autogluon.tabular 1.2.1b20250221__tar.gz → 1.2.1b20250222__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (164) hide show
  1. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/PKG-INFO +1 -1
  2. autogluon.tabular-1.2.1b20250222/src/autogluon/tabular/experimental/plot_leaderboard.py +234 -0
  3. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/version.py +1 -1
  4. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/PKG-INFO +1 -1
  5. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/SOURCES.txt +1 -0
  6. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/requires.txt +10 -10
  7. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/setup.cfg +0 -0
  8. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/setup.py +0 -0
  9. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/__init__.py +0 -0
  10. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/__init__.py +0 -0
  11. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/config_helper.py +0 -0
  12. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  13. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  14. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  15. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  16. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  17. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/experimental/__init__.py +0 -0
  18. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  19. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/experimental/_tabular_classifier.py +0 -0
  20. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/experimental/_tabular_regressor.py +0 -0
  21. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/learner/__init__.py +0 -0
  22. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  23. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/learner/default_learner.py +0 -0
  24. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/__init__.py +0 -0
  25. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  26. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/_utils/rapids_utils.py +0 -0
  27. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  28. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  29. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  30. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  31. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  32. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/callbacks.py +0 -0
  33. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  34. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  35. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  36. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  37. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  38. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  39. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  40. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  41. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  42. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  43. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  44. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  45. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  46. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  47. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +0 -0
  48. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  49. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  50. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  51. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  52. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  53. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  54. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  55. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  56. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  57. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  58. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  59. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  60. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  61. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  62. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  63. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  64. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  65. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  66. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  67. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lgb/lgb_utils.py +0 -0
  68. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  69. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  70. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  71. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  72. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  73. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  74. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  75. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  76. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  77. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  78. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  79. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  80. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  81. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  82. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
  83. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
  84. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
  85. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
  86. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +0 -0
  87. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/pretexts.py +0 -0
  88. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
  89. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
  90. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +0 -0
  91. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -0
  92. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
  93. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
  94. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
  95. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  96. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  97. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  98. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  99. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  100. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  101. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  102. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  103. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  104. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  105. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  106. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  107. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  108. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  109. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  110. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  111. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  112. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  113. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  114. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  115. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  116. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  117. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  118. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  119. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  120. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  121. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  122. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  123. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  124. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  125. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  126. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  127. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  128. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  129. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  130. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +0 -0
  131. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  132. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  133. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  134. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  135. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  136. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  137. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  138. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
  139. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +0 -0
  140. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
  141. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  142. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  143. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  144. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  145. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  146. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  147. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  148. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  149. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  150. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/predictor/__init__.py +0 -0
  151. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  152. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/predictor/predictor.py +0 -0
  153. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/__init__.py +0 -0
  154. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/abstract_trainer.py +0 -0
  155. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/auto_trainer.py +0 -0
  156. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  157. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  158. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  159. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/tuning/__init__.py +0 -0
  160. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  161. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  162. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  163. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  164. {autogluon.tabular-1.2.1b20250221 → autogluon.tabular-1.2.1b20250222}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250221
3
+ Version: 1.2.1b20250222
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -0,0 +1,234 @@
1
+ from __future__ import annotations
2
+
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ from matplotlib.figure import Figure
6
+
7
+ from autogluon.tabular import TabularPredictor
8
+
9
+
10
+ def _cumulative_min_idx(series: pd.Series) -> pd.Series:
11
+ """
12
+
13
+ Parameters
14
+ ----------
15
+ series: pd.Series
16
+
17
+ Returns
18
+ -------
19
+ pd.Series
20
+ The index of the cumulative min of the series values.
21
+
22
+ """
23
+ min_val = float('inf')
24
+ min_index = -1
25
+ result = []
26
+ for i, val in enumerate(series):
27
+ if pd.isna(val):
28
+ result.append(min_index)
29
+ elif val < min_val:
30
+ min_val = val
31
+ min_index = i
32
+ result.append(min_index)
33
+ else:
34
+ result.append(min_index)
35
+ return pd.Series(series.index[result], index=series.index)
36
+
37
+
38
+ def compute_cumulative_leaderboard_stats(leaderboard: pd.DataFrame) -> pd.DataFrame:
39
+ """
40
+
41
+ Parameters
42
+ ----------
43
+ leaderboard: pd.DataFrame
44
+
45
+ Returns
46
+ -------
47
+ leaderboard_stats: pd.DataFrame
48
+
49
+ """
50
+ leaderboard = leaderboard.copy(deep=True)
51
+ leaderboard = leaderboard.sort_values(by=["fit_order"]).set_index("model")
52
+ leaderboard["best_model_so_far"] = _cumulative_min_idx(leaderboard["metric_error_val"])
53
+ leaderboard["best_idx_so_far"] = leaderboard["best_model_so_far"].map(leaderboard["fit_order"])
54
+ leaderboard["time_so_far"] = leaderboard["fit_time_marginal"].cumsum()
55
+ leaderboard["metric_error_val_so_far"] = leaderboard["best_model_so_far"].map(leaderboard["metric_error_val"])
56
+ if "metric_error_test" in leaderboard:
57
+ leaderboard["metric_error_test_so_far"] = leaderboard["best_model_so_far"].map(leaderboard["metric_error_test"])
58
+ leaderboard = leaderboard.reset_index(drop=False).set_index("fit_order")
59
+ return leaderboard
60
+
61
+
62
+ # TODO: Include constraints as options:
63
+ # infer_limit
64
+ # disk_usage
65
+ # TODO: Avoid calling leaderboard on the original models again
66
+ # TODO: Calibration?
67
+ def compute_cumulative_leaderboard_stats_ensemble(
68
+ leaderboard: pd.DataFrame,
69
+ predictor: TabularPredictor,
70
+ test_data: pd.DataFrame | None = None,
71
+ cleanup_ensembles: bool = True,
72
+ ) -> pd.DataFrame:
73
+ """
74
+
75
+ Parameters
76
+ ----------
77
+ leaderboard: pd.DataFrame
78
+ predictor: TabularPredictor
79
+ test_data: pd.DataFrame | None, default None
80
+ cleanup_ensembles: bool, default True
81
+
82
+ Returns
83
+ -------
84
+ leaderboard_stats: pd.DataFrame
85
+
86
+ """
87
+ leaderboard_stats = compute_cumulative_leaderboard_stats(leaderboard)
88
+ model_fit_order = list(leaderboard_stats["model"])
89
+ ens_names = []
90
+ for i in range(len(model_fit_order)):
91
+ models_to_ens = model_fit_order[:i + 1]
92
+ ens_name = predictor.fit_weighted_ensemble(base_models=models_to_ens, name_suffix=f"_fit_{i + 1}")[0]
93
+ ens_names.append(ens_name)
94
+
95
+ leaderboard_stats_ens = predictor.leaderboard(test_data, score_format="error", display=False)
96
+ leaderboard_stats_ens = leaderboard_stats_ens[leaderboard_stats_ens["model"].isin(ens_names)]
97
+ leaderboard_stats_ens = leaderboard_stats_ens.set_index("model").reindex(ens_names).reset_index()
98
+ leaderboard_stats_ens["fit_order"] = leaderboard_stats.index
99
+ leaderboard_stats_ens["model"] = leaderboard_stats["model"].values
100
+ leaderboard_stats_ens = compute_cumulative_leaderboard_stats(leaderboard_stats_ens)
101
+
102
+ leaderboard_stats["metric_error_val_so_far_ens"] = leaderboard_stats_ens["metric_error_val_so_far"]
103
+ if test_data is not None:
104
+ leaderboard_stats["metric_error_test_so_far_ens"] = leaderboard_stats_ens["metric_error_test_so_far"]
105
+ leaderboard_stats["best_idx_so_far_ens"] = leaderboard_stats_ens["best_idx_so_far"]
106
+ leaderboard_stats["best_model_so_far_ens"] = leaderboard_stats_ens["best_model_so_far"]
107
+ if cleanup_ensembles:
108
+ predictor.delete_models(models_to_delete=ens_names, dry_run=False)
109
+
110
+ return leaderboard_stats
111
+
112
+
113
+ def plot_leaderboard_from_predictor(
114
+ predictor: TabularPredictor,
115
+ test_data: pd.DataFrame | None = None,
116
+ ensemble: bool = False,
117
+ include_val: bool = True,
118
+ ) -> tuple[Figure, pd.DataFrame]:
119
+ """
120
+
121
+ Parameters
122
+ ----------
123
+ predictor: TabularPredictor
124
+ test_data: pd.DataFrame | None, default None
125
+ If specified, plots the test error.
126
+ ensemble: bool, default False
127
+ If True, additionally plots the results of cumulatively ensembling models at each step.
128
+ include_val: bool, default True
129
+ If True, plots the validation error.
130
+
131
+ Returns
132
+ -------
133
+ fig: Figure
134
+ leaderboard_stats: pd.DataFrame
135
+
136
+ Examples
137
+ --------
138
+ >>> data_root = 'https://autogluon.s3.amazonaws.com/datasets/Inc/'
139
+ >>> predictor_example = TabularPredictor(label="class").fit(train_data=data_root + "train.csv", time_limit=60)
140
+ >>> figure, lb = plot_leaderboard_from_predictor(predictor=predictor_example, test_data=data_root + "test.csv", ensemble=True)
141
+ >>> with pd.option_context("display.max_rows", None, "display.max_columns", None, "display.width", 1000):
142
+ >>> print(lb)
143
+ >>> figure.savefig("example_leaderboard_plot.png")
144
+ """
145
+ leaderboard = predictor.leaderboard(test_data, score_format="error", display=False)
146
+ if ensemble:
147
+ leaderboard_order_sorted = compute_cumulative_leaderboard_stats_ensemble(leaderboard=leaderboard, test_data=test_data, predictor=predictor)
148
+ else:
149
+ leaderboard_order_sorted = compute_cumulative_leaderboard_stats(leaderboard=leaderboard)
150
+ return plot_leaderboard(leaderboard=leaderboard_order_sorted, preprocess=False, ensemble=ensemble, include_val=include_val)
151
+
152
+
153
+ def plot_leaderboard(
154
+ leaderboard: pd.DataFrame,
155
+ preprocess: bool = True,
156
+ ensemble: bool = False,
157
+ include_val: bool = True,
158
+ include_test: bool | None = None,
159
+ ) -> tuple[Figure, pd.DataFrame]:
160
+ """
161
+
162
+ Parameters
163
+ ----------
164
+ leaderboard: pd.DataFrame
165
+ Either the raw leaderboard output of `predictor.leaderboard(..., score_format="error")` or the output of `compute_cumulative_leaderboard_stats`.
166
+ preprocess: bool, default True
167
+ Whether to preprocess the leaderboard to obtain leaderboard_stats.
168
+ Set to False if `leaderboard` has already been transformed
169
+ via `compute_cumulative_leaderboard_stats` or `compute_cumulative_leaderboard_stats_ensemble`.
170
+ ensemble: bool, default False
171
+ If True, additionally plots the results of cumulatively ensembling models at each step.
172
+ Can only be set to True if ensemble columns are present in the leaderboard,
173
+ which are generated by first calling `compute_cumulative_leaderboard_stats_ensemble`.
174
+ include_val: bool, default True
175
+ If True, plots the validation error.
176
+ include_test: bool | None, default None
177
+ If True, plots the test error.
178
+ If None, infers based on the existence of the test error column in `leaderboard`.
179
+
180
+ Returns
181
+ -------
182
+ fig: Figure
183
+ leaderboard_stats: pd.DataFrame
184
+
185
+ """
186
+ leaderboard_order_sorted = leaderboard
187
+ if preprocess:
188
+ if ensemble:
189
+ raise AssertionError(
190
+ f"Cannot have both `preprocess=True` and `ensemble=True`."
191
+ f"Instead call `plot_leaderboard_from_predictor(..., ensemble=True)`"
192
+ )
193
+ leaderboard_order_sorted = compute_cumulative_leaderboard_stats(leaderboard=leaderboard_order_sorted)
194
+
195
+ eval_metric = leaderboard_order_sorted["eval_metric"].iloc[0]
196
+ if include_test is None:
197
+ include_test = "metric_error_test_so_far" in leaderboard_order_sorted
198
+
199
+ # TODO: View on inference time, can take from ensemble model, 3rd dimension, color?
200
+ fig, axes = plt.subplots(1, 2, sharey=True)
201
+ fig.suptitle('AutoGluon Metric Error Over Time')
202
+
203
+ ax = axes[0]
204
+
205
+ if include_test:
206
+ ax.plot(leaderboard_order_sorted.index, leaderboard_order_sorted["metric_error_test_so_far"].values, '-', color="b", label="test")
207
+ if include_val:
208
+ ax.plot(leaderboard_order_sorted.index, leaderboard_order_sorted["metric_error_val_so_far"].values, '-', color="orange", label="val")
209
+ if ensemble:
210
+ if include_test:
211
+ ax.plot(leaderboard_order_sorted.index, leaderboard_order_sorted["metric_error_test_so_far_ens"].values, '--', color="b", label="test (ens)")
212
+ if include_val:
213
+ ax.plot(leaderboard_order_sorted.index, leaderboard_order_sorted["metric_error_val_so_far_ens"].values, '--', color="orange", label="val (ens)")
214
+ ax.set_xlim(left=1, right=leaderboard_order_sorted.index.max())
215
+ ax.set_xlabel('# Models Fit')
216
+ ax.set_ylabel(f'Metric Error ({eval_metric})')
217
+ ax.grid()
218
+
219
+ ax = axes[1]
220
+
221
+ if include_test:
222
+ ax.plot(leaderboard_order_sorted["time_so_far"].values, leaderboard_order_sorted["metric_error_test_so_far"].values, '-', color="b", label="test")
223
+ if include_val:
224
+ ax.plot(leaderboard_order_sorted["time_so_far"].values, leaderboard_order_sorted["metric_error_val_so_far"].values, '-', color="orange", label="val")
225
+ if ensemble:
226
+ if include_test:
227
+ ax.plot(leaderboard_order_sorted["time_so_far"].values, leaderboard_order_sorted["metric_error_test_so_far_ens"].values, '--', color="b", label="test (ens)")
228
+ if include_val:
229
+ ax.plot(leaderboard_order_sorted["time_so_far"].values, leaderboard_order_sorted["metric_error_val_so_far_ens"].values, '--', color="orange", label="val (ens)")
230
+ ax.set_xlabel('Time Elapsed (s)')
231
+ ax.grid()
232
+ ax.legend()
233
+
234
+ return fig, leaderboard_order_sorted
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250221"
3
+ __version__ = "1.2.1b20250222"
4
4
  __lite__ = False
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: autogluon.tabular
3
- Version: 1.2.1b20250221
3
+ Version: 1.2.1b20250222
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -21,6 +21,7 @@ src/autogluon/tabular/experimental/__init__.py
21
21
  src/autogluon/tabular/experimental/_scikit_mixin.py
22
22
  src/autogluon/tabular/experimental/_tabular_classifier.py
23
23
  src/autogluon/tabular/experimental/_tabular_regressor.py
24
+ src/autogluon/tabular/experimental/plot_leaderboard.py
24
25
  src/autogluon/tabular/learner/__init__.py
25
26
  src/autogluon/tabular/learner/abstract_learner.py
26
27
  src/autogluon/tabular/learner/default_learner.py
@@ -3,20 +3,20 @@ scipy<1.16,>=1.5.4
3
3
  pandas<2.3.0,>=2.0.0
4
4
  scikit-learn<1.5.3,>=1.4.0
5
5
  networkx<4,>=3.0
6
- autogluon.core==1.2.1b20250221
7
- autogluon.features==1.2.1b20250221
6
+ autogluon.core==1.2.1b20250222
7
+ autogluon.features==1.2.1b20250222
8
8
 
9
9
  [all]
10
- torch<2.6,>=2.2
10
+ xgboost<2.2,>=1.6
11
+ numpy<2.0.0,>=1.25
12
+ catboost<1.3,>=1.2
11
13
  einops<0.9,>=0.7
12
- spacy<3.8
14
+ torch<2.6,>=2.2
15
+ autogluon.core[all]==1.2.1b20250222
16
+ lightgbm<4.6,>=4.0
13
17
  fastai<2.8,>=2.3.1
14
- numpy<2.0.0,>=1.25
18
+ spacy<3.8
15
19
  huggingface_hub[torch]
16
- lightgbm<4.6,>=4.0
17
- xgboost<2.2,>=1.6
18
- catboost<1.3,>=1.2
19
- autogluon.core[all]==1.2.1b20250221
20
20
 
21
21
  [catboost]
22
22
  numpy<2.0.0,>=1.25
@@ -34,7 +34,7 @@ imodels<1.4.0,>=1.3.10
34
34
  lightgbm<4.6,>=4.0
35
35
 
36
36
  [ray]
37
- autogluon.core[all]==1.2.1b20250221
37
+ autogluon.core[all]==1.2.1b20250222
38
38
 
39
39
  [skex]
40
40
  scikit-learn-intelex<2025.1,>=2024.0