autogluon.tabular 1.2.1b20250407__tar.gz → 1.2.1b20250409__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/register/_ag_model_register.py +0 -2
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -11
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/requires.txt +12 -12
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -1
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -66
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -17
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -494
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/pretexts.py +0 -150
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -86
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -183
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -668
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -540
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer/utils.py +0 -124
- autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tabpfn/__init__.py +0 -1
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/setup.cfg +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/setup.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407/src/autogluon/tabular/models/tab_transformer → autogluon.tabular-1.2.1b20250409/src/autogluon/tabular/models/tabpfn}/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/predictor/predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/register/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/register/_model_register.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/testing/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/testing/fit_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/testing/generate_datasets.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/testing/model_fit_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250407 → autogluon.tabular-1.2.1b20250409}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -28,7 +28,6 @@ from ..models import (
|
|
28
28
|
XGBoostModel,
|
29
29
|
XTModel,
|
30
30
|
)
|
31
|
-
from ..models.tab_transformer.tab_transformer_model import TabTransformerModel
|
32
31
|
|
33
32
|
|
34
33
|
# When adding a new model officially to AutoGluon, the model class should be added to the bottom of this list.
|
@@ -42,7 +41,6 @@ REGISTERED_MODEL_CLS_LST = [
|
|
42
41
|
TabularNeuralNetTorchModel,
|
43
42
|
LinearModel,
|
44
43
|
NNFastAiTabularModel,
|
45
|
-
TabTransformerModel,
|
46
44
|
TextPredictorModel,
|
47
45
|
ImagePredictorModel,
|
48
46
|
MultiModalPredictorModel,
|
@@ -83,17 +83,6 @@ src/autogluon/tabular/models/rf/rf_rapids_model.py
|
|
83
83
|
src/autogluon/tabular/models/rf/compilers/__init__.py
|
84
84
|
src/autogluon/tabular/models/rf/compilers/native.py
|
85
85
|
src/autogluon/tabular/models/rf/compilers/onnx.py
|
86
|
-
src/autogluon/tabular/models/tab_transformer/__init__.py
|
87
|
-
src/autogluon/tabular/models/tab_transformer/modified_transformer.py
|
88
|
-
src/autogluon/tabular/models/tab_transformer/pretexts.py
|
89
|
-
src/autogluon/tabular/models/tab_transformer/tab_model_base.py
|
90
|
-
src/autogluon/tabular/models/tab_transformer/tab_transformer.py
|
91
|
-
src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py
|
92
|
-
src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py
|
93
|
-
src/autogluon/tabular/models/tab_transformer/utils.py
|
94
|
-
src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py
|
95
|
-
src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py
|
96
|
-
src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py
|
97
86
|
src/autogluon/tabular/models/tabpfn/__init__.py
|
98
87
|
src/autogluon/tabular/models/tabpfn/tabpfn_model.py
|
99
88
|
src/autogluon/tabular/models/tabpfnmix/__init__.py
|
@@ -3,20 +3,20 @@ scipy<1.16,>=1.5.4
|
|
3
3
|
pandas<2.3.0,>=2.0.0
|
4
4
|
scikit-learn<1.5.3,>=1.4.0
|
5
5
|
networkx<4,>=3.0
|
6
|
-
autogluon.core==1.2.
|
7
|
-
autogluon.features==1.2.
|
6
|
+
autogluon.core==1.2.1b20250409
|
7
|
+
autogluon.features==1.2.1b20250409
|
8
8
|
|
9
9
|
[all]
|
10
|
+
numpy<2.0.0,>=1.25
|
11
|
+
lightgbm<4.7,>=4.0
|
10
12
|
catboost<1.3,>=1.2
|
13
|
+
torch<2.7,>=2.2
|
11
14
|
fastai<2.9,>=2.3.1
|
15
|
+
autogluon.core[all]==1.2.1b20250409
|
16
|
+
huggingface_hub[torch]
|
17
|
+
xgboost<2.2,>=2.0
|
12
18
|
einops<0.9,>=0.7
|
13
19
|
spacy<3.8
|
14
|
-
lightgbm<4.7,>=4.0
|
15
|
-
torch<2.6,>=2.2
|
16
|
-
xgboost<2.2,>=2.0
|
17
|
-
huggingface_hub[torch]
|
18
|
-
autogluon.core[all]==1.2.1b20250407
|
19
|
-
numpy<2.0.0,>=1.25
|
20
20
|
|
21
21
|
[catboost]
|
22
22
|
numpy<2.0.0,>=1.25
|
@@ -24,7 +24,7 @@ catboost<1.3,>=1.2
|
|
24
24
|
|
25
25
|
[fastai]
|
26
26
|
spacy<3.8
|
27
|
-
torch<2.
|
27
|
+
torch<2.7,>=2.2
|
28
28
|
fastai<2.9,>=2.3.1
|
29
29
|
|
30
30
|
[imodels]
|
@@ -34,7 +34,7 @@ imodels<1.4.0,>=1.3.10
|
|
34
34
|
lightgbm<4.7,>=4.0
|
35
35
|
|
36
36
|
[ray]
|
37
|
-
autogluon.core[all]==1.2.
|
37
|
+
autogluon.core[all]==1.2.1b20250409
|
38
38
|
|
39
39
|
[skex]
|
40
40
|
scikit-learn-intelex<2025.1,>=2024.0
|
@@ -54,12 +54,12 @@ onnx<1.16.2,>=1.13.0
|
|
54
54
|
tabpfn<0.2,>=0.1.11
|
55
55
|
|
56
56
|
[tabpfnmix]
|
57
|
-
torch<2.
|
57
|
+
torch<2.7,>=2.2
|
58
58
|
huggingface_hub[torch]
|
59
59
|
einops<0.9,>=0.7
|
60
60
|
|
61
61
|
[tests]
|
62
|
-
torch<2.
|
62
|
+
torch<2.7,>=2.2
|
63
63
|
huggingface_hub[torch]
|
64
64
|
einops<0.9,>=0.7
|
65
65
|
imodels<1.4.0,>=1.3.10
|
@@ -1 +0,0 @@
|
|
1
|
-
|
@@ -1,66 +0,0 @@
|
|
1
|
-
def get_fixed_params():
|
2
|
-
"""Parameters that currently cannot be searched during HPO"""
|
3
|
-
fixed_params = {
|
4
|
-
"batch_size": 512, # The size of example chunks to predict on.
|
5
|
-
"n_cont_embeddings": 0, # How many continuous feature embeddings to use.
|
6
|
-
"norm_class_name": "LayerNorm", # What kind of normalization to use on continuous features.
|
7
|
-
"column_embedding": True, # If True, 1/(n_shared_embs)th of every embedding will be reserved for a learned parameter that's common to all embeddings.
|
8
|
-
#'shared_embedding': False,
|
9
|
-
#'n_shared_embs': 8,
|
10
|
-
"orig_emb_resid": False, # If True, concatenate the original embeddings on top of the feature embeddings in the Transformer layers.
|
11
|
-
"one_hot_embeddings": False, # If True, one-hot encode variables whose cardinality is < max_emb_dim.
|
12
|
-
"drop_whole_embeddings": False, # If True, dropout pretends the embedding was a missing value. If false, dropout sets embed features to 0
|
13
|
-
"max_emb_dim": 8, # Maximum allowable amount of embeddings.
|
14
|
-
"base_exp_decay": 0.95, # Rate of exponential decay for learning rate, used during finetuning.
|
15
|
-
"encoders": {
|
16
|
-
"CATEGORICAL": "CategoricalOrdinalEnc", # How to "encode"(vectorize) each column type.
|
17
|
-
"DATETIME": "DatetimeOrdinalEnc",
|
18
|
-
"LATLONG": "LatLongQuantileOrdinalEnc",
|
19
|
-
"SCALAR": "ScalarQuantileOrdinalEnc",
|
20
|
-
"TEXT": "TextSummaryScalarEnc",
|
21
|
-
},
|
22
|
-
"aug_mask_prob": 0.4, # What percentage of values to apply augmentation to.
|
23
|
-
"num_augs": 0, # Number of augmentations to add.
|
24
|
-
"pretext": "BERTPretext", # What pretext to use when performing pretraining/semi-supervised learning.
|
25
|
-
"n_cont_features": 8, # How many continuous features to concatenate onto the categorical features
|
26
|
-
"fix_attention": False, # If True, use the categorical embeddings in the transformer architecture.
|
27
|
-
"epochs": 200, # How many epochs to train on with labeled data.
|
28
|
-
"pretrain_epochs": 200, # How many epochs to pretrain on with unlabeled data.
|
29
|
-
"epochs_wo_improve": 30, # How many epochs to continue running without improving on metric. aka "Early Stopping Patience"
|
30
|
-
"num_workers": 16, # How many workers to use for torch DataLoader.
|
31
|
-
"max_columns": 500, # Maximum number of columns TabTransformer will accept as input. This is to combat huge memory requirements/errors.
|
32
|
-
"tab_readout": "none", # What sort of readout from the transformer. Options: ['readout_emb', 'mean', 'concat_pool', 'concat_pool_all', 'concat_pool_add', 'all_feat_embs', 'mean_feat_embs', 'none']
|
33
|
-
}
|
34
|
-
|
35
|
-
return fixed_params
|
36
|
-
|
37
|
-
|
38
|
-
def get_hyper_params():
|
39
|
-
"""Parameters that currently can be tuned during HPO"""
|
40
|
-
hyper_params = {
|
41
|
-
"lr": 3.6e-3, # Learning rate
|
42
|
-
# Options: Real(5e-5, 5e-3)
|
43
|
-
"weight_decay": 1e-6, # Rate of linear weight decay for learning rate
|
44
|
-
# Options: Real(1e-6, 5e-2)
|
45
|
-
"p_dropout": 0, # dropout probability, 0 turns off Dropout.
|
46
|
-
# Options: Categorical(0, 0.1, 0.2, 0.3, 0.4, 0.5)
|
47
|
-
"n_heads": 4, # Number of attention heads
|
48
|
-
# Options: Categorical(2, 4, 8)
|
49
|
-
"hidden_dim": 128, # hidden dimension size
|
50
|
-
# Options: Categorical(32, 64, 128, 256)
|
51
|
-
"n_layers": 2, # Number of Tab Transformer encoder layers,
|
52
|
-
# Options: Categorical(1, 2, 3, 4, 5)
|
53
|
-
"feature_dim": 64, # Size of fully connected layer in TabNet.
|
54
|
-
# Options: Int(8, 128)
|
55
|
-
"num_output_layers": 1, # How many fully-connected layers on top of transformer to produce predictions. Minimum 1 layer.
|
56
|
-
# Options: Categorical(1, 2, 3)
|
57
|
-
}
|
58
|
-
|
59
|
-
return hyper_params
|
60
|
-
|
61
|
-
|
62
|
-
def get_default_param():
|
63
|
-
params = get_fixed_params()
|
64
|
-
params.update(get_hyper_params())
|
65
|
-
|
66
|
-
return params
|
@@ -1,17 +0,0 @@
|
|
1
|
-
from autogluon.common import space
|
2
|
-
|
3
|
-
|
4
|
-
# TODO: May have to split search space's by problem type. Not necessary right now.
|
5
|
-
def get_default_searchspace():
|
6
|
-
params = {
|
7
|
-
"lr": space.Real(5e-5, 5e-3, default=1e-3, log=True),
|
8
|
-
"weight_decay": space.Real(1e-6, 5e-2, default=1e-6, log=True),
|
9
|
-
"p_dropout": space.Categorical(0.1, 0, 0.5),
|
10
|
-
"n_heads": space.Categorical(8, 4),
|
11
|
-
"hidden_dim": space.Categorical(128, 32, 64, 256),
|
12
|
-
"n_layers": space.Categorical(2, 1, 3, 4, 5),
|
13
|
-
"feature_dim": space.Int(8, 128, default=64),
|
14
|
-
"num_output_layers": space.Categorical(1, 2),
|
15
|
-
}
|
16
|
-
|
17
|
-
return params.copy()
|