autogluon.tabular 1.2.1b20250226__tar.gz → 1.2.1b20250228__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/learner/abstract_learner.py +12 -12
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/learner/default_learner.py +12 -10
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/predictor/predictor.py +11 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/abstract_trainer.py +12 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/requires.txt +10 -10
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/setup.cfg +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/setup.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/pretexts.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/register/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/register/_ag_model_register.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/register/_model_register.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/SOURCES.txt +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250226 → autogluon.tabular-1.2.1b20250228}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -39,19 +39,19 @@ class AbstractTabularLearner(AbstractLearner):
|
|
39
39
|
self,
|
40
40
|
path_context: str,
|
41
41
|
label: str,
|
42
|
-
feature_generator: PipelineFeatureGenerator,
|
42
|
+
feature_generator: PipelineFeatureGenerator | None = None,
|
43
43
|
ignored_columns: list = None,
|
44
|
-
label_count_threshold=10,
|
45
|
-
problem_type=None,
|
46
|
-
quantile_levels=None,
|
47
|
-
eval_metric=None,
|
48
|
-
positive_class=None,
|
49
|
-
cache_data=True,
|
50
|
-
is_trainer_present=False,
|
51
|
-
random_state=0,
|
52
|
-
sample_weight=None,
|
53
|
-
weight_evaluation=False,
|
54
|
-
groups=None,
|
44
|
+
label_count_threshold: int = 10,
|
45
|
+
problem_type: str | None = None,
|
46
|
+
quantile_levels: list[float] | None = None,
|
47
|
+
eval_metric: Scorer | None = None,
|
48
|
+
positive_class: str | None = None,
|
49
|
+
cache_data: bool = True,
|
50
|
+
is_trainer_present: bool = False,
|
51
|
+
random_state: int = 0,
|
52
|
+
sample_weight: str | None = None,
|
53
|
+
weight_evaluation: bool = False,
|
54
|
+
groups: str | None = None,
|
55
55
|
):
|
56
56
|
super().__init__(path_context=path_context, random_state=random_state)
|
57
57
|
self.label = label
|
@@ -43,16 +43,17 @@ class DefaultLearner(AbstractTabularLearner):
|
|
43
43
|
def _fit(
|
44
44
|
self,
|
45
45
|
X: DataFrame,
|
46
|
-
X_val: DataFrame = None,
|
47
|
-
X_test: DataFrame = None,
|
48
|
-
X_unlabeled: DataFrame = None,
|
49
|
-
holdout_frac=0.1,
|
50
|
-
num_bag_folds=0,
|
51
|
-
num_bag_sets=1,
|
52
|
-
time_limit=None,
|
53
|
-
infer_limit=None,
|
54
|
-
infer_limit_batch_size=None,
|
55
|
-
verbosity=2,
|
46
|
+
X_val: DataFrame | None = None,
|
47
|
+
X_test: DataFrame | None = None,
|
48
|
+
X_unlabeled: DataFrame | None = None,
|
49
|
+
holdout_frac: float = 0.1,
|
50
|
+
num_bag_folds: int = 0,
|
51
|
+
num_bag_sets: int = 1,
|
52
|
+
time_limit: float | None = None,
|
53
|
+
infer_limit: float | None = None,
|
54
|
+
infer_limit_batch_size: int | None = None,
|
55
|
+
verbosity: int = 2,
|
56
|
+
raise_on_model_failure: bool = False,
|
56
57
|
**trainer_fit_kwargs,
|
57
58
|
):
|
58
59
|
"""Arguments:
|
@@ -121,6 +122,7 @@ class DefaultLearner(AbstractTabularLearner):
|
|
121
122
|
save_data=self.cache_data,
|
122
123
|
random_state=self.random_state,
|
123
124
|
verbosity=verbosity,
|
125
|
+
raise_on_model_failure=raise_on_model_failure,
|
124
126
|
)
|
125
127
|
|
126
128
|
self.trainer_path = trainer.path
|
@@ -990,6 +990,14 @@ class TabularPredictor:
|
|
990
990
|
to any amount of labeled data.
|
991
991
|
verbosity : int
|
992
992
|
If specified, overrides the existing `predictor.verbosity` value.
|
993
|
+
raise_on_model_failure: bool, default = False
|
994
|
+
If True, will raise on any exception during model training.
|
995
|
+
This is useful when using a debugger during development to identify the cause of model failures.
|
996
|
+
This should only be used for debugging.
|
997
|
+
If False, will try to skip to the next model if an exception occurred during model training.
|
998
|
+
This is the default logic and is a core principle of AutoGluon's design.
|
999
|
+
|
1000
|
+
.. versionadded:: 1.3.0
|
993
1001
|
raise_on_no_models_fitted: bool, default = True
|
994
1002
|
If True, will raise a RuntimeError if no models were successfully fit during `fit()`.
|
995
1003
|
calibrate: bool or str, default = 'auto'
|
@@ -1109,6 +1117,7 @@ class TabularPredictor:
|
|
1109
1117
|
delay_bag_sets: bool = kwargs["delay_bag_sets"]
|
1110
1118
|
test_data = kwargs["test_data"]
|
1111
1119
|
learning_curves = kwargs["learning_curves"]
|
1120
|
+
raise_on_model_failure = kwargs["raise_on_model_failure"]
|
1112
1121
|
|
1113
1122
|
if ag_args is None:
|
1114
1123
|
ag_args = {}
|
@@ -1256,6 +1265,7 @@ class TabularPredictor:
|
|
1256
1265
|
verbosity=verbosity,
|
1257
1266
|
use_bag_holdout=use_bag_holdout,
|
1258
1267
|
callbacks=callbacks,
|
1268
|
+
raise_on_model_failure=raise_on_model_failure,
|
1259
1269
|
)
|
1260
1270
|
ag_post_fit_kwargs = dict(
|
1261
1271
|
keep_only_best=kwargs["keep_only_best"],
|
@@ -5036,6 +5046,7 @@ class TabularPredictor:
|
|
5036
5046
|
# learning curves and test data (for logging purposes only)
|
5037
5047
|
learning_curves=False,
|
5038
5048
|
test_data=None,
|
5049
|
+
raise_on_model_failure=False,
|
5039
5050
|
)
|
5040
5051
|
kwargs, ds_valid_keys = self._sanitize_dynamic_stacking_kwargs(kwargs)
|
5041
5052
|
kwargs = self._validate_fit_extra_kwargs(kwargs, extra_valid_keys=list(fit_kwargs_default.keys()) + ds_valid_keys)
|
@@ -128,6 +128,12 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
128
128
|
Higher levels correspond to more detailed print statements (you can set verbosity = 0 to suppress warnings).
|
129
129
|
If using logging, you can alternatively control amount of information printed via `logger.setLevel(L)`,
|
130
130
|
where `L` ranges from 0 to 50 (Note: higher values of `L` correspond to fewer print statements, opposite of verbosity levels).
|
131
|
+
raise_on_model_failure : bool, default = False
|
132
|
+
If True, Trainer will raise on any exception during model training.
|
133
|
+
This is ideal when using a debugger during development.
|
134
|
+
If False, Trainer will try to skip to the next model if an exception occurred during model training.
|
135
|
+
|
136
|
+
.. versionadded:: 1.3.0
|
131
137
|
"""
|
132
138
|
|
133
139
|
distill_stackname = "distill" # name of stack-level for distilled student models
|
@@ -149,6 +155,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
149
155
|
save_data: bool = False,
|
150
156
|
random_state: int = 0,
|
151
157
|
verbosity: int = 2,
|
158
|
+
raise_on_model_failure: bool = False,
|
152
159
|
):
|
153
160
|
super().__init__(
|
154
161
|
path=path,
|
@@ -163,6 +170,7 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
163
170
|
#: Integer value added to the stack level to get the random_state for kfold splits or the train/val split if bagging is disabled
|
164
171
|
self.random_state = random_state
|
165
172
|
self.verbosity = verbosity
|
173
|
+
self.raise_on_model_failure = raise_on_model_failure
|
166
174
|
|
167
175
|
# TODO: consider redesign where Trainer doesn't need sample_weight column name and weights are separate from X
|
168
176
|
self.sample_weight = sample_weight
|
@@ -2188,6 +2196,10 @@ class AbstractTabularTrainer(AbstractTrainer[AbstractModel]):
|
|
2188
2196
|
# TODO: Add recursive=True to avoid repeatedly loading models each time this is called for bagged ensembles (especially during repeated bagging)
|
2189
2197
|
self.save_model(model=model)
|
2190
2198
|
except Exception as exc:
|
2199
|
+
if self.raise_on_model_failure:
|
2200
|
+
# immediately raise instead of skipping to next model, useful for debugging during development
|
2201
|
+
logger.warning("Model failure occurred... Raising exception instead of continuing to next model. (raise_on_model_failure=True)")
|
2202
|
+
raise exc
|
2191
2203
|
exception = exc # required to reference exc outside of `except` statement
|
2192
2204
|
del_model = True
|
2193
2205
|
if isinstance(exception, TimeLimitExceeded):
|
@@ -3,20 +3,20 @@ scipy<1.16,>=1.5.4
|
|
3
3
|
pandas<2.3.0,>=2.0.0
|
4
4
|
scikit-learn<1.5.3,>=1.4.0
|
5
5
|
networkx<4,>=3.0
|
6
|
-
autogluon.core==1.2.
|
7
|
-
autogluon.features==1.2.
|
6
|
+
autogluon.core==1.2.1b20250228
|
7
|
+
autogluon.features==1.2.1b20250228
|
8
8
|
|
9
9
|
[all]
|
10
|
-
|
11
|
-
|
12
|
-
autogluon.core[all]==1.2.1b20250226
|
10
|
+
huggingface_hub[torch]
|
11
|
+
torch<2.6,>=2.2
|
13
12
|
fastai<2.8,>=2.3.1
|
13
|
+
einops<0.9,>=0.7
|
14
|
+
autogluon.core[all]==1.2.1b20250228
|
15
|
+
numpy<2.0.0,>=1.25
|
14
16
|
xgboost<2.2,>=1.6
|
15
|
-
spacy<3.8
|
16
|
-
torch<2.6,>=2.2
|
17
17
|
catboost<1.3,>=1.2
|
18
|
-
|
19
|
-
|
18
|
+
spacy<3.8
|
19
|
+
lightgbm<4.6,>=4.0
|
20
20
|
|
21
21
|
[catboost]
|
22
22
|
numpy<2.0.0,>=1.25
|
@@ -34,7 +34,7 @@ imodels<1.4.0,>=1.3.10
|
|
34
34
|
lightgbm<4.6,>=4.0
|
35
35
|
|
36
36
|
[ray]
|
37
|
-
autogluon.core[all]==1.2.
|
37
|
+
autogluon.core[all]==1.2.1b20250228
|
38
38
|
|
39
39
|
[skex]
|
40
40
|
scikit-learn-intelex<2025.1,>=2024.0
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|