autogluon.tabular 1.2.1b20250116__tar.gz → 1.2.1b20250130__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon.tabular-1.2.1b20250130/PKG-INFO +151 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_tabular_classifier.py +1 -3
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_tabular_regressor.py +1 -3
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/rapids_utils.py +1 -1
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/callbacks.py +41 -13
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +2 -2
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/lgb_utils.py +2 -2
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +3 -3
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/pretexts.py +4 -4
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +4 -4
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +2 -2
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/_deprecated_methods.py +5 -7
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/predictor.py +43 -43
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/auto_trainer.py +5 -6
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/version.py +1 -1
- autogluon.tabular-1.2.1b20250130/src/autogluon.tabular.egg-info/PKG-INFO +151 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/SOURCES.txt +2 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/requires.txt +8 -8
- autogluon.tabular-1.2.1b20250116/PKG-INFO +0 -147
- autogluon.tabular-1.2.1b20250116/src/autogluon.tabular.egg-info/PKG-INFO +0 -147
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/setup.cfg +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/setup.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/config_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/presets_configs.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/default_learner.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xt/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/tuning/__init__.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
- {autogluon.tabular-1.2.1b20250116 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -0,0 +1,151 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: autogluon.tabular
|
3
|
+
Version: 1.2.1b20250130
|
4
|
+
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
|
+
Home-page: https://github.com/autogluon/autogluon
|
6
|
+
Author: AutoGluon Community
|
7
|
+
License: Apache-2.0
|
8
|
+
Project-URL: Documentation, https://auto.gluon.ai
|
9
|
+
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
10
|
+
Project-URL: Source, https://github.com/autogluon/autogluon/
|
11
|
+
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
12
|
+
Platform: UNKNOWN
|
13
|
+
Classifier: Development Status :: 4 - Beta
|
14
|
+
Classifier: Intended Audience :: Education
|
15
|
+
Classifier: Intended Audience :: Developers
|
16
|
+
Classifier: Intended Audience :: Science/Research
|
17
|
+
Classifier: Intended Audience :: Customer Service
|
18
|
+
Classifier: Intended Audience :: Financial and Insurance Industry
|
19
|
+
Classifier: Intended Audience :: Healthcare Industry
|
20
|
+
Classifier: Intended Audience :: Telecommunications Industry
|
21
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
22
|
+
Classifier: Operating System :: MacOS
|
23
|
+
Classifier: Operating System :: Microsoft :: Windows
|
24
|
+
Classifier: Operating System :: POSIX
|
25
|
+
Classifier: Operating System :: Unix
|
26
|
+
Classifier: Programming Language :: Python :: 3
|
27
|
+
Classifier: Programming Language :: Python :: 3.9
|
28
|
+
Classifier: Programming Language :: Python :: 3.10
|
29
|
+
Classifier: Programming Language :: Python :: 3.11
|
30
|
+
Classifier: Programming Language :: Python :: 3.12
|
31
|
+
Classifier: Topic :: Software Development
|
32
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
33
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
34
|
+
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
35
|
+
Requires-Python: >=3.9, <3.13
|
36
|
+
Description-Content-Type: text/markdown
|
37
|
+
Provides-Extra: lightgbm
|
38
|
+
Provides-Extra: catboost
|
39
|
+
Provides-Extra: xgboost
|
40
|
+
Provides-Extra: fastai
|
41
|
+
Provides-Extra: tabpfn
|
42
|
+
Provides-Extra: tabpfnmix
|
43
|
+
Provides-Extra: ray
|
44
|
+
Provides-Extra: skex
|
45
|
+
Provides-Extra: imodels
|
46
|
+
Provides-Extra: vowpalwabbit
|
47
|
+
Provides-Extra: skl2onnx
|
48
|
+
Provides-Extra: all
|
49
|
+
Provides-Extra: tests
|
50
|
+
License-File: ../LICENSE
|
51
|
+
License-File: ../NOTICE
|
52
|
+
|
53
|
+
|
54
|
+
|
55
|
+
<div align="center">
|
56
|
+
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
|
57
|
+
|
58
|
+
## Fast and Accurate ML in 3 Lines of Code
|
59
|
+
|
60
|
+
[](https://github.com/autogluon/autogluon/releases)
|
61
|
+
[](https://anaconda.org/conda-forge/autogluon)
|
62
|
+
[](https://pypi.org/project/autogluon/)
|
63
|
+
[](https://pepy.tech/project/autogluon)
|
64
|
+
[](./LICENSE)
|
65
|
+
[](https://discord.gg/wjUmjqAc2N)
|
66
|
+
[](https://twitter.com/autogluon)
|
67
|
+
[](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
|
68
|
+
[](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
|
69
|
+
|
70
|
+
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
71
|
+
|
72
|
+
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
73
|
+
</div>
|
74
|
+
|
75
|
+
## 💾 Installation
|
76
|
+
|
77
|
+
AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
|
78
|
+
|
79
|
+
You can install AutoGluon with:
|
80
|
+
|
81
|
+
```python
|
82
|
+
pip install autogluon
|
83
|
+
```
|
84
|
+
|
85
|
+
Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
|
86
|
+
|
87
|
+
## :zap: Quickstart
|
88
|
+
|
89
|
+
Build accurate end-to-end ML models in just 3 lines of code!
|
90
|
+
|
91
|
+
```python
|
92
|
+
from autogluon.tabular import TabularPredictor
|
93
|
+
predictor = TabularPredictor(label="class").fit("train.csv")
|
94
|
+
predictions = predictor.predict("test.csv")
|
95
|
+
```
|
96
|
+
|
97
|
+
| AutoGluon Task | Quickstart | API |
|
98
|
+
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
99
|
+
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
100
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
101
|
+
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
102
|
+
|
103
|
+
## :mag: Resources
|
104
|
+
|
105
|
+
### Hands-on Tutorials / Talks
|
106
|
+
|
107
|
+
Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
|
108
|
+
|
109
|
+
| Title | Format | Location | Date |
|
110
|
+
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
|
111
|
+
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
112
|
+
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
113
|
+
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
114
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
115
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
116
|
+
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
117
|
+
|
118
|
+
### Scientific Publications
|
119
|
+
- [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
|
120
|
+
- [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
|
121
|
+
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
122
|
+
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
123
|
+
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
124
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
|
125
|
+
|
126
|
+
### Articles
|
127
|
+
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
128
|
+
- [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
|
129
|
+
- [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
|
130
|
+
|
131
|
+
### Train/Deploy AutoGluon in the Cloud
|
132
|
+
- [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
|
133
|
+
- [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
|
134
|
+
- [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
|
135
|
+
- [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
|
136
|
+
- [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
|
137
|
+
- [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
|
138
|
+
|
139
|
+
## :pencil: Citing AutoGluon
|
140
|
+
|
141
|
+
If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
|
142
|
+
|
143
|
+
## :wave: How to get involved
|
144
|
+
|
145
|
+
We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
|
146
|
+
|
147
|
+
## :classical_building: License
|
148
|
+
|
149
|
+
This library is licensed under the Apache 2.0 License.
|
150
|
+
|
151
|
+
|
@@ -1,7 +1,5 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
from typing import List
|
4
|
-
|
5
3
|
import pandas as pd
|
6
4
|
from sklearn.base import BaseEstimator, ClassifierMixin
|
7
5
|
from sklearn.utils.multiclass import unique_labels
|
@@ -18,7 +16,7 @@ class TabularClassifier(BaseEstimator, ClassifierMixin, ScikitMixin):
|
|
18
16
|
self,
|
19
17
|
eval_metric: str | Scorer = None,
|
20
18
|
time_limit: float = None,
|
21
|
-
presets:
|
19
|
+
presets: list[str] | str = None,
|
22
20
|
hyperparameters: dict | str = None,
|
23
21
|
path: str = None,
|
24
22
|
verbosity: int = 2,
|
@@ -1,7 +1,5 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
from typing import List
|
4
|
-
|
5
3
|
import pandas as pd
|
6
4
|
from sklearn.base import BaseEstimator, RegressorMixin
|
7
5
|
from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
|
@@ -17,7 +15,7 @@ class TabularRegressor(BaseEstimator, RegressorMixin, ScikitMixin):
|
|
17
15
|
self,
|
18
16
|
eval_metric: str | Scorer = None,
|
19
17
|
time_limit: float = None,
|
20
|
-
presets:
|
18
|
+
presets: list[str] | str = None,
|
21
19
|
hyperparameters: dict | str = None,
|
22
20
|
path: str = None,
|
23
21
|
verbosity: int = 2,
|
@@ -4,7 +4,7 @@ from autogluon.common.utils.resource_utils import ResourceManager
|
|
4
4
|
|
5
5
|
|
6
6
|
class RapidsModelMixin:
|
7
|
-
"""Mixin class for methods
|
7
|
+
"""Mixin class for methods reused across RAPIDS models"""
|
8
8
|
|
9
9
|
# FIXME: Efficient OOF doesn't work in RAPIDS
|
10
10
|
@classmethod
|
@@ -39,37 +39,65 @@ class MemoryCheckCallback:
|
|
39
39
|
return False
|
40
40
|
return True
|
41
41
|
|
42
|
-
def memory_check(self, iter) -> bool:
|
43
|
-
"""
|
42
|
+
def memory_check(self, iter: int) -> bool:
|
43
|
+
"""
|
44
|
+
Checks if memory usage is unsafe. If so, signals the model to stop training early.
|
45
|
+
|
46
|
+
Parameters
|
47
|
+
----------
|
48
|
+
iter: int
|
49
|
+
The current training iteration.
|
50
|
+
|
51
|
+
Returns
|
52
|
+
-------
|
53
|
+
bool: True if training should stop due to memory constraints, False otherwise.
|
54
|
+
"""
|
44
55
|
available_bytes = ResourceManager.get_available_virtual_mem()
|
45
56
|
cur_rss = ResourceManager.get_memory_rss()
|
46
57
|
|
58
|
+
# Update initial memory usage if current usage is lower
|
47
59
|
if cur_rss < self.init_mem_rss:
|
48
60
|
self.init_mem_rss = cur_rss
|
49
|
-
estimated_model_size_mb = (cur_rss - self.init_mem_rss) >> 20
|
50
|
-
available_mb = available_bytes >> 20
|
51
|
-
model_size_memory_ratio = estimated_model_size_mb / available_mb
|
52
61
|
|
62
|
+
# Convert memory values to MB
|
63
|
+
estimated_model_size_mb = (cur_rss - self.init_mem_rss) / (1024 ** 2)
|
64
|
+
available_mb = available_bytes / (1024 ** 2)
|
65
|
+
|
66
|
+
model_size_memory_ratio = estimated_model_size_mb / available_mb
|
53
67
|
early_stop = False
|
68
|
+
|
54
69
|
if model_size_memory_ratio > 1.0:
|
55
|
-
logger.warning(
|
70
|
+
logger.warning(
|
71
|
+
f"Iteration {iter}: Model size exceeds available memory. "
|
72
|
+
f"Available memory: {available_mb:.2f} MB, "
|
73
|
+
f"Estimated model size: {estimated_model_size_mb:.2f} MB."
|
74
|
+
)
|
56
75
|
early_stop = True
|
57
76
|
|
58
|
-
if available_mb < 512: # Less than
|
59
|
-
logger.warning(
|
77
|
+
if available_mb < 512: # Less than 512 MB
|
78
|
+
logger.warning(
|
79
|
+
f"Iteration {iter}: Low available memory (<512 MB). "
|
80
|
+
f"Available memory: {available_mb:.2f} MB, "
|
81
|
+
f"Estimated model size: {estimated_model_size_mb:.2f} MB."
|
82
|
+
)
|
60
83
|
early_stop = True
|
61
84
|
|
62
85
|
if early_stop:
|
63
86
|
logger.warning(
|
64
|
-
"
|
87
|
+
"Early stopping model prior to optimal result to avoid OOM error. "
|
88
|
+
"Please increase available memory to avoid subpar model quality."
|
65
89
|
)
|
66
|
-
logger.warning(f"Available Memory: {available_mb} MB, Estimated Model size: {estimated_model_size_mb} MB")
|
67
90
|
return True
|
68
|
-
elif self.verbose or
|
69
|
-
|
91
|
+
elif self.verbose or model_size_memory_ratio > 0.25:
|
92
|
+
logger.debug(
|
93
|
+
f"Iteration {iter}: "
|
94
|
+
f"Available memory: {available_mb:.2f} MB, "
|
95
|
+
f"Estimated model size: {estimated_model_size_mb:.2f} MB."
|
96
|
+
)
|
70
97
|
|
98
|
+
# Adjust memory check frequency based on model size
|
71
99
|
if model_size_memory_ratio > 0.5:
|
72
|
-
self._cur_period = 1 # Increase
|
100
|
+
self._cur_period = 1 # Increase frequency of memory checks
|
73
101
|
elif iter > self.period:
|
74
102
|
self._cur_period = self.period
|
75
103
|
|
@@ -8,7 +8,7 @@ import warnings
|
|
8
8
|
from builtins import classmethod
|
9
9
|
from functools import partial
|
10
10
|
from pathlib import Path
|
11
|
-
from typing import
|
11
|
+
from typing import Union
|
12
12
|
|
13
13
|
import numpy as np
|
14
14
|
import pandas as pd
|
@@ -628,7 +628,7 @@ class NNFastAiTabularModel(AbstractModel):
|
|
628
628
|
"""Choose which backend(Ray or Custom) to use for hpo"""
|
629
629
|
return RAY_BACKEND
|
630
630
|
|
631
|
-
def _get_maximum_resources(self) ->
|
631
|
+
def _get_maximum_resources(self) -> dict[str, Union[int, float]]:
|
632
632
|
# fastai model trains slower when utilizing virtual cores and this issue scale up when the number of cpu cores increases
|
633
633
|
return {"num_cpus": ResourceManager.get_cpu_count_psutil(logical=False)}
|
634
634
|
|
@@ -1,7 +1,7 @@
|
|
1
1
|
import copy
|
2
2
|
import os
|
3
3
|
import time
|
4
|
-
from typing import
|
4
|
+
from typing import Optional
|
5
5
|
|
6
6
|
import numpy as np
|
7
7
|
from pandas import DataFrame, Series
|
@@ -137,7 +137,7 @@ def train_lgb_model(early_stopping_callback_kwargs=None, **train_params):
|
|
137
137
|
class QuantileBooster:
|
138
138
|
"""Wrapper that trains a separate LGBM Booster for each quantile level."""
|
139
139
|
|
140
|
-
def __init__(self, quantile_levels:
|
140
|
+
def __init__(self, quantile_levels: list[float], early_stopping_callback_kwargs: Optional[dict] = None):
|
141
141
|
if quantile_levels is None:
|
142
142
|
raise AssertionError
|
143
143
|
if not all(0 < q < 1 for q in quantile_levels):
|
@@ -6,7 +6,7 @@ The modification allows the option of fixing the attention map
|
|
6
6
|
"""
|
7
7
|
|
8
8
|
import math
|
9
|
-
from typing import Optional
|
9
|
+
from typing import Optional
|
10
10
|
|
11
11
|
import torch
|
12
12
|
import torch.nn.functional as F
|
@@ -54,7 +54,7 @@ def multi_head_attention_forward(
|
|
54
54
|
static_k=None, # type: Optional[Tensor]
|
55
55
|
static_v=None, # type: Optional[Tensor]
|
56
56
|
):
|
57
|
-
# type: (...) ->
|
57
|
+
# type: (...) -> tuple[Tensor, Optional[Tensor]]
|
58
58
|
"""
|
59
59
|
Args:
|
60
60
|
query, key, value: map a query and a set of key-value pairs to an output.
|
@@ -288,7 +288,7 @@ class MultiheadAttention(Module):
|
|
288
288
|
super().__setstate__(state)
|
289
289
|
|
290
290
|
def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None):
|
291
|
-
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) ->
|
291
|
+
# type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> tuple[Tensor, Optional[Tensor]]
|
292
292
|
"""
|
293
293
|
Args:
|
294
294
|
query, key, value: map a query and a set of key-value pairs to an output.
|
@@ -111,8 +111,8 @@ class BERTPretext(nn.Module):
|
|
111
111
|
assert torch.all(cat_feats[extra_replace] == orig_cat_feats[extra_replace]).item() is True
|
112
112
|
extra_plus1 = cat_feats[extra_replace] + 1
|
113
113
|
extra_minus1 = cat_feats[extra_replace] - 1
|
114
|
-
|
115
|
-
extra_minus1[
|
114
|
+
extra_zero_pad_idx = extra_minus1 == 0
|
115
|
+
extra_minus1[extra_zero_pad_idx] = extra_plus1[extra_zero_pad_idx]
|
116
116
|
|
117
117
|
cat_feats[extra_replace] = extra_minus1
|
118
118
|
assert torch.all(~(cat_feats[extra_replace] == orig_cat_feats[extra_replace])).item() is True
|
@@ -135,8 +135,8 @@ class BERTPretext(nn.Module):
|
|
135
135
|
assert torch.all(cat_feats[extra_replace] == orig_cat_feats[extra_replace]).item() is True
|
136
136
|
extra_plus1 = cat_feats[extra_replace] + 1
|
137
137
|
extra_minus1 = cat_feats[extra_replace] - 1
|
138
|
-
|
139
|
-
extra_minus1[
|
138
|
+
extra_zero_pad_idx = extra_minus1 == 0
|
139
|
+
extra_minus1[extra_zero_pad_idx] = extra_plus1[extra_zero_pad_idx]
|
140
140
|
|
141
141
|
cat_feats[extra_replace] = extra_minus1
|
142
142
|
assert torch.all(~(cat_feats[extra_replace] == orig_cat_feats[extra_replace])).item() is True
|
@@ -7,7 +7,7 @@ import re
|
|
7
7
|
from collections import Counter
|
8
8
|
from datetime import date, datetime
|
9
9
|
from functools import partial
|
10
|
-
from typing import Iterable,
|
10
|
+
from typing import Iterable, Union
|
11
11
|
|
12
12
|
import numpy as np
|
13
13
|
import pandas as pd
|
@@ -514,7 +514,7 @@ class EmbeddingInitializer(nn.Module):
|
|
514
514
|
:param drop_whole_embeddings:
|
515
515
|
If True, dropout pretends the embedding was a missing value. If false, dropout sets embed features to 0
|
516
516
|
:param one_hot:
|
517
|
-
If True, one-hot encode variables whose cardinality is < max_emb_dim. Also, set
|
517
|
+
If True, one-hot encode variables whose cardinality is < max_emb_dim. Also, set requires_grad = False
|
518
518
|
:param out_dim:
|
519
519
|
If None, return the embedding straight from self.embed. If another dimension, put the embedding through a
|
520
520
|
Linear layer to make it size (batch x out_dim).
|
@@ -624,7 +624,7 @@ def add_datepart(df: DataFrame, field_name: str, prefix: str = None, drop: bool
|
|
624
624
|
return df
|
625
625
|
|
626
626
|
|
627
|
-
def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) ->
|
627
|
+
def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> list[str]:
|
628
628
|
"Return feature names of date/time cycles as produced by `cyclic_dt_features`."
|
629
629
|
fs = ["cos", "sin"]
|
630
630
|
attr = [f"{r}_{f}" for r in "weekday day_month month_year day_year".split() for f in fs]
|
@@ -635,7 +635,7 @@ def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> List[st
|
|
635
635
|
return attr
|
636
636
|
|
637
637
|
|
638
|
-
def cyclic_dt_features(d: Union[date, datetime], time: bool = True, add_linear: bool = False) ->
|
638
|
+
def cyclic_dt_features(d: Union[date, datetime], time: bool = True, add_linear: bool = False) -> list[float]:
|
639
639
|
"Calculate the cos and sin of date/time cycles."
|
640
640
|
tt, fs = d.timetuple(), [np.cos, np.sin]
|
641
641
|
day_year, days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1]
|
@@ -136,7 +136,7 @@ class TabularTorchDataset(torch.utils.data.IterableDataset):
|
|
136
136
|
load the dataset.
|
137
137
|
|
138
138
|
Returns a tuple containing (vector_features, embed_features, label).
|
139
|
-
The length of the tuple depends on `has_vector_features` and `
|
139
|
+
The length of the tuple depends on `has_vector_features` and `has_embed_features` attribute.
|
140
140
|
"""
|
141
141
|
idxarray = np.arange(self.num_examples)
|
142
142
|
if self.shuffle:
|
@@ -154,7 +154,7 @@ class TabularTorchDataset(torch.utils.data.IterableDataset):
|
|
154
154
|
idx = idxarray[idx]
|
155
155
|
|
156
156
|
# Generate a tuple that contains (vector_features, embed_features, label).
|
157
|
-
# The length of the tuple depends on `has_vector_features`, `
|
157
|
+
# The length of the tuple depends on `has_vector_features`, `has_embed_features`, and
|
158
158
|
# whether the label has been provided.
|
159
159
|
output_list = []
|
160
160
|
if self.has_vector_features:
|
@@ -1,7 +1,5 @@
|
|
1
1
|
from __future__ import annotations
|
2
2
|
|
3
|
-
from typing import Dict, List
|
4
|
-
|
5
3
|
import numpy as np
|
6
4
|
import pandas as pd
|
7
5
|
|
@@ -12,17 +10,17 @@ class TabularPredictorDeprecatedMixin:
|
|
12
10
|
"""Contains deprecated methods from TabularPredictor that shouldn't show up in API documentation."""
|
13
11
|
|
14
12
|
@Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="persist")
|
15
|
-
def persist_models(self, *args, **kwargs) ->
|
13
|
+
def persist_models(self, *args, **kwargs) -> list[str]:
|
16
14
|
"""Deprecated method. Use `persist` instead."""
|
17
15
|
return self.persist(*args, **kwargs)
|
18
16
|
|
19
17
|
@Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="unpersist")
|
20
|
-
def unpersist_models(self, *args, **kwargs) ->
|
18
|
+
def unpersist_models(self, *args, **kwargs) -> list[str]:
|
21
19
|
"""Deprecated method. Use `unpersist` instead."""
|
22
20
|
return self.unpersist(*args, **kwargs)
|
23
21
|
|
24
22
|
@Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names")
|
25
|
-
def get_model_names(self, *args, **kwargs) ->
|
23
|
+
def get_model_names(self, *args, **kwargs) -> list[str]:
|
26
24
|
"""Deprecated method. Use `model_names` instead."""
|
27
25
|
return self.model_names(*args, **kwargs)
|
28
26
|
|
@@ -37,7 +35,7 @@ class TabularPredictorDeprecatedMixin:
|
|
37
35
|
return self.predict_from_proba(*args, **kwargs)
|
38
36
|
|
39
37
|
@Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_refit_map")
|
40
|
-
def get_model_full_dict(self, *args, **kwargs) ->
|
38
|
+
def get_model_full_dict(self, *args, **kwargs) -> dict[str, str]:
|
41
39
|
"""Deprecated method. Use `model_refit_map` instead."""
|
42
40
|
return self.model_refit_map(*args, **kwargs)
|
43
41
|
|
@@ -62,6 +60,6 @@ class TabularPredictorDeprecatedMixin:
|
|
62
60
|
return self.disk_usage()
|
63
61
|
|
64
62
|
@Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names(persisted=True)")
|
65
|
-
def get_model_names_persisted(self) ->
|
63
|
+
def get_model_names_persisted(self) -> list[str]:
|
66
64
|
"""Deprecated method. Use `model_names(persisted=True)` instead."""
|
67
65
|
return self.model_names(persisted=True)
|