autogluon.tabular 1.3.2b20250715__py3-none-any.whl → 1.3.2b20250717__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. autogluon/tabular/models/mitra/_internal/__init__.py +1 -0
  2. autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -0
  3. autogluon/tabular/models/mitra/_internal/config/config_run.py +3 -3
  4. autogluon/tabular/models/mitra/_internal/config/enums.py +19 -2
  5. autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -0
  6. autogluon/tabular/models/mitra/_internal/core/get_loss.py +22 -23
  7. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +10 -12
  8. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +68 -74
  9. autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -0
  10. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +56 -56
  11. autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -0
  12. autogluon/tabular/models/mitra/_internal/models/tab2d.py +22 -25
  13. autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -0
  14. autogluon/tabular/models/mitra/mitra_model.py +80 -24
  15. autogluon/tabular/models/mitra/sklearn_interface.py +121 -80
  16. autogluon/tabular/models/realmlp/realmlp_model.py +11 -3
  17. autogluon/tabular/models/tabicl/tabicl_model.py +3 -1
  18. autogluon/tabular/models/tabm/_tabm_internal.py +4 -3
  19. autogluon/tabular/models/tabm/tabm_model.py +6 -3
  20. autogluon/tabular/models/tabm/tabm_reference.py +21 -19
  21. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +10 -9
  22. autogluon/tabular/version.py +1 -1
  23. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/METADATA +10 -10
  24. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/RECORD +31 -25
  25. /autogluon.tabular-1.3.2b20250715-py3.9-nspkg.pth → /autogluon.tabular-1.3.2b20250717-py3.9-nspkg.pth +0 -0
  26. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/LICENSE +0 -0
  27. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/NOTICE +0 -0
  28. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/WHEEL +0 -0
  29. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/namespace_packages.txt +0 -0
  30. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/top_level.txt +0 -0
  31. {autogluon.tabular-1.3.2b20250715.dist-info → autogluon.tabular-1.3.2b20250717.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
- autogluon.tabular-1.3.2b20250715-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
1
+ autogluon.tabular-1.3.2b20250717-py3.9-nspkg.pth,sha256=cQGwpuGPqg1GXscIwt-7PmME1OnSpD-7ixkikJ31WAY,554
2
2
  autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=__YNhWg03UP-7oVi2ZS_VYHrVX7DWpIkJf61hjFPiDw,91
3
+ autogluon/tabular/version.py,sha256=Nc-FahkprXcxoGwpVnJyYj_mjbPuiujQuKExySuEHO4,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
5
  autogluon/tabular/configs/config_helper.py,sha256=JsdVGmpcYL88GPKBznPtqJ1sGaByOSvLn7KWU-HyVoQ,21085
6
6
  autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
@@ -68,27 +68,33 @@ autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TIm
68
68
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
69
69
  autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
70
70
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
71
- autogluon/tabular/models/mitra/mitra_model.py,sha256=3y9WiTHWPo8ORx7Q8w_g1-oKePxpGqG7vDWhd5OCKNA,7409
72
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=0Gqhr9GZlkOBXRPywHfZu8LvfVn2482T9ZqA1_zW1A4,17430
71
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=XiTlzy-RbbHe1t8VCU1y976zmqrDAkO_HhkBiSlk7mM,9985
72
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=nX830-_7KYjMnwJ8m8jhCfG7BXU379Ecn5Lu3RvN8Us,18513
73
+ autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
74
+ autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
73
75
  autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
74
- autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=DWDgVSy0hnXaHBzkqxB_azFC9VWxn4F4v8rD2S8f4C0,689
75
- autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=qUOHLdpoM32DWvnaog8P5sdHetY3d7ypS2NSwNWTRUY,3424
76
+ autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=CVna6KOwmF-rIxcyH3mHm63jvM1C6RdFbRLgUGEXDn0,677
77
+ autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=hlyhgXHvHZKgYK1z3DHSHxEsuCHOE7Y2AdokjOG8SWs,3930
78
+ autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=hgy4uzJfTQFt9hVlbSrOZU9LSUbLM-uZUnG04f1CUcs,31
76
79
  autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=xYkJUXiGzLvpWcj6a_wRJUK7f_zgjd1BLA8nH6Hc884,2605
77
- autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=d0ElwQ9iUNFXJiXlZZNfB5_qKCaV2bVBYCW7q2mDBwI,2139
80
+ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5PbKpbX_ayq8tEvuW_nJhbudMDqkDk,2243
78
81
  autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
79
82
  autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
80
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=egun6tOenMYlpvjmu9RRqZeojCy3WVYgaAXiHmtT6R4,4429
81
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=jz6VgKCCbfsdnfbgEwxZjO_DvLH_0Nu5s6daFmCPl34,17937
83
+ autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
84
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=LWw60of990QFYKAmKZJytERjj5_m1sveYyRFqPcb6DE,17527
85
+ autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
82
86
  autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
83
87
  autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=M2QbXjnb5b4CK5qBthWa7bGvsi8Ox8cz_D0u7tBD4Mo,4232
84
88
  autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=xpG62WFjg9NTqukKSJx3byq-SFqhxgpIG4jwIl1YuEc,1929
85
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=99k2eBiTqQD0YwGAs8MM42rCAuSgd_zRoMSl5WCPIQs,14000
89
+ autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
90
+ autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
86
91
  autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
87
92
  autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
88
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=NatE-htx3fSz4yBGq876i0Jc2AcI_QuoB4yY49H6heM,25799
93
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=w73QQrXZA7m2fdEPpJDVx-XVZK8xWdc_Q1F38uAZiZA,25690
94
+ autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
89
95
  autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
90
96
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
91
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=9GD9iL0R9Z0zfW-26Ay7Agh172AdhiZqQlUr96BlbaU,14215
97
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=hS3n6spbhZ2bTXqP4t73UnzrSNiUqiaQqPakNQHrS9Y,14332
92
98
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
93
99
  autogluon/tabular/models/rf/rf_model.py,sha256=VM4An5U_4whIj-sNvK8m4ImvcqVWqFLUOVwWkxp8o8E,21641
94
100
  autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
@@ -97,12 +103,12 @@ autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
97
103
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
98
104
  autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
99
105
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
100
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=fby1lsElh0EdVtYBSpEDiUBM57BF20JuROc0Cy0AIBk,5946
106
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=bOCOW2E2bcWQRik2gmebKDEzevswQO_3WAF0JVX-Sis,6038
101
107
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
102
- autogluon/tabular/models/tabm/_tabm_internal.py,sha256=LbIohrZYnXiKbD1ZnXWDJQMBLdQTaL90Fag6fkrF3GI,21093
108
+ autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
103
109
  autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=omDKJT0MjniUPUnk8tSU-brE8dXIjw27BHFbYc2bswQ,30119
104
- autogluon/tabular/models/tabm/tabm_model.py,sha256=43I8429yTq5U2IDp6ATZB27lyewAW20VzdbPxS-01sA,10115
105
- autogluon/tabular/models/tabm/tabm_reference.py,sha256=h9FXzyeu6b4vXg9nnM3L2I8dYbcE39USr9C4uMnt4Ek,21788
110
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=IQ4RHM1wnf9GHuEa1zDO_yWUPfmh5xUMEVtQ4EFeQRI,10152
111
+ autogluon/tabular/models/tabm/tabm_reference.py,sha256=sZt1LGdifDfJyauVb8wBs9h6lXZJVe0fz0v6oIjXw5A,21908
106
112
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
107
113
  autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=7cLjAfstq6Xb-l2DxBdwtSAIanSJN2sMfKPtijDQwXo,16193
108
114
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -130,7 +136,7 @@ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transf
130
136
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
131
137
  autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
132
138
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=DC4t-woswX3mWYRWF6zMfpjEtPZXJ9qgr-mKxWVFs3w,14254
139
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dqjDUpIKQ-SIvbeaDVTq1LfmH4iJ1qRVKpb5_ZMM6oE,14296
134
140
  autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
135
141
  autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
136
142
  autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
@@ -182,11 +188,11 @@ autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju
182
188
  autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
183
189
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
184
190
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
185
- autogluon.tabular-1.3.2b20250715.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
186
- autogluon.tabular-1.3.2b20250715.dist-info/METADATA,sha256=9onrK6_jd80PRQnYWcr0yTXAdGMFXnBAZhsZ8ayXgOc,14646
187
- autogluon.tabular-1.3.2b20250715.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
188
- autogluon.tabular-1.3.2b20250715.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
189
- autogluon.tabular-1.3.2b20250715.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
190
- autogluon.tabular-1.3.2b20250715.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
191
- autogluon.tabular-1.3.2b20250715.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
192
- autogluon.tabular-1.3.2b20250715.dist-info/RECORD,,
191
+ autogluon.tabular-1.3.2b20250717.dist-info/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
192
+ autogluon.tabular-1.3.2b20250717.dist-info/METADATA,sha256=jkIxnMr5u_D6HSNeoR15YbP6rsLOGo-65-Ie00Yp8zg,14646
193
+ autogluon.tabular-1.3.2b20250717.dist-info/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
194
+ autogluon.tabular-1.3.2b20250717.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
195
+ autogluon.tabular-1.3.2b20250717.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
196
+ autogluon.tabular-1.3.2b20250717.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
197
+ autogluon.tabular-1.3.2b20250717.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
198
+ autogluon.tabular-1.3.2b20250717.dist-info/RECORD,,