autogluon.tabular 1.2.1b20250115__tar.gz → 1.2.1b20250130__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (165) hide show
  1. autogluon.tabular-1.2.1b20250130/PKG-INFO +151 -0
  2. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_tabular_classifier.py +1 -3
  3. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_tabular_regressor.py +1 -3
  4. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/rapids_utils.py +1 -1
  5. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/callbacks.py +41 -13
  6. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/tabular_nn_fastai.py +2 -2
  7. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/lgb_utils.py +2 -2
  8. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/modified_transformer.py +3 -3
  9. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/pretexts.py +4 -4
  10. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer_encoder.py +4 -4
  11. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +2 -2
  12. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/_deprecated_methods.py +5 -7
  13. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/predictor.py +43 -43
  14. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/auto_trainer.py +5 -6
  15. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/version.py +2 -1
  16. autogluon.tabular-1.2.1b20250130/src/autogluon.tabular.egg-info/PKG-INFO +151 -0
  17. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/SOURCES.txt +2 -0
  18. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/requires.txt +9 -9
  19. autogluon.tabular-1.2.1b20250115/PKG-INFO +0 -147
  20. autogluon.tabular-1.2.1b20250115/src/autogluon.tabular.egg-info/PKG-INFO +0 -147
  21. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/setup.cfg +0 -0
  22. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/setup.py +0 -0
  23. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/__init__.py +0 -0
  24. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/__init__.py +0 -0
  25. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/config_helper.py +0 -0
  26. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/feature_generator_presets.py +0 -0
  27. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/hyperparameter_configs.py +0 -0
  28. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/presets_configs.py +0 -0
  29. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/zeroshot/__init__.py +0 -0
  30. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +0 -0
  31. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/__init__.py +0 -0
  32. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/experimental/_scikit_mixin.py +0 -0
  33. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/__init__.py +0 -0
  34. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/abstract_learner.py +0 -0
  35. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/learner/default_learner.py +0 -0
  36. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/__init__.py +0 -0
  37. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/__init__.py +0 -0
  38. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/_utils/torch_utils.py +0 -0
  39. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/__init__.py +0 -0
  40. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/automm_model.py +0 -0
  41. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/automm/ft_transformer.py +0 -0
  42. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/__init__.py +0 -0
  43. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_model.py +0 -0
  44. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_softclass_utils.py +0 -0
  45. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/catboost_utils.py +0 -0
  46. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/__init__.py +0 -0
  47. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/parameters.py +0 -0
  48. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/catboost/hyperparameters/searchspaces.py +0 -0
  49. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/__init__.py +0 -0
  50. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/callbacks.py +0 -0
  51. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/fastai_helpers.py +0 -0
  52. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/__init__.py +0 -0
  53. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/parameters.py +0 -0
  54. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +0 -0
  55. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/imports_helper.py +0 -0
  56. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fastainn/quantile_helpers.py +0 -0
  57. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/__init__.py +0 -0
  58. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/fasttext_model.py +0 -0
  59. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/hyperparameters/__init__.py +0 -0
  60. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/fasttext/hyperparameters/parameters.py +0 -0
  61. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/image_prediction/__init__.py +0 -0
  62. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/image_prediction/image_predictor.py +0 -0
  63. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/imodels/__init__.py +0 -0
  64. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/imodels/imodels_models.py +0 -0
  65. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/__init__.py +0 -0
  66. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/_knn_loo_variants.py +0 -0
  67. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_model.py +0 -0
  68. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_rapids_model.py +0 -0
  69. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/knn/knn_utils.py +0 -0
  70. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/__init__.py +0 -0
  71. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/callbacks.py +0 -0
  72. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/__init__.py +0 -0
  73. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/parameters.py +0 -0
  74. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +0 -0
  75. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lgb/lgb_model.py +0 -0
  76. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/__init__.py +0 -0
  77. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/__init__.py +0 -0
  78. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/parameters.py +0 -0
  79. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/hyperparameters/searchspaces.py +0 -0
  80. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_model.py +0 -0
  81. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_preprocessing_utils.py +0 -0
  82. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/lr/lr_rapids_model.py +0 -0
  83. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/__init__.py +0 -0
  84. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/__init__.py +0 -0
  85. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/native.py +0 -0
  86. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/compilers/onnx.py +0 -0
  87. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_model.py +0 -0
  88. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_quantile.py +0 -0
  89. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/rf/rf_rapids_model.py +0 -0
  90. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/__init__.py +0 -0
  91. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/__init__.py +0 -0
  92. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/parameters.py +0 -0
  93. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/hyperparameters/searchspaces.py +0 -0
  94. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_model_base.py +0 -0
  95. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer.py +0 -0
  96. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/tab_transformer_model.py +0 -0
  97. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tab_transformer/utils.py +0 -0
  98. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfn/__init__.py +0 -0
  99. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfn/tabpfn_model.py +0 -0
  100. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/__init__.py +0 -0
  101. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/__init__.py +0 -0
  102. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py +0 -0
  103. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py +0 -0
  104. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py +0 -0
  105. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +0 -0
  106. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +0 -0
  107. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +0 -0
  108. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -0
  109. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -0
  110. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +0 -0
  111. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +0 -0
  112. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +0 -0
  113. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +0 -0
  114. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py +0 -0
  115. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +0 -0
  116. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +0 -0
  117. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py +0 -0
  118. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py +0 -0
  119. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +0 -0
  120. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +0 -0
  121. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py +0 -0
  122. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +0 -0
  123. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +0 -0
  124. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +0 -0
  125. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +0 -0
  126. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/__init__.py +0 -0
  127. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/__init__.py +0 -0
  128. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/native.py +0 -0
  129. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/compilers/onnx.py +0 -0
  130. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py +0 -0
  131. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py +0 -0
  132. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py +0 -0
  133. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/__init__.py +0 -0
  134. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +0 -0
  135. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +0 -0
  136. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/__init__.py +0 -0
  137. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +0 -0
  138. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +0 -0
  139. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +0 -0
  140. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/text_prediction/__init__.py +0 -0
  141. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/text_prediction/text_prediction_v1_model.py +0 -0
  142. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/__init__.py +0 -0
  143. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_model.py +0 -0
  144. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/vowpalwabbit/vowpalwabbit_utils.py +0 -0
  145. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/__init__.py +0 -0
  146. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/callbacks.py +0 -0
  147. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/__init__.py +0 -0
  148. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/parameters.py +0 -0
  149. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py +0 -0
  150. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/xgboost_model.py +0 -0
  151. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xgboost/xgboost_utils.py +0 -0
  152. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xt/__init__.py +0 -0
  153. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/models/xt/xt_model.py +0 -0
  154. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/__init__.py +0 -0
  155. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/predictor/interpretable_predictor.py +0 -0
  156. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/__init__.py +0 -0
  157. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/__init__.py +0 -0
  158. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/presets.py +0 -0
  159. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/trainer/model_presets/presets_distill.py +0 -0
  160. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/tuning/__init__.py +0 -0
  161. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon/tabular/tuning/feature_pruner.py +0 -0
  162. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/dependency_links.txt +0 -0
  163. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/namespace_packages.txt +0 -0
  164. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/top_level.txt +0 -0
  165. {autogluon.tabular-1.2.1b20250115 → autogluon.tabular-1.2.1b20250130}/src/autogluon.tabular.egg-info/zip-safe +0 -0
@@ -0,0 +1,151 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.tabular
3
+ Version: 1.2.1b20250130
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ Provides-Extra: lightgbm
38
+ Provides-Extra: catboost
39
+ Provides-Extra: xgboost
40
+ Provides-Extra: fastai
41
+ Provides-Extra: tabpfn
42
+ Provides-Extra: tabpfnmix
43
+ Provides-Extra: ray
44
+ Provides-Extra: skex
45
+ Provides-Extra: imodels
46
+ Provides-Extra: vowpalwabbit
47
+ Provides-Extra: skl2onnx
48
+ Provides-Extra: all
49
+ Provides-Extra: tests
50
+ License-File: ../LICENSE
51
+ License-File: ../NOTICE
52
+
53
+
54
+
55
+ <div align="center">
56
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
57
+
58
+ ## Fast and Accurate ML in 3 Lines of Code
59
+
60
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
61
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
62
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
63
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
64
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
65
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
66
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
67
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
68
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
69
+
70
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
71
+
72
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
73
+ </div>
74
+
75
+ ## 💾 Installation
76
+
77
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
78
+
79
+ You can install AutoGluon with:
80
+
81
+ ```python
82
+ pip install autogluon
83
+ ```
84
+
85
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
86
+
87
+ ## :zap: Quickstart
88
+
89
+ Build accurate end-to-end ML models in just 3 lines of code!
90
+
91
+ ```python
92
+ from autogluon.tabular import TabularPredictor
93
+ predictor = TabularPredictor(label="class").fit("train.csv")
94
+ predictions = predictor.predict("test.csv")
95
+ ```
96
+
97
+ | AutoGluon Task | Quickstart | API |
98
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
99
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
100
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
101
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
102
+
103
+ ## :mag: Resources
104
+
105
+ ### Hands-on Tutorials / Talks
106
+
107
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
108
+
109
+ | Title | Format | Location | Date |
110
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
111
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
112
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
113
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
114
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
115
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
116
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
117
+
118
+ ### Scientific Publications
119
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
120
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
121
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
122
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
123
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
124
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
125
+
126
+ ### Articles
127
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
128
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
129
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
130
+
131
+ ### Train/Deploy AutoGluon in the Cloud
132
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
133
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
134
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
135
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
136
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
137
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
138
+
139
+ ## :pencil: Citing AutoGluon
140
+
141
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
142
+
143
+ ## :wave: How to get involved
144
+
145
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
146
+
147
+ ## :classical_building: License
148
+
149
+ This library is licensed under the Apache 2.0 License.
150
+
151
+
@@ -1,7 +1,5 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import List
4
-
5
3
  import pandas as pd
6
4
  from sklearn.base import BaseEstimator, ClassifierMixin
7
5
  from sklearn.utils.multiclass import unique_labels
@@ -18,7 +16,7 @@ class TabularClassifier(BaseEstimator, ClassifierMixin, ScikitMixin):
18
16
  self,
19
17
  eval_metric: str | Scorer = None,
20
18
  time_limit: float = None,
21
- presets: List[str] | str = None,
19
+ presets: list[str] | str = None,
22
20
  hyperparameters: dict | str = None,
23
21
  path: str = None,
24
22
  verbosity: int = 2,
@@ -1,7 +1,5 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import List
4
-
5
3
  import pandas as pd
6
4
  from sklearn.base import BaseEstimator, RegressorMixin
7
5
  from sklearn.utils.validation import check_array, check_is_fitted, check_X_y
@@ -17,7 +15,7 @@ class TabularRegressor(BaseEstimator, RegressorMixin, ScikitMixin):
17
15
  self,
18
16
  eval_metric: str | Scorer = None,
19
17
  time_limit: float = None,
20
- presets: List[str] | str = None,
18
+ presets: list[str] | str = None,
21
19
  hyperparameters: dict | str = None,
22
20
  path: str = None,
23
21
  verbosity: int = 2,
@@ -4,7 +4,7 @@ from autogluon.common.utils.resource_utils import ResourceManager
4
4
 
5
5
 
6
6
  class RapidsModelMixin:
7
- """Mixin class for methods re-used across RAPIDS models"""
7
+ """Mixin class for methods reused across RAPIDS models"""
8
8
 
9
9
  # FIXME: Efficient OOF doesn't work in RAPIDS
10
10
  @classmethod
@@ -39,37 +39,65 @@ class MemoryCheckCallback:
39
39
  return False
40
40
  return True
41
41
 
42
- def memory_check(self, iter) -> bool:
43
- """Checks if memory usage is unsafe. If so, then returns True to signal the model to stop training early."""
42
+ def memory_check(self, iter: int) -> bool:
43
+ """
44
+ Checks if memory usage is unsafe. If so, signals the model to stop training early.
45
+
46
+ Parameters
47
+ ----------
48
+ iter: int
49
+ The current training iteration.
50
+
51
+ Returns
52
+ -------
53
+ bool: True if training should stop due to memory constraints, False otherwise.
54
+ """
44
55
  available_bytes = ResourceManager.get_available_virtual_mem()
45
56
  cur_rss = ResourceManager.get_memory_rss()
46
57
 
58
+ # Update initial memory usage if current usage is lower
47
59
  if cur_rss < self.init_mem_rss:
48
60
  self.init_mem_rss = cur_rss
49
- estimated_model_size_mb = (cur_rss - self.init_mem_rss) >> 20
50
- available_mb = available_bytes >> 20
51
- model_size_memory_ratio = estimated_model_size_mb / available_mb
52
61
 
62
+ # Convert memory values to MB
63
+ estimated_model_size_mb = (cur_rss - self.init_mem_rss) / (1024 ** 2)
64
+ available_mb = available_bytes / (1024 ** 2)
65
+
66
+ model_size_memory_ratio = estimated_model_size_mb / available_mb
53
67
  early_stop = False
68
+
54
69
  if model_size_memory_ratio > 1.0:
55
- logger.warning(f"Warning: Large model size may cause OOM error if training continues")
70
+ logger.warning(
71
+ f"Iteration {iter}: Model size exceeds available memory. "
72
+ f"Available memory: {available_mb:.2f} MB, "
73
+ f"Estimated model size: {estimated_model_size_mb:.2f} MB."
74
+ )
56
75
  early_stop = True
57
76
 
58
- if available_mb < 512: # Less than 500 MB
59
- logger.warning(f"Warning: Low available memory may cause OOM error if training continues")
77
+ if available_mb < 512: # Less than 512 MB
78
+ logger.warning(
79
+ f"Iteration {iter}: Low available memory (<512 MB). "
80
+ f"Available memory: {available_mb:.2f} MB, "
81
+ f"Estimated model size: {estimated_model_size_mb:.2f} MB."
82
+ )
60
83
  early_stop = True
61
84
 
62
85
  if early_stop:
63
86
  logger.warning(
64
- "Warning: Early stopped model prior to optimal result to avoid OOM error. " "Please increase available memory to avoid subpar model quality."
87
+ "Early stopping model prior to optimal result to avoid OOM error. "
88
+ "Please increase available memory to avoid subpar model quality."
65
89
  )
66
- logger.warning(f"Available Memory: {available_mb} MB, Estimated Model size: {estimated_model_size_mb} MB")
67
90
  return True
68
- elif self.verbose or (model_size_memory_ratio > 0.25):
69
- logging.debug(f"Available Memory: {available_mb} MB, Estimated Model size: {estimated_model_size_mb} MB")
91
+ elif self.verbose or model_size_memory_ratio > 0.25:
92
+ logger.debug(
93
+ f"Iteration {iter}: "
94
+ f"Available memory: {available_mb:.2f} MB, "
95
+ f"Estimated model size: {estimated_model_size_mb:.2f} MB."
96
+ )
70
97
 
98
+ # Adjust memory check frequency based on model size
71
99
  if model_size_memory_ratio > 0.5:
72
- self._cur_period = 1 # Increase rate of memory check if model gets large enough to cause OOM potentially
100
+ self._cur_period = 1 # Increase frequency of memory checks
73
101
  elif iter > self.period:
74
102
  self._cur_period = self.period
75
103
 
@@ -8,7 +8,7 @@ import warnings
8
8
  from builtins import classmethod
9
9
  from functools import partial
10
10
  from pathlib import Path
11
- from typing import Dict, Union
11
+ from typing import Union
12
12
 
13
13
  import numpy as np
14
14
  import pandas as pd
@@ -628,7 +628,7 @@ class NNFastAiTabularModel(AbstractModel):
628
628
  """Choose which backend(Ray or Custom) to use for hpo"""
629
629
  return RAY_BACKEND
630
630
 
631
- def _get_maximum_resources(self) -> Dict[str, Union[int, float]]:
631
+ def _get_maximum_resources(self) -> dict[str, Union[int, float]]:
632
632
  # fastai model trains slower when utilizing virtual cores and this issue scale up when the number of cpu cores increases
633
633
  return {"num_cpus": ResourceManager.get_cpu_count_psutil(logical=False)}
634
634
 
@@ -1,7 +1,7 @@
1
1
  import copy
2
2
  import os
3
3
  import time
4
- from typing import List, Optional
4
+ from typing import Optional
5
5
 
6
6
  import numpy as np
7
7
  from pandas import DataFrame, Series
@@ -137,7 +137,7 @@ def train_lgb_model(early_stopping_callback_kwargs=None, **train_params):
137
137
  class QuantileBooster:
138
138
  """Wrapper that trains a separate LGBM Booster for each quantile level."""
139
139
 
140
- def __init__(self, quantile_levels: List[float], early_stopping_callback_kwargs: Optional[dict] = None):
140
+ def __init__(self, quantile_levels: list[float], early_stopping_callback_kwargs: Optional[dict] = None):
141
141
  if quantile_levels is None:
142
142
  raise AssertionError
143
143
  if not all(0 < q < 1 for q in quantile_levels):
@@ -6,7 +6,7 @@ The modification allows the option of fixing the attention map
6
6
  """
7
7
 
8
8
  import math
9
- from typing import Optional, Tuple
9
+ from typing import Optional
10
10
 
11
11
  import torch
12
12
  import torch.nn.functional as F
@@ -54,7 +54,7 @@ def multi_head_attention_forward(
54
54
  static_k=None, # type: Optional[Tensor]
55
55
  static_v=None, # type: Optional[Tensor]
56
56
  ):
57
- # type: (...) -> Tuple[Tensor, Optional[Tensor]]
57
+ # type: (...) -> tuple[Tensor, Optional[Tensor]]
58
58
  """
59
59
  Args:
60
60
  query, key, value: map a query and a set of key-value pairs to an output.
@@ -288,7 +288,7 @@ class MultiheadAttention(Module):
288
288
  super().__setstate__(state)
289
289
 
290
290
  def forward(self, query, key, value, key_padding_mask=None, need_weights=True, attn_mask=None):
291
- # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
291
+ # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> tuple[Tensor, Optional[Tensor]]
292
292
  """
293
293
  Args:
294
294
  query, key, value: map a query and a set of key-value pairs to an output.
@@ -111,8 +111,8 @@ class BERTPretext(nn.Module):
111
111
  assert torch.all(cat_feats[extra_replace] == orig_cat_feats[extra_replace]).item() is True
112
112
  extra_plus1 = cat_feats[extra_replace] + 1
113
113
  extra_minus1 = cat_feats[extra_replace] - 1
114
- extra_zero_padd_idx = extra_minus1 == 0
115
- extra_minus1[extra_zero_padd_idx] = extra_plus1[extra_zero_padd_idx]
114
+ extra_zero_pad_idx = extra_minus1 == 0
115
+ extra_minus1[extra_zero_pad_idx] = extra_plus1[extra_zero_pad_idx]
116
116
 
117
117
  cat_feats[extra_replace] = extra_minus1
118
118
  assert torch.all(~(cat_feats[extra_replace] == orig_cat_feats[extra_replace])).item() is True
@@ -135,8 +135,8 @@ class BERTPretext(nn.Module):
135
135
  assert torch.all(cat_feats[extra_replace] == orig_cat_feats[extra_replace]).item() is True
136
136
  extra_plus1 = cat_feats[extra_replace] + 1
137
137
  extra_minus1 = cat_feats[extra_replace] - 1
138
- extra_zero_padd_idx = extra_minus1 == 0
139
- extra_minus1[extra_zero_padd_idx] = extra_plus1[extra_zero_padd_idx]
138
+ extra_zero_pad_idx = extra_minus1 == 0
139
+ extra_minus1[extra_zero_pad_idx] = extra_plus1[extra_zero_pad_idx]
140
140
 
141
141
  cat_feats[extra_replace] = extra_minus1
142
142
  assert torch.all(~(cat_feats[extra_replace] == orig_cat_feats[extra_replace])).item() is True
@@ -7,7 +7,7 @@ import re
7
7
  from collections import Counter
8
8
  from datetime import date, datetime
9
9
  from functools import partial
10
- from typing import Iterable, List, Union
10
+ from typing import Iterable, Union
11
11
 
12
12
  import numpy as np
13
13
  import pandas as pd
@@ -514,7 +514,7 @@ class EmbeddingInitializer(nn.Module):
514
514
  :param drop_whole_embeddings:
515
515
  If True, dropout pretends the embedding was a missing value. If false, dropout sets embed features to 0
516
516
  :param one_hot:
517
- If True, one-hot encode variables whose cardinality is < max_emb_dim. Also, set reqiures_grad = False
517
+ If True, one-hot encode variables whose cardinality is < max_emb_dim. Also, set requires_grad = False
518
518
  :param out_dim:
519
519
  If None, return the embedding straight from self.embed. If another dimension, put the embedding through a
520
520
  Linear layer to make it size (batch x out_dim).
@@ -624,7 +624,7 @@ def add_datepart(df: DataFrame, field_name: str, prefix: str = None, drop: bool
624
624
  return df
625
625
 
626
626
 
627
- def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> List[str]:
627
+ def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> list[str]:
628
628
  "Return feature names of date/time cycles as produced by `cyclic_dt_features`."
629
629
  fs = ["cos", "sin"]
630
630
  attr = [f"{r}_{f}" for r in "weekday day_month month_year day_year".split() for f in fs]
@@ -635,7 +635,7 @@ def cyclic_dt_feat_names(time: bool = True, add_linear: bool = False) -> List[st
635
635
  return attr
636
636
 
637
637
 
638
- def cyclic_dt_features(d: Union[date, datetime], time: bool = True, add_linear: bool = False) -> List[float]:
638
+ def cyclic_dt_features(d: Union[date, datetime], time: bool = True, add_linear: bool = False) -> list[float]:
639
639
  "Calculate the cos and sin of date/time cycles."
640
640
  tt, fs = d.timetuple(), [np.cos, np.sin]
641
641
  day_year, days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1]
@@ -136,7 +136,7 @@ class TabularTorchDataset(torch.utils.data.IterableDataset):
136
136
  load the dataset.
137
137
 
138
138
  Returns a tuple containing (vector_features, embed_features, label).
139
- The length of the tuple depends on `has_vector_features` and `has_embed_feautures` attribute.
139
+ The length of the tuple depends on `has_vector_features` and `has_embed_features` attribute.
140
140
  """
141
141
  idxarray = np.arange(self.num_examples)
142
142
  if self.shuffle:
@@ -154,7 +154,7 @@ class TabularTorchDataset(torch.utils.data.IterableDataset):
154
154
  idx = idxarray[idx]
155
155
 
156
156
  # Generate a tuple that contains (vector_features, embed_features, label).
157
- # The length of the tuple depends on `has_vector_features`, `has_embed_feautures`, and
157
+ # The length of the tuple depends on `has_vector_features`, `has_embed_features`, and
158
158
  # whether the label has been provided.
159
159
  output_list = []
160
160
  if self.has_vector_features:
@@ -1,7 +1,5 @@
1
1
  from __future__ import annotations
2
2
 
3
- from typing import Dict, List
4
-
5
3
  import numpy as np
6
4
  import pandas as pd
7
5
 
@@ -12,17 +10,17 @@ class TabularPredictorDeprecatedMixin:
12
10
  """Contains deprecated methods from TabularPredictor that shouldn't show up in API documentation."""
13
11
 
14
12
  @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="persist")
15
- def persist_models(self, *args, **kwargs) -> List[str]:
13
+ def persist_models(self, *args, **kwargs) -> list[str]:
16
14
  """Deprecated method. Use `persist` instead."""
17
15
  return self.persist(*args, **kwargs)
18
16
 
19
17
  @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="unpersist")
20
- def unpersist_models(self, *args, **kwargs) -> List[str]:
18
+ def unpersist_models(self, *args, **kwargs) -> list[str]:
21
19
  """Deprecated method. Use `unpersist` instead."""
22
20
  return self.unpersist(*args, **kwargs)
23
21
 
24
22
  @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names")
25
- def get_model_names(self, *args, **kwargs) -> List[str]:
23
+ def get_model_names(self, *args, **kwargs) -> list[str]:
26
24
  """Deprecated method. Use `model_names` instead."""
27
25
  return self.model_names(*args, **kwargs)
28
26
 
@@ -37,7 +35,7 @@ class TabularPredictorDeprecatedMixin:
37
35
  return self.predict_from_proba(*args, **kwargs)
38
36
 
39
37
  @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_refit_map")
40
- def get_model_full_dict(self, *args, **kwargs) -> Dict[str, str]:
38
+ def get_model_full_dict(self, *args, **kwargs) -> dict[str, str]:
41
39
  """Deprecated method. Use `model_refit_map` instead."""
42
40
  return self.model_refit_map(*args, **kwargs)
43
41
 
@@ -62,6 +60,6 @@ class TabularPredictorDeprecatedMixin:
62
60
  return self.disk_usage()
63
61
 
64
62
  @Deprecated(min_version_to_warn="0.8.3", min_version_to_error="1.2", version_to_remove="1.2", new="model_names(persisted=True)")
65
- def get_model_names_persisted(self) -> List[str]:
63
+ def get_model_names_persisted(self) -> list[str]:
66
64
  """Deprecated method. Use `model_names(persisted=True)` instead."""
67
65
  return self.model_names(persisted=True)