autogluon.tabular 1.2.1b20250417__tar.gz → 1.2.1b20250418__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (157) hide show
  1. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/PKG-INFO +1 -1
  2. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/config_helper.py +8 -4
  3. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/predictor/predictor.py +8 -15
  4. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/auto_trainer.py +3 -2
  5. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/model_presets/presets.py +16 -34
  6. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/version.py +1 -1
  7. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
  8. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/requires.txt +9 -9
  9. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/setup.cfg +0 -0
  10. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/setup.py +0 -0
  11. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/__init__.py +0 -0
  12. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/__init__.py +0 -0
  13. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  14. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  15. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  16. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  17. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  18. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/experimental/__init__.py +0 -0
  19. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  20. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  21. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  22. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  23. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/learner/__init__.py +0 -0
  24. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  25. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/learner/default_learner.py +0 -0
  26. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/__init__.py +0 -0
  27. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  28. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  29. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  30. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  31. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  32. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  33. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  34. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  35. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  36. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  37. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  38. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  39. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  40. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  41. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  42. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  43. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  44. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  45. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  46. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  47. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  48. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  49. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  50. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  51. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  52. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  53. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  54. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  55. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  56. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  57. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  58. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  59. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  60. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  61. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  62. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  63. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  64. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  65. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  66. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  67. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  68. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  69. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  70. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  71. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  72. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  73. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  74. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  75. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  76. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  77. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  78. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  79. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  80. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  81. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  82. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  83. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  84. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
  85. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
  86. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  87. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  88. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  89. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  90. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  91. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  92. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  93. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  94. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  95. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  96. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  97. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  98. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  99. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  100. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  101. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  102. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  103. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  104. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  105. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  106. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  107. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  108. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  109. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  110. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  111. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  112. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  113. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  114. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  115. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  116. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  117. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  118. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  119. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  120. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  121. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  122. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  123. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  124. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  125. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  126. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  127. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  128. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  129. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  130. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  131. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  132. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  133. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  134. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  135. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  136. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  137. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  138. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/predictor/__init__.py +0 -0
  139. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  140. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/register/__init__.py +0 -0
  141. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/register/_ag_model_register.py +0 -0
  142. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/register/_model_register.py +0 -0
  143. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/testing/__init__.py +0 -0
  144. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/testing/fit_helper.py +0 -0
  145. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
  146. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
  147. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/__init__.py +0 -0
  148. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  149. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  150. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  151. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/tuning/__init__.py +0 -0
  152. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  153. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
  154. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  155. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  156. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  157. {autogluon.tabular-1.2.1b20250417 → autogluon.tabular-1.2.1b20250418}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250417
3
+ Version: 1.2.1b20250418
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,7 @@ from autogluon.core.scheduler import scheduler_factory
9
9
  from autogluon.features import AutoMLPipelineFeatureGenerator
10
10
  from autogluon.tabular.configs.hyperparameter_configs import hyperparameter_config_dict
11
11
  from autogluon.tabular.configs.presets_configs import tabular_presets_dict
12
- from autogluon.tabular.trainer.model_presets.presets import MODEL_TYPES
12
+ from autogluon.tabular.register import ag_model_register
13
13
 
14
14
 
15
15
  class FeatureGeneratorBuilder:
@@ -107,6 +107,10 @@ class ConfigBuilder:
107
107
  def __init__(self):
108
108
  self.config = {}
109
109
 
110
+ def _valid_keys(self):
111
+ valid_keys = [m for m in ag_model_register.keys if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
112
+ return valid_keys
113
+
110
114
  def presets(self, presets: Union[str, list, dict]) -> ConfigBuilder:
111
115
  """
112
116
  List of preset configurations for various arguments in `fit()`. Can significantly impact predictive accuracy, memory-footprint, and inference latency of trained models, and various other properties of the returned `predictor`.
@@ -137,7 +141,7 @@ class ConfigBuilder:
137
141
  return self
138
142
 
139
143
  def hyperparameters(self, hyperparameters: Union[str, dict]) -> ConfigBuilder:
140
- valid_keys = [m for m in MODEL_TYPES.keys() if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
144
+ valid_keys = self._valid_keys()
141
145
  valid_str_values = list(hyperparameter_config_dict.keys())
142
146
  if isinstance(hyperparameters, str):
143
147
  assert hyperparameters in hyperparameter_config_dict, f"{hyperparameters} is not one of the valid presets {valid_str_values}"
@@ -270,7 +274,7 @@ class ConfigBuilder:
270
274
  Useful when a particular model type such as 'KNN' or 'custom' is not desired but altering the `hyperparameters` dictionary is difficult or time-consuming.
271
275
  Example: To exclude both 'KNN' and 'custom' models, specify `excluded_model_types=['KNN', 'custom']`.
272
276
  """
273
- valid_keys = [m for m in MODEL_TYPES.keys() if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
277
+ valid_keys = self._valid_keys()
274
278
  if not isinstance(models, list):
275
279
  models = [models]
276
280
  for model in models:
@@ -285,7 +289,7 @@ class ConfigBuilder:
285
289
  Useful when only the particular models should be trained such as 'KNN' or 'custom', but altering the `hyperparameters` dictionary is difficult or time-consuming.
286
290
  Example: To keep only 'KNN' and 'custom' models, specify `included_model_types=['KNN', 'custom']`.
287
291
  """
288
- valid_keys = [m for m in MODEL_TYPES.keys() if m not in ["ENS_WEIGHTED", "SIMPLE_ENS_WEIGHTED"]]
292
+ valid_keys = self._valid_keys()
289
293
  if not isinstance(models, list):
290
294
  models = [models]
291
295
 
@@ -55,7 +55,7 @@ from ..configs.hyperparameter_configs import get_hyperparameter_config
55
55
  from ..configs.presets_configs import tabular_presets_alias, tabular_presets_dict
56
56
  from ..learner import AbstractTabularLearner, DefaultLearner
57
57
  from ..trainer.abstract_trainer import AbstractTabularTrainer
58
- from ..trainer.model_presets.presets import MODEL_TYPES
58
+ from ..register import ag_model_register
59
59
  from ..version import __version__
60
60
 
61
61
  logger = logging.getLogger(__name__) # return autogluon root logger
@@ -516,7 +516,6 @@ class TabularPredictor:
516
516
  'FT_TRANSFORMER' (Tabular Transformer, GPU is recommended. Does not scale well to >100 features.)
517
517
  'FASTTEXT' (FastText. Note: Has not been tested for a long time.)
518
518
  'TABPFN' (TabPFN. Does not scale well to >100 features or >1000 rows, and does not support regression. Extremely slow inference speed.)
519
- 'VW' (VowpalWabbit. Note: Has not been tested for a long time.)
520
519
  'AG_TEXT_NN' (Multimodal Text+Tabular model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
521
520
  'AG_IMAGE_NN' (Image model, GPU is required. Recommended to instead use its successor, 'AG_AUTOMM'.)
522
521
  If a certain key is missing from hyperparameters, then `fit()` will not train any models of that type. Omitting a model key from hyperparameters is equivalent to including this model key in `excluded_model_types`.
@@ -977,17 +976,10 @@ class TabularPredictor:
977
976
  sklearn CountVectorizer object to use in TextNgramFeatureGenerator.
978
977
  Only used if `enable_text_ngram_features=True`.
979
978
  unlabeled_data : pd.DataFrame, default = None
980
- [Experimental Parameter]
981
- Collection of data without labels that we can use to pretrain on. This is the same schema as train_data, except
982
- without the labels. Currently, unlabeled_data is only used for pretraining a TabTransformer model.
983
- If you do not specify 'TRANSF' with unlabeled_data, then no pretraining will occur and unlabeled_data will be ignored!
984
- After the pretraining step, we will finetune using the TabTransformer model as well. If TabTransformer is ensembled
985
- with other models, like in typical AutoGluon fashion, then the output of this "pretrain/finetune" will be ensembled
986
- with other models, which will not used the unlabeled_data. The "pretrain/finetune flow" is also known as semi-supervised learning.
987
- The typical use case for unlabeled_data is to add signal to your model where you may not have sufficient training
988
- data. e.g. 500 hand-labeled samples (perhaps a hard human task), whole data set (unlabeled) is thousands/millions.
989
- However, this isn't the only use case. Given enough unlabeled data(millions of rows), you may see improvements
990
- to any amount of labeled data.
979
+ [Experimental Parameter] UNUSED.
980
+ Collection of data without labels that we can use to pretrain on.
981
+ This is the same schema as train_data, except without the labels.
982
+ Currently, unlabeled_data is not used by any model.
991
983
  verbosity : int
992
984
  If specified, overrides the existing `predictor.verbosity` value.
993
985
  raise_on_model_failure: bool, default = False
@@ -5680,12 +5672,13 @@ class TabularPredictor:
5680
5672
  for key in hyperparameters:
5681
5673
  models_in_hyperparameters.add(key)
5682
5674
  models_in_hyperparameters_raw_text_compatible = []
5675
+ model_key_to_cls_map = ag_model_register.key_to_cls_map()
5683
5676
  for m in models_in_hyperparameters:
5684
5677
  if isinstance(m, str):
5685
5678
  # TODO: Technically the use of MODEL_TYPES here is a hack since we should derive valid types from trainer,
5686
5679
  # but this is required prior to trainer existing.
5687
- if m in MODEL_TYPES:
5688
- m = MODEL_TYPES[m]
5680
+ if m in model_key_to_cls_map:
5681
+ m = model_key_to_cls_map[m]
5689
5682
  else:
5690
5683
  continue
5691
5684
  if m._get_class_tags().get("handles_text", False):
@@ -5,8 +5,9 @@ from autogluon.core.utils import generate_train_test_split
5
5
 
6
6
  from ..models.lgb.lgb_model import LGBModel
7
7
  from .abstract_trainer import AbstractTabularTrainer
8
- from .model_presets.presets import MODEL_TYPES, get_preset_models
8
+ from .model_presets.presets import get_preset_models
9
9
  from .model_presets.presets_distill import get_preset_models_distillation
10
+ from ..register import ag_model_register
10
11
 
11
12
  logger = logging.getLogger(__name__)
12
13
 
@@ -186,4 +187,4 @@ class AutoTrainer(AbstractTabularTrainer):
186
187
  return super().compile(model_names=model_names, with_ancestors=with_ancestors, compiler_configs=compiler_configs)
187
188
 
188
189
  def _get_model_types_map(self) -> dict[str, AbstractModel]:
189
- return MODEL_TYPES
190
+ return ag_model_register.key_to_cls_map()
@@ -33,31 +33,8 @@ from ...version import __version__
33
33
 
34
34
  logger = logging.getLogger(__name__)
35
35
 
36
- # TODO: Replace with ag_model_register
37
- # Problem type specific model priority overrides (will update default values in DEFAULT_MODEL_PRIORITY)
38
- PROBLEM_TYPE_MODEL_PRIORITY = {
39
- MULTICLASS: dict(
40
- FASTAI=95,
41
- ),
42
- }
43
-
44
- # TODO: Replace with ag_model_register
45
- DEFAULT_SOFTCLASS_PRIORITY = dict(
46
- GBM=100,
47
- RF=80,
48
- CAT=60,
49
- custom=0,
50
- )
51
-
52
36
  DEFAULT_CUSTOM_MODEL_PRIORITY = 0
53
37
 
54
- # FIXME: Don't do this, use ag_model_register lazily so users can register custom models before calling fit
55
- DEFAULT_MODEL_PRIORITY = {ag_model_register.key(model_cls): ag_model_register.priority(model_cls) for model_cls in ag_model_register.model_cls_list}
56
- DEFAULT_MODEL_NAMES = ag_model_register.name_map()
57
- REGISTERED_MODEL_CLS_LST = ag_model_register.model_cls_list
58
- MODEL_TYPES = ag_model_register.key_to_cls_map()
59
-
60
-
61
38
  VALID_AG_ARGS_KEYS = {
62
39
  "name",
63
40
  "name_main",
@@ -122,9 +99,10 @@ def get_preset_models(
122
99
  invalid_name_set.update(invalid_model_names)
123
100
 
124
101
  if default_priorities is None:
125
- default_priorities = copy.deepcopy(DEFAULT_MODEL_PRIORITY)
126
- if problem_type in PROBLEM_TYPE_MODEL_PRIORITY:
127
- default_priorities.update(PROBLEM_TYPE_MODEL_PRIORITY[problem_type])
102
+ priority_cls_map = ag_model_register.priority_map(problem_type=problem_type)
103
+ default_priorities = {
104
+ ag_model_register.key(model_cls): priority for model_cls, priority in priority_cls_map.items()
105
+ }
128
106
 
129
107
  level_key = level if level in hyperparameters.keys() else "default"
130
108
  if level_key not in hyperparameters.keys() and level_key == "default":
@@ -197,20 +175,22 @@ def clean_model_cfg(model_cfg: dict, model_type=None, ag_args=None, ag_args_ense
197
175
  if model_cfg[AG_ARGS]["model_type"] is None:
198
176
  raise AssertionError(f"model_type was not specified for model! Model: {model_cfg}")
199
177
  model_type = model_cfg[AG_ARGS]["model_type"]
178
+ model_types = ag_model_register.key_to_cls_map()
200
179
  if not inspect.isclass(model_type):
201
- if model_type not in MODEL_TYPES:
202
- raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(MODEL_TYPES.keys())}")
203
- model_type = MODEL_TYPES[model_type]
180
+ if model_type not in model_types:
181
+ raise AssertionError(f"Unknown model type specified in hyperparameters: '{model_type}'. Valid model types: {list(model_types.keys())}")
182
+ model_type = model_types[model_type]
204
183
  elif not issubclass(model_type, AbstractModel):
205
184
  logger.warning(
206
185
  f"Warning: Custom model type {model_type} does not inherit from {AbstractModel}. This may lead to instability. Consider wrapping {model_type} with an implementation of {AbstractModel}!"
207
186
  )
208
187
  else:
209
- logger.log(20, f"Custom Model Type Detected: {model_type}")
188
+ if not ag_model_register.exists(model_type):
189
+ logger.log(20, f"Custom Model Type Detected: {model_type}")
210
190
  model_cfg[AG_ARGS]["model_type"] = model_type
211
191
  model_type_real = model_cfg[AG_ARGS]["model_type"]
212
192
  if not inspect.isclass(model_type_real):
213
- model_type_real = MODEL_TYPES[model_type_real]
193
+ model_type_real = model_types[model_type_real]
214
194
  default_ag_args = model_type_real._get_default_ag_args()
215
195
  if ag_args is not None:
216
196
  model_extra_ag_args = ag_args.copy()
@@ -300,10 +280,13 @@ def model_factory(
300
280
  invalid_name_set = set()
301
281
  model_type = model[AG_ARGS]["model_type"]
302
282
  if not inspect.isclass(model_type):
303
- model_type = MODEL_TYPES[model_type]
283
+ model_type = ag_model_register.key_to_cls(model_type)
304
284
  name_orig = model[AG_ARGS].get("name", None)
305
285
  if name_orig is None:
306
- name_main = model[AG_ARGS].get("name_main", DEFAULT_MODEL_NAMES.get(model_type, model_type.__name__))
286
+ ag_name = model_type.ag_name
287
+ if ag_name is None:
288
+ ag_name = model_type.__name__
289
+ name_main = model[AG_ARGS].get("name_main", ag_name)
307
290
  name_prefix = model[AG_ARGS].get("name_prefix", "")
308
291
  name_suff = model[AG_ARGS].get("name_suffix", "")
309
292
  name_orig = name_prefix + name_main + name_suff
@@ -372,7 +355,6 @@ def get_preset_models_softclass(hyperparameters, invalid_model_names: list = Non
372
355
  problem_type=SOFTCLASS,
373
356
  eval_metric=soft_log_loss,
374
357
  hyperparameters=hyperparameters_standard,
375
- default_priorities=DEFAULT_SOFTCLASS_PRIORITY,
376
358
  invalid_model_names=invalid_model_names,
377
359
  **kwargs,
378
360
  )
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250417"
3
+ __version__ = "1.2.1b20250418"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250417
3
+ Version: 1.2.1b20250418
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -3,20 +3,20 @@ scipy<1.16,>=1.5.4
3
3
  pandas<2.3.0,>=2.0.0
4
4
  scikit-learn<1.7.0,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.2.1b20250417
7
- autogluon.features==1.2.1b20250417
6
+ autogluon.core==1.2.1b20250418
7
+ autogluon.features==1.2.1b20250418
8
8
 
9
9
  [all]
10
- xgboost<3.1,>=2.0
11
- numpy<2.0.0,>=1.25
12
10
  einops<0.9,>=0.7
11
+ catboost<1.3,>=1.2
12
+ xgboost<3.1,>=2.0
13
13
  torch<2.7,>=2.2
14
- autogluon.core[all]==1.2.1b20250417
15
- fastai<2.9,>=2.3.1
14
+ autogluon.core[all]==1.2.1b20250418
16
15
  huggingface_hub[torch]
17
- catboost<1.3,>=1.2
18
- lightgbm<4.7,>=4.0
19
16
  spacy<3.8
17
+ fastai<2.9,>=2.3.1
18
+ numpy<2.0.0,>=1.25
19
+ lightgbm<4.7,>=4.0
20
20
 
21
21
  [catboost]
22
22
  numpy<2.0.0,>=1.25
@@ -34,7 +34,7 @@ imodels<2.1.0,>=1.3.10
34
34
  lightgbm<4.7,>=4.0
35
35
 
36
36
  [ray]
37
- autogluon.core[all]==1.2.1b20250417
37
+ autogluon.core[all]==1.2.1b20250418
38
38
 
39
39
  [skex]
40
40
  scikit-learn-intelex<2025.5,>=2024.0