autogluon.tabular 1.2.1b20250225__tar.gz → 1.2.1b20250227__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/abstract_learner.py +12 -12
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/default_learner.py +12 -10
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/automm_model.py +2 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/ft_transformer.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_model.py +7 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +10 -1
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/fasttext_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/image_prediction/image_predictor.py +2 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/imodels/imodels_models.py +15 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/lgb_model.py +7 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +2 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +4 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/xgboost_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xt/xt_model.py +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/predictor.py +30 -3
- autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/__init__.py +2 -0
- autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/_ag_model_register.py +66 -0
- autogluon.tabular-1.2.1b20250227/src/autogluon/tabular/register/_model_register.py +146 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/abstract_trainer.py +12 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/presets.py +10 -116
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/version.py +1 -1
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/SOURCES.txt +3 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/requires.txt +11 -11
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/setup.cfg +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/setup.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/experimental/plot_leaderboard.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/pretexts.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250225 → autogluon.tabular-1.2.1b20250227}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -39,19 +39,19 @@ class AbstractTabularLearner(AbstractLearner):
|
|
39
39
|
self,
|
40
40
|
path_context: str,
|
41
41
|
label: str,
|
42
|
-
feature_generator: PipelineFeatureGenerator,
|
42
|
+
feature_generator: PipelineFeatureGenerator | None = None,
|
43
43
|
ignored_columns: list = None,
|
44
|
-
label_count_threshold=10,
|
45
|
-
problem_type=None,
|
46
|
-
quantile_levels=None,
|
47
|
-
eval_metric=None,
|
48
|
-
positive_class=None,
|
49
|
-
cache_data=True,
|
50
|
-
is_trainer_present=False,
|
51
|
-
random_state=0,
|
52
|
-
sample_weight=None,
|
53
|
-
weight_evaluation=False,
|
54
|
-
groups=None,
|
44
|
+
label_count_threshold: int = 10,
|
45
|
+
problem_type: str | None = None,
|
46
|
+
quantile_levels: list[float] | None = None,
|
47
|
+
eval_metric: Scorer | None = None,
|
48
|
+
positive_class: str | None = None,
|
49
|
+
cache_data: bool = True,
|
50
|
+
is_trainer_present: bool = False,
|
51
|
+
random_state: int = 0,
|
52
|
+
sample_weight: str | None = None,
|
53
|
+
weight_evaluation: bool = False,
|
54
|
+
groups: str | None = None,
|
55
55
|
):
|
56
56
|
super().__init__(path_context=path_context, random_state=random_state)
|
57
57
|
self.label = label
|
@@ -43,16 +43,17 @@ class DefaultLearner(AbstractTabularLearner):
|
|
43
43
|
def _fit(
|
44
44
|
self,
|
45
45
|
X: DataFrame,
|
46
|
-
X_val: DataFrame = None,
|
47
|
-
X_test: DataFrame = None,
|
48
|
-
X_unlabeled: DataFrame = None,
|
49
|
-
holdout_frac=0.1,
|
50
|
-
num_bag_folds=0,
|
51
|
-
num_bag_sets=1,
|
52
|
-
time_limit=None,
|
53
|
-
infer_limit=None,
|
54
|
-
infer_limit_batch_size=None,
|
55
|
-
verbosity=2,
|
46
|
+
X_val: DataFrame | None = None,
|
47
|
+
X_test: DataFrame | None = None,
|
48
|
+
X_unlabeled: DataFrame | None = None,
|
49
|
+
holdout_frac: float = 0.1,
|
50
|
+
num_bag_folds: int = 0,
|
51
|
+
num_bag_sets: int = 1,
|
52
|
+
time_limit: float | None = None,
|
53
|
+
infer_limit: float | None = None,
|
54
|
+
infer_limit_batch_size: int | None = None,
|
55
|
+
verbosity: int = 2,
|
56
|
+
raise_on_model_failure: bool = False,
|
56
57
|
**trainer_fit_kwargs,
|
57
58
|
):
|
58
59
|
"""Arguments:
|
@@ -121,6 +122,7 @@ class DefaultLearner(AbstractTabularLearner):
|
|
121
122
|
save_data=self.cache_data,
|
122
123
|
random_state=self.random_state,
|
123
124
|
verbosity=verbosity,
|
125
|
+
raise_on_model_failure=raise_on_model_failure,
|
124
126
|
)
|
125
127
|
|
126
128
|
self.trainer_path = trainer.path
|
@@ -12,6 +12,9 @@ logger = logging.getLogger(__name__)
|
|
12
12
|
|
13
13
|
# TODO: Add unit tests
|
14
14
|
class FTTransformerModel(MultiModalPredictorModel):
|
15
|
+
ag_key = "FT_TRANSFORMER"
|
16
|
+
ag_name = "FTTransformer"
|
17
|
+
|
15
18
|
def __init__(self, **kwargs):
|
16
19
|
"""Wrapper of autogluon.multimodal.MultiModalPredictor.
|
17
20
|
|
@@ -2,6 +2,7 @@ import logging
|
|
2
2
|
import math
|
3
3
|
import os
|
4
4
|
import time
|
5
|
+
from types import MappingProxyType
|
5
6
|
|
6
7
|
import numpy as np
|
7
8
|
import pandas as pd
|
@@ -30,6 +31,12 @@ class CatBoostModel(AbstractModel):
|
|
30
31
|
|
31
32
|
Hyperparameter options: https://catboost.ai/en/docs/references/training-parameters
|
32
33
|
"""
|
34
|
+
ag_key = "CAT"
|
35
|
+
ag_name = "CatBoost"
|
36
|
+
ag_priority = 70
|
37
|
+
ag_priority_by_problem_type = MappingProxyType({
|
38
|
+
SOFTCLASS: 60
|
39
|
+
})
|
33
40
|
|
34
41
|
def __init__(self, **kwargs):
|
35
42
|
super().__init__(**kwargs)
|
@@ -8,6 +8,7 @@ import warnings
|
|
8
8
|
from builtins import classmethod
|
9
9
|
from functools import partial
|
10
10
|
from pathlib import Path
|
11
|
+
from types import MappingProxyType
|
11
12
|
from typing import Union
|
12
13
|
|
13
14
|
import numpy as np
|
@@ -28,7 +29,7 @@ from autogluon.common.features.types import (
|
|
28
29
|
from autogluon.common.utils.pandas_utils import get_approximate_df_mem_usage
|
29
30
|
from autogluon.common.utils.resource_utils import ResourceManager
|
30
31
|
from autogluon.common.utils.try_import import try_import_fastai
|
31
|
-
from autogluon.core.constants import BINARY, QUANTILE, REGRESSION
|
32
|
+
from autogluon.core.constants import BINARY, MULTICLASS, QUANTILE, REGRESSION
|
32
33
|
from autogluon.core.hpo.constants import RAY_BACKEND
|
33
34
|
from autogluon.core.models import AbstractModel
|
34
35
|
from autogluon.core.utils.exceptions import TimeLimitExceeded
|
@@ -92,6 +93,14 @@ class NNFastAiTabularModel(AbstractModel):
|
|
92
93
|
'early.stopping.min_delta': 0.0001,
|
93
94
|
'early.stopping.patience': 10,
|
94
95
|
"""
|
96
|
+
ag_key = "FASTAI"
|
97
|
+
ag_name = "NeuralNetFastAI"
|
98
|
+
ag_priority = 50
|
99
|
+
# Increase priority for multiclass since neural networks
|
100
|
+
# scale better than trees as a function of n_classes.
|
101
|
+
ag_priority_by_problem_type = MappingProxyType({
|
102
|
+
MULTICLASS: 95,
|
103
|
+
})
|
95
104
|
|
96
105
|
model_internals_file_name = "model-internals.pkl"
|
97
106
|
|
@@ -22,6 +22,8 @@ class ImagePredictorModel(MultiModalPredictorModel):
|
|
22
22
|
Additionally has special null image handling to improve performance in the presence of null images (aka image path of '')
|
23
23
|
Note: null handling has not been compared to the built-in null handling of MultimodalPredictor yet.
|
24
24
|
"""
|
25
|
+
ag_key = "AG_IMAGE_NN"
|
26
|
+
ag_name = "ImagePredictor"
|
25
27
|
|
26
28
|
def __init__(self, **kwargs):
|
27
29
|
super().__init__(**kwargs)
|
@@ -75,6 +75,9 @@ class _IModelsModel(AbstractModel):
|
|
75
75
|
|
76
76
|
|
77
77
|
class RuleFitModel(_IModelsModel):
|
78
|
+
ag_key = "IM_RULEFIT"
|
79
|
+
ag_name = "RuleFit"
|
80
|
+
|
78
81
|
def get_model(self):
|
79
82
|
try_import_imodels()
|
80
83
|
from imodels import RuleFitClassifier, RuleFitRegressor
|
@@ -86,6 +89,9 @@ class RuleFitModel(_IModelsModel):
|
|
86
89
|
|
87
90
|
|
88
91
|
class GreedyTreeModel(_IModelsModel):
|
92
|
+
ag_key = "IM_GREEDYTREE"
|
93
|
+
ag_name = "GreedyTree"
|
94
|
+
|
89
95
|
def get_model(self):
|
90
96
|
try_import_imodels()
|
91
97
|
from imodels import GreedyTreeClassifier
|
@@ -98,6 +104,9 @@ class GreedyTreeModel(_IModelsModel):
|
|
98
104
|
|
99
105
|
|
100
106
|
class BoostedRulesModel(_IModelsModel):
|
107
|
+
ag_key = "IM_BOOSTEDRULES"
|
108
|
+
ag_name = "BoostedRules"
|
109
|
+
|
101
110
|
def get_model(self):
|
102
111
|
try_import_imodels()
|
103
112
|
from imodels import BoostedRulesClassifier
|
@@ -109,6 +118,9 @@ class BoostedRulesModel(_IModelsModel):
|
|
109
118
|
|
110
119
|
|
111
120
|
class HSTreeModel(_IModelsModel):
|
121
|
+
ag_key = "IM_HSTREE"
|
122
|
+
ag_name = "HierarchicalShrinkageTree"
|
123
|
+
|
112
124
|
def get_model(self):
|
113
125
|
try_import_imodels()
|
114
126
|
from imodels import HSTreeClassifierCV, HSTreeRegressorCV
|
@@ -120,6 +132,9 @@ class HSTreeModel(_IModelsModel):
|
|
120
132
|
|
121
133
|
|
122
134
|
class FigsModel(_IModelsModel):
|
135
|
+
ag_key = "IM_FIGS"
|
136
|
+
ag_name = "Figs"
|
137
|
+
|
123
138
|
def get_model(self):
|
124
139
|
try_import_imodels()
|
125
140
|
from imodels import FIGSClassifier, FIGSRegressor
|
@@ -22,6 +22,9 @@ class KNNModel(AbstractModel):
|
|
22
22
|
"""
|
23
23
|
KNearestNeighbors model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
|
24
24
|
"""
|
25
|
+
ag_key = "KNN"
|
26
|
+
ag_name = "KNeighbors"
|
27
|
+
ag_priority = 100
|
25
28
|
|
26
29
|
def __init__(self, **kwargs):
|
27
30
|
super().__init__(**kwargs)
|
@@ -7,6 +7,7 @@ import random
|
|
7
7
|
import re
|
8
8
|
import time
|
9
9
|
import warnings
|
10
|
+
from types import MappingProxyType
|
10
11
|
|
11
12
|
import numpy as np
|
12
13
|
import pandas as pd
|
@@ -40,6 +41,12 @@ class LGBModel(AbstractModel):
|
|
40
41
|
Extra hyperparameter options:
|
41
42
|
ag.early_stop : int, specifies the early stopping rounds. Defaults to an adaptive strategy. Recommended to keep default.
|
42
43
|
"""
|
44
|
+
ag_key = "GBM"
|
45
|
+
ag_name = "LightGBM"
|
46
|
+
ag_priority = 90
|
47
|
+
ag_priority_by_problem_type = MappingProxyType({
|
48
|
+
SOFTCLASS: 100
|
49
|
+
})
|
43
50
|
|
44
51
|
def __init__(self, **kwargs):
|
45
52
|
super().__init__(**kwargs)
|
@@ -38,6 +38,9 @@ class LinearModel(AbstractModel):
|
|
38
38
|
|
39
39
|
'regression': https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
|
40
40
|
"""
|
41
|
+
ag_key = "LR"
|
42
|
+
ag_name = "LinearModel"
|
43
|
+
ag_priority = 30
|
41
44
|
|
42
45
|
def __init__(self, **kwargs):
|
43
46
|
super().__init__(**kwargs)
|
@@ -27,6 +27,9 @@ class RFModel(AbstractModel):
|
|
27
27
|
"""
|
28
28
|
Random Forest model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
|
29
29
|
"""
|
30
|
+
ag_key = "RF"
|
31
|
+
ag_name = "RandomForest"
|
32
|
+
ag_priority = 80
|
30
33
|
|
31
34
|
def __init__(self, **kwargs):
|
32
35
|
super().__init__(**kwargs)
|
@@ -40,6 +40,8 @@ class TabTransformerModel(AbstractNeuralNetworkModel):
|
|
40
40
|
and applies them to the use case of tabular data. Specifically, this makes TabTransformer suitable for unsupervised
|
41
41
|
training of Tabular data with a subsequent fine-tuning step on labeled data.
|
42
42
|
"""
|
43
|
+
ag_key = "TRANSF"
|
44
|
+
ag_name = "Transformer"
|
43
45
|
|
44
46
|
params_file_name = "tab_trans_params.pth"
|
45
47
|
|
@@ -22,6 +22,9 @@ class TabPFNModel(AbstractModel):
|
|
22
22
|
To use this model, `tabpfn` must be installed.
|
23
23
|
To install TabPFN, you can run `pip install autogluon.tabular[tabpfn]` or `pip install tabpfn`.
|
24
24
|
"""
|
25
|
+
ag_key = "TABPFN"
|
26
|
+
ag_name = "TabPFN"
|
27
|
+
ag_priority = 110
|
25
28
|
|
26
29
|
def __init__(self, **kwargs):
|
27
30
|
super().__init__(**kwargs)
|
@@ -35,6 +35,10 @@ class TabPFNMixModel(AbstractModel):
|
|
35
35
|
|
36
36
|
For more information, refer to the `./_internals/README.md` file.
|
37
37
|
"""
|
38
|
+
ag_key = "TABPFNMIX"
|
39
|
+
ag_name = "TabPFNMix"
|
40
|
+
ag_priority = 45
|
41
|
+
|
38
42
|
weights_file_name = "model.pt"
|
39
43
|
|
40
44
|
def __init__(self, **kwargs):
|
@@ -47,6 +47,9 @@ class TabularNeuralNetTorchModel(AbstractNeuralNetworkModel):
|
|
47
47
|
ag.early_stop : int | str, default = "default"
|
48
48
|
Specifies the early stopping rounds. Defaults to an adaptive strategy. Recommended to keep default.
|
49
49
|
"""
|
50
|
+
ag_key = "NN_TORCH"
|
51
|
+
ag_name = "NeuralNetTorch"
|
52
|
+
ag_priority = 25
|
50
53
|
|
51
54
|
# Constants used throughout this class:
|
52
55
|
unique_category_str = np.nan # string used to represent missing values and unknown categories for categorical features.
|
@@ -19,6 +19,9 @@ logger = logging.getLogger(__name__)
|
|
19
19
|
class TextPredictorModel(MultiModalPredictorModel):
|
20
20
|
"""MultimodalPredictor that doesn't use image features"""
|
21
21
|
|
22
|
+
ag_key = "AG_TEXT_NN"
|
23
|
+
ag_name = "TextPredictor"
|
24
|
+
|
22
25
|
def _get_default_auxiliary_params(self) -> dict:
|
23
26
|
default_auxiliary_params = super()._get_default_auxiliary_params()
|
24
27
|
extra_auxiliary_params = dict(
|
@@ -38,6 +38,9 @@ class VowpalWabbitModel(AbstractModel):
|
|
38
38
|
VowpalWabbit Command Line args: https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Command-line-arguments
|
39
39
|
|
40
40
|
"""
|
41
|
+
ag_key = "VW"
|
42
|
+
ag_name = "VowpalWabbit"
|
43
|
+
ag_priority = 10
|
41
44
|
|
42
45
|
model_internals_file_name = "model-internals.pkl"
|
43
46
|
|
@@ -7,6 +7,9 @@ class XTModel(RFModel):
|
|
7
7
|
"""
|
8
8
|
Extra Trees model (scikit-learn): https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html#sklearn.ensemble.ExtraTreesClassifier
|
9
9
|
"""
|
10
|
+
ag_key = "XT"
|
11
|
+
ag_name = "ExtraTrees"
|
12
|
+
ag_priority = 60
|
10
13
|
|
11
14
|
def _get_model_type(self):
|
12
15
|
if self.problem_type == REGRESSION:
|
@@ -990,6 +990,14 @@ class TabularPredictor:
|
|
990
990
|
to any amount of labeled data.
|
991
991
|
verbosity : int
|
992
992
|
If specified, overrides the existing `predictor.verbosity` value.
|
993
|
+
raise_on_model_failure: bool, default = False
|
994
|
+
If True, will raise on any exception during model training.
|
995
|
+
This is useful when using a debugger during development to identify the cause of model failures.
|
996
|
+
This should only be used for debugging.
|
997
|
+
If False, will try to skip to the next model if an exception occurred during model training.
|
998
|
+
This is the default logic and is a core principle of AutoGluon's design.
|
999
|
+
|
1000
|
+
.. versionadded:: 1.3.0
|
993
1001
|
raise_on_no_models_fitted: bool, default = True
|
994
1002
|
If True, will raise a RuntimeError if no models were successfully fit during `fit()`.
|
995
1003
|
calibrate: bool or str, default = 'auto'
|
@@ -1109,6 +1117,7 @@ class TabularPredictor:
|
|
1109
1117
|
delay_bag_sets: bool = kwargs["delay_bag_sets"]
|
1110
1118
|
test_data = kwargs["test_data"]
|
1111
1119
|
learning_curves = kwargs["learning_curves"]
|
1120
|
+
raise_on_model_failure = kwargs["raise_on_model_failure"]
|
1112
1121
|
|
1113
1122
|
if ag_args is None:
|
1114
1123
|
ag_args = {}
|
@@ -1256,6 +1265,7 @@ class TabularPredictor:
|
|
1256
1265
|
verbosity=verbosity,
|
1257
1266
|
use_bag_holdout=use_bag_holdout,
|
1258
1267
|
callbacks=callbacks,
|
1268
|
+
raise_on_model_failure=raise_on_model_failure,
|
1259
1269
|
)
|
1260
1270
|
ag_post_fit_kwargs = dict(
|
1261
1271
|
keep_only_best=kwargs["keep_only_best"],
|
@@ -4330,7 +4340,14 @@ class TabularPredictor:
|
|
4330
4340
|
reduce_children=reduce_children,
|
4331
4341
|
)
|
4332
4342
|
|
4333
|
-
def delete_models(
|
4343
|
+
def delete_models(
|
4344
|
+
self,
|
4345
|
+
models_to_keep: str | list[str] | None = None,
|
4346
|
+
models_to_delete: str | list[str] | None = None,
|
4347
|
+
allow_delete_cascade: bool = False,
|
4348
|
+
delete_from_disk: bool = True,
|
4349
|
+
dry_run: bool | None = None,
|
4350
|
+
):
|
4334
4351
|
"""
|
4335
4352
|
Deletes models from `predictor`.
|
4336
4353
|
This can be helpful to minimize memory usage and disk usage, particularly for model deployment.
|
@@ -4341,13 +4358,13 @@ class TabularPredictor:
|
|
4341
4358
|
|
4342
4359
|
Parameters
|
4343
4360
|
----------
|
4344
|
-
models_to_keep : str or list, default = None
|
4361
|
+
models_to_keep : str or list[str], default = None
|
4345
4362
|
Name of model or models to not delete.
|
4346
4363
|
All models that are not specified and are also not required as a dependency of any model in `models_to_keep` will be deleted.
|
4347
4364
|
Specify `models_to_keep='best'` to keep only the best model and its model dependencies.
|
4348
4365
|
`models_to_delete` must be None if `models_to_keep` is set.
|
4349
4366
|
To see the list of possible model names, use: `predictor.model_names()` or `predictor.leaderboard()`.
|
4350
|
-
models_to_delete : str or list, default = None
|
4367
|
+
models_to_delete : str or list[str], default = None
|
4351
4368
|
Name of model or models to delete.
|
4352
4369
|
All models that are not specified but depend on a model in `models_to_delete` will also be deleted.
|
4353
4370
|
`models_to_keep` must be None if `models_to_delete` is set.
|
@@ -4361,10 +4378,19 @@ class TabularPredictor:
|
|
4361
4378
|
WARNING: This deletes the entire directory for the deleted models, and ALL FILES located there.
|
4362
4379
|
It is highly recommended to first run with `dry_run=True` to understand which directories will be deleted.
|
4363
4380
|
dry_run : bool, default = True
|
4381
|
+
WARNING: Starting in v1.4.0 dry_run will default to False.
|
4364
4382
|
If `True`, then deletions don't occur, and logging statements are printed describing what would have occurred.
|
4365
4383
|
Set `dry_run=False` to perform the deletions.
|
4366
4384
|
|
4367
4385
|
"""
|
4386
|
+
if dry_run is None:
|
4387
|
+
warnings.warn(
|
4388
|
+
f"dry_run was not specified for `TabularPredictor.delete_models`. dry_run prior to version 1.4.0 defaults to True. "
|
4389
|
+
f"Starting in version 1.4, AutoGluon will default dry_run to False. "
|
4390
|
+
f"If you want to maintain the current logic in future versions, explicitly specify `dry_run=True`.",
|
4391
|
+
category=FutureWarning,
|
4392
|
+
)
|
4393
|
+
dry_run = True
|
4368
4394
|
self._assert_is_fit("delete_models")
|
4369
4395
|
if models_to_keep == "best":
|
4370
4396
|
models_to_keep = self.model_best
|
@@ -5020,6 +5046,7 @@ class TabularPredictor:
|
|
5020
5046
|
# learning curves and test data (for logging purposes only)
|
5021
5047
|
learning_curves=False,
|
5022
5048
|
test_data=None,
|
5049
|
+
raise_on_model_failure=False,
|
5023
5050
|
)
|
5024
5051
|
kwargs, ds_valid_keys = self._sanitize_dynamic_stacking_kwargs(kwargs)
|
5025
5052
|
kwargs = self._validate_fit_extra_kwargs(kwargs, extra_valid_keys=list(fit_kwargs_default.keys()) + ds_valid_keys)
|
@@ -0,0 +1,66 @@
|
|
1
|
+
from autogluon.core.models import (
|
2
|
+
DummyModel,
|
3
|
+
GreedyWeightedEnsembleModel,
|
4
|
+
SimpleWeightedEnsembleModel,
|
5
|
+
)
|
6
|
+
|
7
|
+
from . import ModelRegister
|
8
|
+
from ..models import (
|
9
|
+
BoostedRulesModel,
|
10
|
+
CatBoostModel,
|
11
|
+
FastTextModel,
|
12
|
+
FigsModel,
|
13
|
+
FTTransformerModel,
|
14
|
+
GreedyTreeModel,
|
15
|
+
HSTreeModel,
|
16
|
+
ImagePredictorModel,
|
17
|
+
KNNModel,
|
18
|
+
LGBModel,
|
19
|
+
LinearModel,
|
20
|
+
MultiModalPredictorModel,
|
21
|
+
NNFastAiTabularModel,
|
22
|
+
RFModel,
|
23
|
+
RuleFitModel,
|
24
|
+
TabPFNMixModel,
|
25
|
+
TabPFNModel,
|
26
|
+
TabularNeuralNetTorchModel,
|
27
|
+
TextPredictorModel,
|
28
|
+
VowpalWabbitModel,
|
29
|
+
XGBoostModel,
|
30
|
+
XTModel,
|
31
|
+
)
|
32
|
+
from ..models.tab_transformer.tab_transformer_model import TabTransformerModel
|
33
|
+
|
34
|
+
|
35
|
+
# When adding a new model officially to AutoGluon, the model class should be added to the bottom of this list.
|
36
|
+
REGISTERED_MODEL_CLS_LST = [
|
37
|
+
RFModel,
|
38
|
+
XTModel,
|
39
|
+
KNNModel,
|
40
|
+
LGBModel,
|
41
|
+
CatBoostModel,
|
42
|
+
XGBoostModel,
|
43
|
+
TabularNeuralNetTorchModel,
|
44
|
+
LinearModel,
|
45
|
+
NNFastAiTabularModel,
|
46
|
+
TabTransformerModel,
|
47
|
+
TextPredictorModel,
|
48
|
+
ImagePredictorModel,
|
49
|
+
MultiModalPredictorModel,
|
50
|
+
FTTransformerModel,
|
51
|
+
TabPFNModel,
|
52
|
+
TabPFNMixModel,
|
53
|
+
FastTextModel,
|
54
|
+
VowpalWabbitModel,
|
55
|
+
GreedyWeightedEnsembleModel,
|
56
|
+
SimpleWeightedEnsembleModel,
|
57
|
+
RuleFitModel,
|
58
|
+
GreedyTreeModel,
|
59
|
+
FigsModel,
|
60
|
+
HSTreeModel,
|
61
|
+
BoostedRulesModel,
|
62
|
+
DummyModel,
|
63
|
+
]
|
64
|
+
|
65
|
+
# TODO: Replace logic in `autogluon.tabular.trainer.model_presets.presets` with `ag_model_register`
|
66
|
+
ag_model_register = ModelRegister(model_cls_list=REGISTERED_MODEL_CLS_LST)
|