autogluon.tabular 1.3.2b20250615__tar.gz → 1.3.2b20250616__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (158) hide show
  1. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/PKG-INFO +1 -1
  2. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/_utils/rapids_utils.py +1 -1
  3. autogluon.tabular-1.3.2b20250616/src/autogluon/tabular/models/lr/lr_rapids_model.py +100 -0
  4. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/version.py +1 -1
  5. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
  6. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/requires.txt +8 -8
  7. autogluon.tabular-1.3.2b20250615/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -60
  8. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/setup.cfg +0 -0
  9. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/setup.py +0 -0
  10. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/__init__.py +0 -0
  11. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/__init__.py +0 -0
  12. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/config_helper.py +0 -0
  13. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  14. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  15. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  16. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  17. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  18. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/experimental/__init__.py +0 -0
  19. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  20. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  21. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  22. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  23. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/learner/__init__.py +0 -0
  24. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  25. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/learner/default_learner.py +0 -0
  26. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/__init__.py +0 -0
  27. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  28. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  29. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  30. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  31. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  32. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  33. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  34. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  35. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  36. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  37. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  38. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  39. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  40. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  41. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  42. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  43. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  44. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  45. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  46. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  47. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  48. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  49. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  50. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  51. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  52. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  53. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  54. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  55. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  56. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  57. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  58. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  59. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  60. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  61. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  62. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  63. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  64. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  65. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  66. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  67. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  68. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  69. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  70. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  71. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  72. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  73. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  74. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  75. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  76. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  77. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  78. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  79. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  80. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  81. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  82. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
  83. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
  84. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  85. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  86. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  87. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  88. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  89. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  90. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  91. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  92. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  93. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  94. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  95. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  96. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  97. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  98. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  99. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  100. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  101. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  102. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  103. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  104. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  105. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  106. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  107. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  108. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  109. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  110. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  111. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  112. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  113. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  114. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  115. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  116. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  117. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  118. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  119. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  120. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  121. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  122. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  123. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  124. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  125. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  126. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  127. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  128. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  129. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  130. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  131. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  132. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  133. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  134. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  135. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  136. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/predictor/__init__.py +0 -0
  137. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  138. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/predictor/predictor.py +0 -0
  139. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/registry/__init__.py +0 -0
  140. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/registry/_ag_model_registry.py +0 -0
  141. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/registry/_model_registry.py +0 -0
  142. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/testing/__init__.py +0 -0
  143. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  144. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  145. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  146. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/__init__.py +0 -0
  147. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  148. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  149. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  150. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  151. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  152. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/tuning/__init__.py +0 -0
  153. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  154. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
  155. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  156. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  157. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  158. {autogluon.tabular-1.3.2b20250615 → autogluon.tabular-1.3.2b20250616}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250615
3
+ Version: 1.3.2b20250616
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -10,7 +10,7 @@ class RapidsModelMixin:
10
10
  @classmethod
11
11
  def _get_default_ag_args_ensemble(cls, **kwargs) -> dict:
12
12
  default_ag_args_ensemble = super()._get_default_ag_args_ensemble(**kwargs)
13
- extra_ag_args_ensemble = {"use_child_oof": False}
13
+ extra_ag_args_ensemble = {"use_child_oof": False, "fold_fitting_strategy": "sequential_local"}
14
14
  default_ag_args_ensemble.update(extra_ag_args_ensemble)
15
15
  return default_ag_args_ensemble
16
16
 
@@ -0,0 +1,100 @@
1
+ import logging
2
+
3
+ from autogluon.common.utils.try_import import try_import_rapids_cuml
4
+ from autogluon.core.constants import REGRESSION
5
+
6
+ from .._utils.rapids_utils import RapidsModelMixin
7
+ from .hyperparameters.parameters import get_param_baseline
8
+ from .lr_model import LinearModel
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+
13
+ # FIXME: If rapids is installed, normal CPU LinearModel crashes.
14
+ class LinearRapidsModel(RapidsModelMixin, LinearModel):
15
+ """
16
+ RAPIDS Linear model : https://rapids.ai/start.html
17
+
18
+ NOTE: This code is experimental, it is recommend to not use this unless you are a developer.
19
+ This was tested on rapids-21.06 via:
20
+
21
+ conda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge rapids=21.06 python=3.8 cudatoolkit=11.2
22
+ conda activate rapids-21.06
23
+ pip install --pre autogluon.tabular[all]
24
+ """
25
+
26
+ def _get_model_type(self):
27
+ penalty = self.params.get("penalty", "L2")
28
+ try_import_rapids_cuml()
29
+ from cuml.linear_model import Lasso, LogisticRegression, Ridge
30
+
31
+ if self.problem_type == REGRESSION:
32
+ if penalty == "L2":
33
+ model_type = Ridge
34
+ elif penalty == "L1":
35
+ model_type = Lasso
36
+ else:
37
+ raise AssertionError(f'Unknown value for penalty "{penalty}" - supported types are ["L1", "L2"]')
38
+ else:
39
+ model_type = LogisticRegression
40
+ return model_type
41
+
42
+ def _set_default_params(self):
43
+ default_params = {"fit_intercept": True, "max_iter": 10000}
44
+ if self.problem_type != REGRESSION:
45
+ default_params.update({"solver": "qn"})
46
+ default_params.update(get_param_baseline())
47
+ for param, val in default_params.items():
48
+ self._set_default_param_value(param, val)
49
+
50
+ def _preprocess(self, X, **kwargs):
51
+ X = super()._preprocess(X=X, **kwargs)
52
+ if hasattr(X, 'toarray'): # Check if it's a sparse matrix
53
+ X = X.toarray()
54
+ return X
55
+
56
+ def _fit(self, X, y, **kwargs):
57
+ """
58
+ Custom fit method for RAPIDS cuML models that handles parameter compatibility
59
+ and bypasses sklearn-specific incremental training approach.
60
+ """
61
+ # Preprocess data
62
+ X = self.preprocess(X, is_train=True)
63
+ if self.problem_type == 'binary':
64
+ y = y.astype(int).values
65
+
66
+ # Create cuML model with filtered parameters
67
+ model_cls = self._get_model_type()
68
+
69
+ # Comprehensive parameter filtering for cuML compatibility
70
+ cuml_incompatible_params = {
71
+ # AutoGluon-specific preprocessing parameters
72
+ 'vectorizer_dict_size', 'proc.ngram_range', 'proc.skew_threshold',
73
+ 'proc.impute_strategy', 'handle_text',
74
+ # sklearn-specific parameters not supported by cuML
75
+ 'n_jobs', 'warm_start', 'multi_class', 'dual', 'intercept_scaling',
76
+ 'class_weight', 'random_state', 'verbose',
77
+ # Parameters that need conversion or special handling
78
+ 'penalty', 'C'
79
+ }
80
+
81
+ # Filter out incompatible parameters
82
+ filtered_params = {k: v for k, v in self.params.items()
83
+ if k not in cuml_incompatible_params}
84
+
85
+ # Handle parameter conversions for cuML
86
+ if self.problem_type == REGRESSION:
87
+ # Convert sklearn's C parameter to cuML's alpha
88
+ if 'C' in self.params:
89
+ filtered_params['alpha'] = 1.0 / self.params['C']
90
+ else:
91
+ # For classification, keep C parameter
92
+ if 'C' in self.params:
93
+ filtered_params['C'] = self.params['C']
94
+
95
+ # Create and fit cuML model - let cuML handle its own error messages
96
+ self.model = model_cls(**filtered_params)
97
+ self.model.fit(X, y)
98
+
99
+ # Add missing sklearn-compatible attributes for AutoGluon compatibility
100
+ self.model.n_iter_ = None # cuML doesn't track iterations like sklearn
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.3.2b20250615"
3
+ __version__ = "1.3.2b20250616"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.3.2b20250615
3
+ Version: 1.3.2b20250616
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -3,19 +3,19 @@ scipy<1.16,>=1.5.4
3
3
  pandas<2.3.0,>=2.0.0
4
4
  scikit-learn<1.7.0,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.3.2b20250615
7
- autogluon.features==1.3.2b20250615
6
+ autogluon.core==1.3.2b20250616
7
+ autogluon.features==1.3.2b20250616
8
8
 
9
9
  [all]
10
- xgboost<3.1,>=2.0
11
- huggingface_hub[torch]
12
- autogluon.core[all]==1.3.2b20250615
10
+ fastai<2.9,>=2.3.1
13
11
  numpy<2.3.0,>=1.25
14
- catboost<1.3,>=1.2
15
12
  lightgbm<4.7,>=4.0
16
- fastai<2.9,>=2.3.1
17
13
  torch<2.7,>=2.2
14
+ catboost<1.3,>=1.2
18
15
  einops<0.9,>=0.7
16
+ autogluon.core[all]==1.3.2b20250616
17
+ xgboost<3.1,>=2.0
18
+ huggingface_hub[torch]
19
19
  spacy<3.9
20
20
 
21
21
  [catboost]
@@ -34,7 +34,7 @@ imodels<2.1.0,>=1.3.10
34
34
  lightgbm<4.7,>=4.0
35
35
 
36
36
  [ray]
37
- autogluon.core[all]==1.3.2b20250615
37
+ autogluon.core[all]==1.3.2b20250616
38
38
 
39
39
  [skex]
40
40
  scikit-learn-intelex<2025.5,>=2024.0
@@ -1,60 +0,0 @@
1
- import logging
2
-
3
- import numpy as np
4
-
5
- from autogluon.common.utils.try_import import try_import_rapids_cuml
6
- from autogluon.core.constants import REGRESSION
7
-
8
- from .._utils.rapids_utils import RapidsModelMixin
9
- from .hyperparameters.parameters import get_param_baseline
10
- from .lr_model import LinearModel
11
-
12
- logger = logging.getLogger(__name__)
13
-
14
-
15
- # FIXME: If rapids is installed, normal CPU LinearModel crashes.
16
- class LinearRapidsModel(RapidsModelMixin, LinearModel):
17
- """
18
- RAPIDS Linear model : https://rapids.ai/start.html
19
-
20
- NOTE: This code is experimental, it is recommend to not use this unless you are a developer.
21
- This was tested on rapids-21.06 via:
22
-
23
- conda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge rapids=21.06 python=3.8 cudatoolkit=11.2
24
- conda activate rapids-21.06
25
- pip install --pre autogluon.tabular[all]
26
- """
27
-
28
- def _get_model_type(self):
29
- penalty = self.params.get("penalty", "L2")
30
- try_import_rapids_cuml()
31
- from cuml.linear_model import Lasso, LogisticRegression, Ridge
32
-
33
- if self.problem_type == REGRESSION:
34
- if penalty == "L2":
35
- model_type = Ridge
36
- elif penalty == "L1":
37
- model_type = Lasso
38
- else:
39
- raise AssertionError(f'Unknown value for penalty "{penalty}" - supported types are ["L1", "L2"]')
40
- else:
41
- model_type = LogisticRegression
42
- return model_type
43
-
44
- def _set_default_params(self):
45
- default_params = {"fit_intercept": True, "max_iter": 10000}
46
- if self.problem_type != REGRESSION:
47
- default_params.update({"solver": "qn"})
48
- default_params.update(get_param_baseline())
49
- for param, val in default_params.items():
50
- self._set_default_param_value(param, val)
51
-
52
- def _preprocess(self, X, **kwargs):
53
- X = super()._preprocess(X=X, **kwargs)
54
- if not isinstance(X, np.ndarray):
55
- X = X.toarray()
56
- return X
57
-
58
- def _fit(self, X, y, **kwargs):
59
- kwargs.pop("sample_weight", None) # sample_weight is not supported
60
- super()._fit(X=X, y=y, **kwargs)