,91
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
5
5
|
autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
|
6
6
|
autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
|
@@ -68,33 +68,33 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
|
|
68
68
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
69
69
|
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
|
70
70
|
autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
71
|
-
autogluon/tabular/models/mitra/mitra_model.py,sha256=
|
72
|
-
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=
|
71
|
+
autogluon/tabular/models/mitra/mitra_model.py,sha256=XiTlzy-RbbHe1t8VCU1y976zmqrDAkO_HhkBiSlk7mM,9985
|
72
|
+
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=nX830-_7KYjMnwJ8m8jhCfG7BXU379Ecn5Lu3RvN8Us,18513
|
73
73
|
autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
|
74
74
|
autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
|
75
75
|
autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
|
76
|
-
autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=
|
77
|
-
autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=
|
76
|
+
autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=CVna6KOwmF-rIxcyH3mHm63jvM1C6RdFbRLgUGEXDn0,677
|
77
|
+
autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=hlyhgXHvHZKgYK1z3DHSHxEsuCHOE7Y2AdokjOG8SWs,3930
|
78
78
|
autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=hgy4uzJfTQFt9hVlbSrOZU9LSUbLM-uZUnG04f1CUcs,31
|
79
79
|
autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=xYkJUXiGzLvpWcj6a_wRJUK7f_zgjd1BLA8nH6Hc884,2605
|
80
|
-
autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=
|
80
|
+
autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5PbKpbX_ayq8tEvuW_nJhbudMDqkDk,2243
|
81
81
|
autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
|
82
82
|
autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
|
83
|
-
autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=
|
84
|
-
autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=
|
83
|
+
autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
|
84
|
+
autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=LWw60of990QFYKAmKZJytERjj5_m1sveYyRFqPcb6DE,17527
|
85
85
|
autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
|
86
86
|
autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
|
87
87
|
autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
|
88
88
|
autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
|
89
|
-
autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=
|
89
|
+
autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
|
90
90
|
autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
|
91
91
|
autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
|
92
92
|
autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
|
93
|
-
autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=
|
93
|
+
autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=w73QQrXZA7m2fdEPpJDVx-XVZK8xWdc_Q1F38uAZiZA,25690
|
94
94
|
autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
|
95
95
|
autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
|
96
96
|
autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
97
|
-
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=
|
97
|
+
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=hS3n6spbhZ2bTXqP4t73UnzrSNiUqiaQqPakNQHrS9Y,14332
|
98
98
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
99
99
|
autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
|
100
100
|
autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
|
@@ -103,11 +103,11 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
|
|
103
103
|
autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
|
104
104
|
autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
|
105
105
|
autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
106
|
-
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=
|
106
|
+
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=bOCOW2E2bcWQRik2gmebKDEzevswQO_3WAF0JVX-Sis,6038
|
107
107
|
autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
108
108
|
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
|
109
109
|
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
|
110
|
-
autogluon/tabular/models/tabm/tabm_model.py,sha256=
|
110
|
+
autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
|
111
111
|
autogluon/tabular/models/tabm/tabm_reference.py,sha256=sZt1LGdifDfJyauVb8wBs9h6lXZJVe0fz0v6oIjXw5A,21908
|
112
112
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
113
113
|
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
|
@@ -136,7 +136,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
|
|
136
136
|
autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
137
137
|
autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
|
138
138
|
autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
139
|
-
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=
|
139
|
+
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dqjDUpIKQ-SIvbeaDVTq1LfmH4iJ1qRVKpb5_ZMM6oE,14296
|
140
140
|
autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
|
141
141
|
autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
|
142
142
|
autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
|
@@ -188,11 +188,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
|
|
188
188
|
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
|
189
189
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
190
190
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
191
|
-
autogluon.tabular-1.3.
|
192
|
-
autogluon.tabular-1.3.
|
193
|
-
autogluon.tabular-1.3.
|
194
|
-
autogluon.tabular-1.3.
|
195
|
-
autogluon.tabular-1.3.
|
196
|
-
autogluon.tabular-1.3.
|
197
|
-
autogluon.tabular-1.3.
|
198
|
-
autogluon.tabular-1.3.
|
191
|
+
autogluon.tabular-1.3.2b20250718.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
192
|
+
autogluon.tabular-1.3.2b20250718.dist-info/METADATA,sha256=edzh0r-bATMf-HfQBg7-Gdox3Bq8KfuT101utiZe35s,14646
|
193
|
+
autogluon.tabular-1.3.2b20250718.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
194
|
+
autogluon.tabular-1.3.2b20250718.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
195
|
+
autogluon.tabular-1.3.2b20250718.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
196
|
+
autogluon.tabular-1.3.2b20250718.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
197
|
+
autogluon.tabular-1.3.2b20250718.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
198
|
+
autogluon.tabular-1.3.2b20250718.dist-info/RECORD,,
|
File without changes
|
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/LICENSE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/NOTICE
RENAMED
File without changes
|
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/WHEEL
RENAMED
File without changes
|
File without changes
|
File without changes
|
{autogluon.tabular-1.3.2b20250716.dist-info → autogluon.tabular-1.3.2b20250718.dist-info}/zip-safe
RENAMED
File without changes
|