autogluon.tabular 1.2.1b20250225__tar.gz → 1.2.1b20250227__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (167) hide show
  1. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/PKG-INFO +1 -1
  2. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/abstract_learner.py +12 -12
  3. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/default_learner.py +12 -10
  4. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/automm_model.py +2 -0
  5. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/ft_transformer.py +3 -0
  6. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_model.py +7 -0
  7. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +10 -1
  8. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/fasttext_model.py +3 -0
  9. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/image_prediction/image_predictor.py +2 -0
  10. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/imodels/imodels_models.py +15 -0
  11. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_model.py +3 -0
  12. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/lgb_model.py +7 -0
  13. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_model.py +3 -0
  14. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_model.py +3 -0
  15. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +2 -0
  16. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +3 -0
  17. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
  18. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -0
  19. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +3 -0
  20. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +3 -0
  21. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/xgboost_model.py +3 -0
  22. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xt/xt_model.py +3 -0
  23. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/predictor.py +30 -3
  24. autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/__init__.py +2 -0
  25. autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/_ag_model_register.py +66 -0
  26. autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/_model_register.py +146 -0
  27. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/abstract_trainer.py +12 -0
  28. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/presets.py +10 -116
  29. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/version.py +1 -1
  30. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
  31. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/SOURCES.txt +3 -0
  32. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/requires.txt +11 -11
  33. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/setup.cfg +0 -0
  34. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/setup.py +0 -0
  35. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/__init__.py +0 -0
  36. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/__init__.py +0 -0
  37. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/config_helper.py +0 -0
  38. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  39. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  40. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  41. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  42. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  43. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/__init__.py +0 -0
  44. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  45. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  46. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  47. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
  48. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/__init__.py +0 -0
  49. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/__init__.py +0 -0
  50. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  51. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  52. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  53. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  54. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  55. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  56. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  57. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  58. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  59. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  60. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  61. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  62. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  63. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  64. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  65. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  66. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  67. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  68. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  69. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  70. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  71. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  72. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  73. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  74. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  75. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  76. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  77. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  78. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  79. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  80. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  81. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  82. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  83. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  84. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  85. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  86. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  87. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  88. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  89. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  90. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  91. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  92. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  93. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  94. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  95. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  96. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
  97. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
  98. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
  99. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
  100. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -0
  101. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/pretexts.py +0 -0
  102. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
  103. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
  104. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -0
  105. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
  106. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
  107. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  108. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  109. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  110. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  111. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  112. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  113. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  114. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  115. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  116. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  117. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  118. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  119. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  120. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  121. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  122. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  123. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  124. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  125. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  126. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  127. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  128. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  129. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  130. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  131. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  132. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  133. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  134. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  135. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  136. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  137. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  138. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  139. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  140. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  141. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  142. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  143. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  144. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  145. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  146. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  147. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
  148. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
  149. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  150. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  151. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  152. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  153. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  154. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  155. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  156. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/__init__.py +0 -0
  157. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  158. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/__init__.py +0 -0
  159. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  160. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  161. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  162. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/tuning/__init__.py +0 -0
  163. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  164. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  165. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  166. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  167. {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250225
3
+ Version: 1.2.1b20250227
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -39,19 +39,19 @@ class AbstractTabularLearner(AbstractLearner):
39
39
  self,
40
40
  path_context: str,
41
41
  label: str,
42
- feature_generator: PipelineFeatureGenerator,
42
+ feature_generator: PipelineFeatureGenerator | None = None,
43
43
  ignored_columns: list = None,
44
- label_count_threshold=10,
45
- problem_type=None,
46
- quantile_levels=None,
47
- eval_metric=None,
48
- positive_class=None,
49
- cache_data=True,
50
- is_trainer_present=False,
51
- random_state=0,
52
- sample_weight=None,
53
- weight_evaluation=False,
54
- groups=None,
44
+ label_count_threshold: int = 10,
45
+ problem_type: str | None = None,
46
+ quantile_levels: list[float] | None = None,
47
+ eval_metric: Scorer | None = None,
48
+ positive_class: str | None = None,
49
+ cache_data: bool = True,
50
+ is_trainer_present: bool = False,
51
+ random_state: int = 0,
52
+ sample_weight: str | None = None,
53
+ weight_evaluation: bool = False,
54
+ groups: str | None = None,
55
55
  ):
56
56
  super().__init__(path_context=path_context, random_state=random_state)
57
57
  self.label = label
@@ -43,16 +43,17 @@ class DefaultLearner(AbstractTabularLearner):
43
43
  def _fit(
44
44
  self,
45
45
  X: DataFrame,
46
- X_val: DataFrame = None,
47
- X_test: DataFrame = None,
48
- X_unlabeled: DataFrame = None,
49
- holdout_frac=0.1,
50
- num_bag_folds=0,
51
- num_bag_sets=1,
52
- time_limit=None,
53
- infer_limit=None,
54
- infer_limit_batch_size=None,
55
- verbosity=2,
46
+ X_val: DataFrame | None = None,
47
+ X_test: DataFrame | None = None,
48
+ X_unlabeled: DataFrame | None = None,
49
+ holdout_frac: float = 0.1,
50
+ num_bag_folds: int = 0,
51
+ num_bag_sets: int = 1,
52
+ time_limit: float | None = None,
53
+ infer_limit: float | None = None,
54
+ infer_limit_batch_size: int | None = None,
55
+ verbosity: int = 2,
56
+ raise_on_model_failure: bool = False,
56
57
  **trainer_fit_kwargs,
57
58
  ):
58
59
  """Arguments:
@@ -121,6 +122,7 @@ class DefaultLearner(AbstractTabularLearner):
121
122
  save_data=self.cache_data,
122
123
  random_state=self.random_state,
123
124
  verbosity=verbosity,
125
+ raise_on_model_failure=raise_on_model_failure,
124
126
  )
125
127
 
126
128
  self.trainer_path = trainer.path
@@ -26,6 +26,8 @@ logger = logging.getLogger(__name__)
26
26
 
27
27
 
28
28
  class MultiModalPredictorModel(AbstractModel):
29
+ ag_key = "AG_AUTOMM"
30
+ ag_name = "MultiModalPredictor"
29
31
  _NN_MODEL_NAME = "automm_model"
30
32
 
31
33
  def __init__(self, **kwargs):
@@ -12,6 +12,9 @@ logger = logging.getLogger(__name__)
12
12
 
13
13
  # TODO: Add unit tests
14
14
  class FTTransformerModel(MultiModalPredictorModel):
15
+ ag_key = "FT_TRANSFORMER"
16
+ ag_name = "FTTransformer"
17
+
15
18
  def __init__(self, **kwargs):
16
19
  """Wrapper of autogluon.multimodal.MultiModalPredictor.
17
20
 
@@ -2,6 +2,7 @@ import logging
2
2
  import math
3
3
  import os
4
4
  import time
5
+ from types import MappingProxyType
5
6
 
6
7
  import numpy as np
7
8
  import pandas as pd
@@ -30,6 +31,12 @@ class CatBoostModel(AbstractModel):
30
31
 
31
32
  Hyperparameter options: https://catboost.ai/en/docs/references/training-parameters
32
33
  """
34
+ ag_key = "CAT"
35
+ ag_name = "CatBoost"
36
+ ag_priority = 70
37
+ ag_priority_by_problem_type = MappingProxyType({
38
+ SOFTCLASS: 60
39
+ })
33
40
 
34
41
  def __init__(self, **kwargs):
35
42
  super().__init__(**kwargs)
@@ -8,6 +8,7 @@ import warnings
8
8
  from builtins import classmethod
9
9
  from functools import partial
10
10
  from pathlib import Path
11
+ from types import MappingProxyType
11
12
  from typing import Union
12
13
 
13
14
  import numpy as np
@@ -28,7 +29,7 @@ from autogluon.common.features.types import (
28
29
  from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
29
30
  from autogluon.common.utils.resource_utils import ResourceManager
30
31
  from autogluon.common.utils.try_import import try_import_fastai
31
- from autogluon.core.constants import BINARY, QUANTILE, REGRESSION
32
+ from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REGRESSION
32
33
  from autogluon.core.hpo.constants import RAY_BACKEND
33
34
  from autogluon.core.models import AbstractModel
34
35
  from autogluon.core.utils.exceptions import TimeLimitExceeded
@@ -92,6 +93,14 @@ class NNFastAiTabularModel(AbstractModel):
92
93
  'early.stopping.min_delta': 0.0001,
93
94
  'early.stopping.patience': 10,
94
95
  """
96
+ ag_key = "FASTAI"
97
+ ag_name = "NeuralNetFastAI"
98
+ ag_priority = 50
99
+ # Increase priority for multiclass since neural networks
100
+ # scale better than trees as a function of n_classes.
101
+ ag_priority_by_problem_type = MappingProxyType({
102
+ MULTICLASS: 95,
103
+ })
95
104
 
96
105
  model_internals_file_name = "model-internals.pkl"
97
106
 
@@ -21,6 +21,9 @@ logger = logging.getLogger(__name__)
21
21
 
22
22
 
23
23
  class FastTextModel(AbstractModel):
24
+ ag_key = "FASTTEXT"
25
+ ag_name = "FastText"
26
+
24
27
  model_bin_file_name = "fasttext.ftz"
25
28
 
26
29
  def __init__(self, **kwargs):
@@ -22,6 +22,8 @@ class ImagePredictorModel(MultiModalPredictorModel):
22
22
  Additionally has special null image handling to improve performance in the presence of null images (aka image path of '')
23
23
  Note: null handling has not been compared to the built-in null handling of MultimodalPredictor yet.
24
24
  """
25
+ ag_key = "AG_IMAGE_NN"
26
+ ag_name = "ImagePredictor"
25
27
 
26
28
  def __init__(self, **kwargs):
27
29
  super().__init__(**kwargs)
@@ -75,6 +75,9 @@ class _IModelsModel(AbstractModel):
75
75
 
76
76
 
77
77
  class RuleFitModel(_IModelsModel):
78
+ ag_key = "IM_RULEFIT"
79
+ ag_name = "RuleFit"
80
+
78
81
  def get_model(self):
79
82
  try_import_imodels()
80
83
  from imodels import RuleFitClassifier, RuleFitRegressor
@@ -86,6 +89,9 @@ class RuleFitModel(_IModelsModel):
86
89
 
87
90
 
88
91
  class GreedyTreeModel(_IModelsModel):
92
+ ag_key = "IM_GREEDYTREE"
93
+ ag_name = "GreedyTree"
94
+
89
95
  def get_model(self):
90
96
  try_import_imodels()
91
97
  from imodels import GreedyTreeClassifier
@@ -98,6 +104,9 @@ class GreedyTreeModel(_IModelsModel):
98
104
 
99
105
 
100
106
  class BoostedRulesModel(_IModelsModel):
107
+ ag_key = "IM_BOOSTEDRULES"
108
+ ag_name = "BoostedRules"
109
+
101
110
  def get_model(self):
102
111
  try_import_imodels()
103
112
  from imodels import BoostedRulesClassifier
@@ -109,6 +118,9 @@ class BoostedRulesModel(_IModelsModel):
109
118
 
110
119
 
111
120
  class HSTreeModel(_IModelsModel):
121
+ ag_key = "IM_HSTREE"
122
+ ag_name = "HierarchicalShrinkageTree"
123
+
112
124
  def get_model(self):
113
125
  try_import_imodels()
114
126
  from imodels import HSTreeClassifierCV, HSTreeRegressorCV
@@ -120,6 +132,9 @@ class HSTreeModel(_IModelsModel):
120
132
 
121
133
 
122
134
  class FigsModel(_IModelsModel):
135
+ ag_key = "IM_FIGS"
136
+ ag_name = "Figs"
137
+
123
138
  def get_model(self):
124
139
  try_import_imodels()
125
140
  from imodels import FIGSClassifier, FIGSRegressor
@@ -22,6 +22,9 @@ class KNNModel(AbstractModel):
22
22
  """
23
23
  KNearestNeighbors model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
24
24
  """
25
+ ag_key = "KNN"
26
+ ag_name = "KNeighbors"
27
+ ag_priority = 100
25
28
 
26
29
  def __init__(self, **kwargs):
27
30
  super().__init__(**kwargs)
@@ -7,6 +7,7 @@ import random
7
7
  import re
8
8
  import time
9
9
  import warnings
10
+ from types import MappingProxyType
10
11
 
11
12
  import numpy as np
12
13
  import pandas as pd
@@ -40,6 +41,12 @@ class LGBModel(AbstractModel):
40
41
  Extra hyperparameter options:
41
42
  ag.early_stop : int, specifies the early stopping rounds. Defaults to an adaptive strategy. Recommended to keep default.
42
43
  """
44
+ ag_key = "GBM"
45
+ ag_name = "LightGBM"
46
+ ag_priority = 90
47
+ ag_priority_by_problem_type = MappingProxyType({
48
+ SOFTCLASS: 100
49
+ })
43
50
 
44
51
  def __init__(self, **kwargs):
45
52
  super().__init__(**kwargs)
@@ -38,6 +38,9 @@ class LinearModel(AbstractModel):
38
38
 
39
39
  'regression': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
40
40
  """
41
+ ag_key = "LR"
42
+ ag_name = "LinearModel"
43
+ ag_priority = 30
41
44
 
42
45
  def __init__(self, **kwargs):
43
46
  super().__init__(**kwargs)
@@ -27,6 +27,9 @@ class RFModel(AbstractModel):
27
27
  """
28
28
  Random Forest model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
29
29
  """
30
+ ag_key = "RF"
31
+ ag_name = "RandomForest"
32
+ ag_priority = 80
30
33
 
31
34
  def __init__(self, **kwargs):
32
35
  super().__init__(**kwargs)
@@ -40,6 +40,8 @@ class TabTransformerModel(AbstractNeuralNetworkModel):
40
40
  and applies them to the use case of tabular data. Specifically, this makes TabTransformer suitable for unsupervised
41
41
  training of Tabular data with a subsequent fine-tuning step on labeled data.
42
42
  """
43
+ ag_key = "TRANSF"
44
+ ag_name = "Transformer"
43
45
 
44
46
  params_file_name = "tab_trans_params.pth"
45
47
 
@@ -22,6 +22,9 @@ class TabPFNModel(AbstractModel):
22
22
  To use this model, `tabpfn` must be installed.
23
23
  To install TabPFN, you can run `pip install autogluon.tabular[tabpfn]` or `pip install tabpfn`.
24
24
  """
25
+ ag_key = "TABPFN"
26
+ ag_name = "TabPFN"
27
+ ag_priority = 110
25
28
 
26
29
  def __init__(self, **kwargs):
27
30
  super().__init__(**kwargs)
@@ -35,6 +35,10 @@ class TabPFNMixModel(AbstractModel):
35
35
 
36
36
  For more information, refer to the `./_internals/README.md` file.
37
37
  """
38
+ ag_key = "TABPFNMIX"
39
+ ag_name = "TabPFNMix"
40
+ ag_priority = 45
41
+
38
42
  weights_file_name = "model.pt"
39
43
 
40
44
  def __init__(self, **kwargs):
@@ -47,6 +47,9 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
47
47
  ag.early_stop : int | str, default = "default"
48
48
  Specifies the early stopping rounds. Defaults to an adaptive strategy. Recommended to keep default.
49
49
  """
50
+ ag_key = "NN_TORCH"
51
+ ag_name = "NeuralNetTorch"
52
+ ag_priority = 25
50
53
 
51
54
  # Constants used throughout this class:
52
55
  unique_category_str = np.nan # string used to represent missing values and unknown categories for categorical features.
@@ -19,6 +19,9 @@ logger = logging.getLogger(__name__)
19
19
  class TextPredictorModel(MultiModalPredictorModel):
20
20
  """MultimodalPredictor that doesn't use image features"""
21
21
 
22
+ ag_key = "AG_TEXT_NN"
23
+ ag_name = "TextPredictor"
24
+
22
25
  def _get_default_auxiliary_params(self) -> dict:
23
26
  default_auxiliary_params = super()._get_default_auxiliary_params()
24
27
  extra_auxiliary_params = dict(
@@ -38,6 +38,9 @@ class VowpalWabbitModel(AbstractModel):
38
38
  VowpalWabbit Command Line args: https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Command-line-arguments
39
39
 
40
40
  """
41
+ ag_key = "VW"
42
+ ag_name = "VowpalWabbit"
43
+ ag_priority = 10
41
44
 
42
45
  model_internals_file_name = "model-internals.pkl"
43
46
 
@@ -27,6 +27,9 @@ class XGBoostModel(AbstractModel):
27
27
 
28
28
  Hyperparameter options: https://xgboost.readthedocs.io/en/latest/parameter.html
29
29
  """
30
+ ag_key = "XGB"
31
+ ag_name = "XGBoost"
32
+ ag_priority = 40
30
33
 
31
34
  def __init__(self, **kwargs):
32
35
  super().__init__(**kwargs)
@@ -7,6 +7,9 @@ class XTModel(RFModel):
7
7
  """
8
8
  Extra Trees model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
9
9
  """
10
+ ag_key = "XT"
11
+ ag_name = "ExtraTrees"
12
+ ag_priority = 60
10
13
 
11
14
  def _get_model_type(self):
12
15
  if self.problem_type == REGRESSION:
@@ -990,6 +990,14 @@ class TabularPredictor:
990
990
  to any amount of labeled data.
991
991
  verbosity : int
992
992
  If specified, overrides the existing `predictor.verbosity` value.
993
+ raise_on_model_failure: bool, default = False
994
+ If True, will raise on any exception during model training.
995
+ This is useful when using a debugger during development to identify the cause of model failures.
996
+ This should only be used for debugging.
997
+ If False, will try to skip to the next model if an exception occurred during model training.
998
+ This is the default logic and is a core principle of AutoGluon's design.
999
+
1000
+ .. versionadded:: 1.3.0
993
1001
  raise_on_no_models_fitted: bool, default = True
994
1002
  If True, will raise a RuntimeError if no models were successfully fit during `fit()`.
995
1003
  calibrate: bool or str, default = 'auto'
@@ -1109,6 +1117,7 @@ class TabularPredictor:
1109
1117
  delay_bag_sets: bool = kwargs["delay_bag_sets"]
1110
1118
  test_data = kwargs["test_data"]
1111
1119
  learning_curves = kwargs["learning_curves"]
1120
+ raise_on_model_failure = kwargs["raise_on_model_failure"]
1112
1121
 
1113
1122
  if ag_args is None:
1114
1123
  ag_args = {}
@@ -1256,6 +1265,7 @@ class TabularPredictor:
1256
1265
  verbosity=verbosity,
1257
1266
  use_bag_holdout=use_bag_holdout,
1258
1267
  callbacks=callbacks,
1268
+ raise_on_model_failure=raise_on_model_failure,
1259
1269
  )
1260
1270
  ag_post_fit_kwargs = dict(
1261
1271
  keep_only_best=kwargs["keep_only_best"],
@@ -4330,7 +4340,14 @@ class TabularPredictor:
4330
4340
  reduce_children=reduce_children,
4331
4341
  )
4332
4342
 
4333
- def delete_models(self, models_to_keep=None, models_to_delete=None, allow_delete_cascade=False, delete_from_disk=True, dry_run=True):
4343
+ def delete_models(
4344
+ self,
4345
+ models_to_keep: str | list[str] | None = None,
4346
+ models_to_delete: str | list[str] | None = None,
4347
+ allow_delete_cascade: bool = False,
4348
+ delete_from_disk: bool = True,
4349
+ dry_run: bool | None = None,
4350
+ ):
4334
4351
  """
4335
4352
  Deletes models from `predictor`.
4336
4353
  This can be helpful to minimize memory usage and disk usage, particularly for model deployment.
@@ -4341,13 +4358,13 @@ class TabularPredictor:
4341
4358
 
4342
4359
  Parameters
4343
4360
  ----------
4344
- models_to_keep : str or list, default = None
4361
+ models_to_keep : str or list[str], default = None
4345
4362
  Name of model or models to not delete.
4346
4363
  All models that are not specified and are also not required as a dependency of any model in `models_to_keep` will be deleted.
4347
4364
  Specify `models_to_keep='best'` to keep only the best model and its model dependencies.
4348
4365
  `models_to_delete` must be None if `models_to_keep` is set.
4349
4366
  To see the list of possible model names, use: `predictor.model_names()` or `predictor.leaderboard()`.
4350
- models_to_delete : str or list, default = None
4367
+ models_to_delete : str or list[str], default = None
4351
4368
  Name of model or models to delete.
4352
4369
  All models that are not specified but depend on a model in `models_to_delete` will also be deleted.
4353
4370
  `models_to_keep` must be None if `models_to_delete` is set.
@@ -4361,10 +4378,19 @@ class TabularPredictor:
4361
4378
  WARNING: This deletes the entire directory for the deleted models, and ALL FILES located there.
4362
4379
  It is highly recommended to first run with `dry_run=True` to understand which directories will be deleted.
4363
4380
  dry_run : bool, default = True
4381
+ WARNING: Starting in v1.4.0 dry_run will default to False.
4364
4382
  If `True`, then deletions don't occur, and logging statements are printed describing what would have occurred.
4365
4383
  Set `dry_run=False` to perform the deletions.
4366
4384
 
4367
4385
  """
4386
+ if dry_run is None:
4387
+ warnings.warn(
4388
+ f"dry_run was not specified for `TabularPredictor.delete_models`. dry_run prior to version 1.4.0 defaults to True. "
4389
+ f"Starting in version 1.4, AutoGluon will default dry_run to False. "
4390
+ f"If you want to maintain the current logic in future versions, explicitly specify `dry_run=True`.",
4391
+ category=FutureWarning,
4392
+ )
4393
+ dry_run = True
4368
4394
  self._assert_is_fit("delete_models")
4369
4395
  if models_to_keep == "best":
4370
4396
  models_to_keep = self.model_best
@@ -5020,6 +5046,7 @@ class TabularPredictor:
5020
5046
  # learning curves and test data (for logging purposes only)
5021
5047
  learning_curves=False,
5022
5048
  test_data=None,
5049
+ raise_on_model_failure=False,
5023
5050
  )
5024
5051
  kwargs, ds_valid_keys = self._sanitize_dynamic_stacking_kwargs(kwargs)
5025
5052
  kwargs = self._validate_fit_extra_kwargs(kwargs, extra_valid_keys=list(fit_kwargs_default.keys()) + ds_valid_keys)
@@ -0,0 +1,2 @@
1
+ from ._model_register import ModelRegister
2
+ from ._ag_model_register import ag_model_register
@@ -0,0 +1,66 @@
1
+ from autogluon.core.models import (
2
+ DummyModel,
3
+ GreedyWeightedEnsembleModel,
4
+ SimpleWeightedEnsembleModel,
5
+ )
6
+
7
+ from . import ModelRegister
8
+ from ..models import (
9
+ BoostedRulesModel,
10
+ CatBoostModel,
11
+ FastTextModel,
12
+ FigsModel,
13
+ FTTransformerModel,
14
+ GreedyTreeModel,
15
+ HSTreeModel,
16
+ ImagePredictorModel,
17
+ KNNModel,
18
+ LGBModel,
19
+ LinearModel,
20
+ MultiModalPredictorModel,
21
+ NNFastAiTabularModel,
22
+ RFModel,
23
+ RuleFitModel,
24
+ TabPFNMixModel,
25
+ TabPFNModel,
26
+ TabularNeuralNetTorchModel,
27
+ TextPredictorModel,
28
+ VowpalWabbitModel,
29
+ XGBoostModel,
30
+ XTModel,
31
+ )
32
+ from ..models.tab_transformer.tab_transformer_model import TabTransformerModel
33
+
34
+
35
+ # When adding a new model officially to AutoGluon, the model class should be added to the bottom of this list.
36
+ REGISTERED_MODEL_CLS_LST = [
37
+ RFModel,
38
+ XTModel,
39
+ KNNModel,
40
+ LGBModel,
41
+ CatBoostModel,
42
+ XGBoostModel,
43
+ TabularNeuralNetTorchModel,
44
+ LinearModel,
45
+ NNFastAiTabularModel,
46
+ TabTransformerModel,
47
+ TextPredictorModel,
48
+ ImagePredictorModel,
49
+ MultiModalPredictorModel,
50
+ FTTransformerModel,
51
+ TabPFNModel,
52
+ TabPFNMixModel,
53
+ FastTextModel,
54
+ VowpalWabbitModel,
55
+ GreedyWeightedEnsembleModel,
56
+ SimpleWeightedEnsembleModel,
57
+ RuleFitModel,
58
+ GreedyTreeModel,
59
+ FigsModel,
60
+ HSTreeModel,
61
+ BoostedRulesModel,
62
+ DummyModel,
63
+ ]
64
+
65
+ # TODO: Replace logic in `autogluon.tabular.trainer.model_presets.presets` with `ag_model_register`
66
+ ag_model_register = ModelRegister(model_cls_list=REGISTERED_MODEL_CLS_LST)