autogluon.features 1.4.1b20250813__tar.gz → 1.5.1b20260119__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. autogluon_features-1.5.1b20260119/LICENSE +175 -0
  2. autogluon_features-1.5.1b20260119/NOTICE +2 -0
  3. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/PKG-INFO +28 -13
  4. autogluon_features-1.5.1b20260119/README.md +102 -0
  5. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/setup.py +3 -0
  6. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/__init__.py +5 -0
  7. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/abstract.py +130 -7
  8. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/__init__.py +1 -0
  9. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/_numba_opt.py +77 -0
  10. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/canonical_key.py +181 -0
  11. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/combinations.py +292 -0
  12. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/combinations_lite.py +126 -0
  13. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/filtering.py +169 -0
  14. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/memory.py +100 -0
  15. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/operation.py +21 -0
  16. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/arithmetic/preprocessor.py +655 -0
  17. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/auto_ml_pipeline.py +50 -14
  18. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/bulk.py +122 -61
  19. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/cat_as_num.py +119 -0
  20. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/cat_int.py +410 -0
  21. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/drop_duplicates.py +121 -14
  22. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/frequency.py +150 -0
  23. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/identity.py +6 -0
  24. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/one_hot_encoder.py +1 -1
  25. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/oof_target_encoder.py +342 -0
  26. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/pipeline.py +1 -1
  27. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/skrub/__init__.py +0 -0
  28. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/skrub/_sklearn_compat.py +22 -0
  29. autogluon_features-1.5.1b20260119/src/autogluon/features/generators/skrub/_squashing_scaler.py +338 -0
  30. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/utils.py +1 -1
  31. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/version.py +1 -1
  32. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/PKG-INFO +28 -13
  33. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/SOURCES.txt +21 -3
  34. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/requires.txt +1 -1
  35. autogluon_features-1.5.1b20260119/tests/test_check_style.py +57 -0
  36. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/setup.cfg +0 -0
  37. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/__init__.py +0 -0
  38. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/binning.py +0 -0
  39. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/astype.py +0 -0
  40. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/binned.py +0 -0
  41. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/category.py +0 -0
  42. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/datetime.py +0 -0
  43. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/drop_unique.py +0 -0
  44. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/dummy.py +0 -0
  45. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/fillna.py +0 -0
  46. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/isnan.py +0 -0
  47. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/label_encoder.py +0 -0
  48. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/memory_minimize.py +0 -0
  49. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/rename.py +0 -0
  50. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/text_ngram.py +0 -0
  51. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/generators/text_special.py +0 -0
  52. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon/features/vectorizers.py +0 -0
  53. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/dependency_links.txt +0 -0
  54. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/namespace_packages.txt +0 -0
  55. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/top_level.txt +0 -0
  56. {autogluon.features-1.4.1b20250813 → autogluon_features-1.5.1b20260119}/src/autogluon.features.egg-info/zip-safe +0 -0
@@ -0,0 +1,175 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
@@ -0,0 +1,2 @@
1
+ AutoML for Text, Image, and Tabular Data
2
+ Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: autogluon.features
3
- Version: 1.4.1b20250813
3
+ Version: 1.5.1b20260119
4
4
  Summary: Fast and Accurate ML in 3 Lines of Code
5
5
  Home-page: https://github.com/autogluon/autogluon
6
6
  Author: AutoGluon Community
@@ -9,7 +9,6 @@ Project-URL: Documentation, https://auto.gluon.ai
9
9
  Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
10
  Project-URL: Source, https://github.com/autogluon/autogluon/
11
11
  Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Platform: UNKNOWN
13
12
  Classifier: Development Status :: 4 - Beta
14
13
  Classifier: Intended Audience :: Education
15
14
  Classifier: Intended Audience :: Developers
@@ -24,18 +23,33 @@ Classifier: Operating System :: Microsoft :: Windows
24
23
  Classifier: Operating System :: POSIX
25
24
  Classifier: Operating System :: Unix
26
25
  Classifier: Programming Language :: Python :: 3
27
- Classifier: Programming Language :: Python :: 3.9
28
26
  Classifier: Programming Language :: Python :: 3.10
29
27
  Classifier: Programming Language :: Python :: 3.11
30
28
  Classifier: Programming Language :: Python :: 3.12
29
+ Classifier: Programming Language :: Python :: 3.13
31
30
  Classifier: Topic :: Software Development
32
31
  Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
32
  Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
33
  Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
- Requires-Python: >=3.9, <3.13
34
+ Requires-Python: >=3.10, <3.14
36
35
  Description-Content-Type: text/markdown
37
- License-File: ../LICENSE
38
- License-File: ../NOTICE
36
+ License-File: LICENSE
37
+ License-File: NOTICE
38
+ Requires-Dist: numpy<2.4.0,>=1.25.0
39
+ Requires-Dist: pandas<2.4.0,>=2.0.0
40
+ Requires-Dist: scikit-learn<1.8.0,>=1.4.0
41
+ Requires-Dist: autogluon.common==1.5.1b20260119
42
+ Dynamic: author
43
+ Dynamic: classifier
44
+ Dynamic: description
45
+ Dynamic: description-content-type
46
+ Dynamic: home-page
47
+ Dynamic: license
48
+ Dynamic: license-file
49
+ Dynamic: project-url
50
+ Dynamic: requires-dist
51
+ Dynamic: requires-python
52
+ Dynamic: summary
39
53
 
40
54
 
41
55
 
@@ -46,7 +60,7 @@ License-File: ../NOTICE
46
60
 
47
61
  [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
48
62
  [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
49
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
63
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
50
64
  [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
51
65
  [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
52
66
  [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
@@ -63,7 +77,7 @@ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to
63
77
 
64
78
  ## 💾 Installation
65
79
 
66
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
80
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
67
81
 
68
82
  You can install AutoGluon with:
69
83
 
@@ -86,8 +100,8 @@ predictions = predictor.predict("test.csv")
86
100
  | AutoGluon Task | Quickstart | API |
87
101
  |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
88
102
  | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
89
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
90
103
  | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
104
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
91
105
 
92
106
  ## :mag: Resources
93
107
 
@@ -110,7 +124,10 @@ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehens
110
124
  - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
111
125
  - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
112
126
  - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
113
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
127
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
128
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
129
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
130
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
114
131
 
115
132
  ### Articles
116
133
  - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
@@ -136,5 +153,3 @@ We are actively accepting code contributions to the AutoGluon project. If you ar
136
153
  ## :classical_building: License
137
154
 
138
155
  This library is licensed under the Apache 2.0 License.
139
-
140
-
@@ -0,0 +1,102 @@
1
+
2
+
3
+ <div align="center">
4
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
5
+
6
+ ## Fast and Accurate ML in 3 Lines of Code
7
+
8
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
9
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
10
+ [![Python Versions](https://img.shields.io/badge/python-3.10%20%7C%203.11%20%7C%203.12%20%7C%203.13-blue)](https://pypi.org/project/autogluon/)
11
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
12
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
13
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
14
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
15
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
16
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
17
+
18
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
19
+
20
+ </div>
21
+
22
+ AutoGluon, developed by AWS AI, automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
23
+
24
+
25
+ ## 💾 Installation
26
+
27
+ AutoGluon is supported on Python 3.10 - 3.13 and is available on Linux, MacOS, and Windows.
28
+
29
+ You can install AutoGluon with:
30
+
31
+ ```python
32
+ pip install autogluon
33
+ ```
34
+
35
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
36
+
37
+ ## :zap: Quickstart
38
+
39
+ Build accurate end-to-end ML models in just 3 lines of code!
40
+
41
+ ```python
42
+ from autogluon.tabular import TabularPredictor
43
+ predictor = TabularPredictor(label="class").fit("train.csv", presets="best")
44
+ predictions = predictor.predict("test.csv")
45
+ ```
46
+
47
+ | AutoGluon Task | Quickstart | API |
48
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
49
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
50
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
51
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
52
+
53
+ ## :mag: Resources
54
+
55
+ ### Hands-on Tutorials / Talks
56
+
57
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
58
+
59
+ | Title | Format | Location | Date |
60
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
61
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
62
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
63
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
64
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
65
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
66
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
67
+
68
+ ### Scientific Publications
69
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
70
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
71
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
72
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
73
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
74
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*AutoML Conf*, 2024)
75
+ - [AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models](https://arxiv.org/pdf/2404.16233) (*AutoML Conf*, 2024) ([BibTeX](CITING.md#autogluonmultimodal))
76
+ - [Multi-layer Stack Ensembles for Time Series Forecasting](https://arxiv.org/abs/2511.15350) (*AutoML Conf*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
77
+ - [Chronos-2: From Univariate to Universal Forecasting](https://arxiv.org/abs/2510.15821) (*Arxiv*, 2025) ([BibTeX](CITING.md#autogluontimeseries))
78
+
79
+ ### Articles
80
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
81
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
82
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
83
+
84
+ ### Train/Deploy AutoGluon in the Cloud
85
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
86
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
87
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
88
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
89
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
90
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
91
+
92
+ ## :pencil: Citing AutoGluon
93
+
94
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
95
+
96
+ ## :wave: How to get involved
97
+
98
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
99
+
100
+ ## :classical_building: License
101
+
102
+ This library is licensed under the Apache 2.0 License.
@@ -8,6 +8,9 @@ from setuptools import setup
8
8
 
9
9
  filepath = os.path.abspath(os.path.dirname(__file__))
10
10
  filepath_import = os.path.join(filepath, "..", "core", "src", "autogluon", "core", "_setup_utils.py")
11
+ if not os.path.exists(filepath_import):
12
+ filepath_import = os.path.join(filepath, "_setup_utils.py")
13
+
11
14
  spec = importlib.util.spec_from_file_location("ag_min_dependencies", filepath_import)
12
15
  ag = importlib.util.module_from_spec(spec)
13
16
  # Identical to `from autogluon.core import _setup_utils as ag`, but works without `autogluon.core` being installed.
@@ -1,19 +1,24 @@
1
1
  from .abstract import AbstractFeatureGenerator
2
+ from .arithmetic.preprocessor import ArithmeticFeatureGenerator
2
3
  from .astype import AsTypeFeatureGenerator
3
4
  from .auto_ml_pipeline import AutoMLInterpretablePipelineFeatureGenerator, AutoMLPipelineFeatureGenerator
4
5
  from .binned import BinnedFeatureGenerator
5
6
  from .bulk import BulkFeatureGenerator
7
+ from .cat_as_num import CatAsNumFeatureGenerator
8
+ from .cat_int import CategoricalInteractionFeatureGenerator
6
9
  from .category import CategoryFeatureGenerator
7
10
  from .datetime import DatetimeFeatureGenerator
8
11
  from .drop_duplicates import DropDuplicatesFeatureGenerator
9
12
  from .drop_unique import DropUniqueFeatureGenerator
10
13
  from .dummy import DummyFeatureGenerator
11
14
  from .fillna import FillNaFeatureGenerator
15
+ from .frequency import FrequencyFeatureGenerator
12
16
  from .identity import IdentityFeatureGenerator
13
17
  from .isnan import IsNanFeatureGenerator
14
18
  from .label_encoder import LabelEncoderFeatureGenerator
15
19
  from .memory_minimize import CategoryMemoryMinimizeFeatureGenerator, NumericMemoryMinimizeFeatureGenerator
16
20
  from .one_hot_encoder import OneHotEncoderFeatureGenerator
21
+ from .oof_target_encoder import OOFTargetEncodingFeatureGenerator
17
22
  from .pipeline import PipelineFeatureGenerator
18
23
  from .rename import RenameFeatureGenerator
19
24
  from .text_ngram import TextNgramFeatureGenerator
@@ -1,10 +1,13 @@
1
+ from __future__ import annotations
2
+
1
3
  import copy
2
4
  import inspect
3
5
  import logging
4
6
  import time
5
7
  from collections import defaultdict
6
- from typing import Dict, List
8
+ from typing import Dict, List, Literal
7
9
 
10
+ import pandas as pd
8
11
  from pandas import DataFrame, Series
9
12
 
10
13
  from autogluon.common.features.feature_metadata import FeatureMetadata
@@ -116,6 +119,9 @@ class AbstractFeatureGenerator:
116
119
  features_in: list = None,
117
120
  feature_metadata_in: FeatureMetadata = None,
118
121
  post_generators: list = None,
122
+ passthrough: bool = False,
123
+ passthrough_stage: Literal["first", "last"] = "first", # FIXME: bug: "last" crashes if X_out is empty
124
+ passthrough_types: dict = None,
119
125
  pre_enforce_types=False,
120
126
  pre_drop_useless=False,
121
127
  post_drop_duplicates=False,
@@ -139,6 +145,12 @@ class AbstractFeatureGenerator:
139
145
  # FeatureMetadata object based on the processed features. Pass to models to enable advanced functionality.
140
146
  self.feature_metadata: FeatureMetadata = None
141
147
 
148
+ self.passthrough = passthrough
149
+ self.passthrough_features = None
150
+ assert passthrough_stage in ["first", "last"]
151
+ self.passthrough_stage = passthrough_stage
152
+ self.passthrough_types = passthrough_types
153
+
142
154
  # TODO: Consider merging feature_metadata and feature_metadata_real, have FeatureMetadata contain exact dtypes, grouped raw dtypes,
143
155
  # and special dtypes all at once.
144
156
  # FeatureMetadata object based on the processed features, containing the true raw dtype information (such as int32, float64, etc.).
@@ -290,19 +302,32 @@ class AbstractFeatureGenerator:
290
302
  X_out, type_family_groups_special = self._fit_transform(X[self.features_in], y=y, **kwargs)
291
303
 
292
304
  type_map_raw = get_type_map_raw(X_out)
293
- self._feature_metadata_before_post = FeatureMetadata(
305
+ self.feature_metadata = FeatureMetadata(
294
306
  type_map_raw=type_map_raw, type_group_map_special=type_family_groups_special
295
307
  )
308
+
309
+ if self.passthrough and self.passthrough_stage == "first" and self.features_in:
310
+ self.feature_metadata, self.passthrough_features = self._fit_passthrough()
311
+ if self.passthrough_features:
312
+ X_out = self._transform_passthrough(X=X, X_out=X_out)
313
+
314
+ self._feature_metadata_before_post = self.feature_metadata
315
+
296
316
  if self._post_generators:
297
317
  X_out, self.feature_metadata, self._post_generators = self._fit_generators(
298
318
  X=X_out,
299
319
  y=y,
300
- feature_metadata=self._feature_metadata_before_post,
320
+ feature_metadata=self.feature_metadata,
301
321
  generators=self._post_generators,
302
322
  **kwargs,
303
323
  )
304
- else:
305
- self.feature_metadata = self._feature_metadata_before_post
324
+
325
+ # FIXME: This is bugged if `self.feature_metadata` is empty, crashes at transform
326
+ if self.passthrough and self.passthrough_stage == "last" and self.features_in:
327
+ self.feature_metadata, self.passthrough_features = self._fit_passthrough()
328
+ if self.passthrough_features:
329
+ X_out = self._transform_passthrough(X=X, X_out=X_out)
330
+
306
331
  type_map_real = get_type_map_real(X_out)
307
332
  self.features_out = list(X_out.columns)
308
333
  self.feature_metadata_real = FeatureMetadata(
@@ -323,6 +348,30 @@ class AbstractFeatureGenerator:
323
348
  self.print_generator_info(log_level=15)
324
349
  return X_out
325
350
 
351
+ def _fit_passthrough(self) -> tuple[FeatureMetadata, list[str]]:
352
+ if self.passthrough_types:
353
+ get_features_kwargs = self.passthrough_types
354
+ else:
355
+ get_features_kwargs = dict()
356
+ features_out_set = set(self.feature_metadata.get_features())
357
+ passthrough_features_unsorted = set(self.feature_metadata_in.get_features(**get_features_kwargs))
358
+ passthrough_features = [f for f in self.features_in if f in passthrough_features_unsorted]
359
+ passthrough_features = [f for f in passthrough_features if f not in features_out_set]
360
+ if passthrough_features:
361
+ passthrough_metadata = self.feature_metadata_in.keep_features(features=passthrough_features)
362
+ feature_metadata = self._merge_feature_metadata(
363
+ feature_metadata_lst=[
364
+ passthrough_metadata,
365
+ self.feature_metadata,
366
+ ],
367
+ )
368
+ else:
369
+ feature_metadata = self.feature_metadata
370
+ return feature_metadata, passthrough_features
371
+
372
+ def _transform_passthrough(self, X: DataFrame, X_out: DataFrame) -> DataFrame:
373
+ return self._concat_features(feature_df_list=[X[self.passthrough_features], X_out], index=X.index)
374
+
326
375
  def transform(self, X: DataFrame) -> DataFrame:
327
376
  """
328
377
  Transforms input data into the output data format.
@@ -367,8 +416,12 @@ class AbstractFeatureGenerator:
367
416
  if self._pre_astype_generator:
368
417
  X = self._pre_astype_generator.transform(X)
369
418
  X_out = self._transform(X)
419
+ if self.passthrough and self.passthrough_stage == "first" and self.passthrough_features:
420
+ X_out = self._transform_passthrough(X=X, X_out=X_out)
370
421
  if self._post_generators:
371
422
  X_out = self._transform_generators(X=X_out, generators=self._post_generators)
423
+ if self.passthrough and self.passthrough_stage == "last" and self.passthrough_features:
424
+ X_out = self._transform_passthrough(X=X, X_out=X_out)
372
425
  if self.reset_index:
373
426
  X_out.index = X_index
374
427
  return X_out
@@ -505,8 +558,29 @@ class AbstractFeatureGenerator:
505
558
  def get_default_infer_features_in_args() -> dict:
506
559
  raise NotImplementedError
507
560
 
561
+ @staticmethod
562
+ def get_infer_features_in_args_to_drop() -> dict:
563
+ """Return a dict of kwargs for FeatureMetadata.get_features().
564
+
565
+ This allows to specify which features should be dropped after running this
566
+ feature generator in a feature generator group.
567
+
568
+ For example, assume you are using a feature generator to apply PCA to all
569
+ features of special type S_TEXT_EMBEDDING, then this function could return:
570
+ {
571
+ "invalid_special_types": [S_TEXT_EMBEDDING]
572
+ }
573
+ to inform the user that all S_TEXT_EMBEDDING features that are captured by PCA
574
+ should be dropped from the output of the feature generator group.
575
+ """
576
+ return {}
577
+
578
+ def estimate_output_feature_metadata(self, feature_metadata_in: FeatureMetadata, **kwargs) -> FeatureMetadata:
579
+ """Return an estimated representation of the feature metadata after fit_transform."""
580
+ raise NotImplementedError("This method is not implemented for this generator.")
581
+
508
582
  def _fit_generators(
509
- self, X, y, feature_metadata, generators: list, **kwargs
583
+ self, X, y, feature_metadata, generators: list["AbstractFeatureGenerator"], **kwargs
510
584
  ) -> (DataFrame, FeatureMetadata, list):
511
585
  """
512
586
  Fit a list of AbstractFeatureGenerator objects in sequence, with the output of generators[i] fed as the input to generators[i+1]
@@ -521,7 +595,7 @@ class AbstractFeatureGenerator:
521
595
  return X, feature_metadata, generators
522
596
 
523
597
  @staticmethod
524
- def _transform_generators(X, generators: list) -> DataFrame:
598
+ def _transform_generators(X, generators: list["AbstractFeatureGenerator"]) -> DataFrame:
525
599
  """
526
600
  Transforms X through a list of AbstractFeatureGenerator objects in sequence, with the output of generators[i] fed as the input to generators[i+1]
527
601
  This is called to sequentially transform self._post_generators generators on the output of _transform to obtain the final output of the generator.
@@ -531,6 +605,35 @@ class AbstractFeatureGenerator:
531
605
  X = generator.transform(X=X)
532
606
  return X
533
607
 
608
+ @classmethod
609
+ def _merge_feature_metadata(
610
+ cls,
611
+ feature_metadata_lst: list[FeatureMetadata],
612
+ shared_raw_features: str = "error",
613
+ ) -> FeatureMetadata:
614
+ if not feature_metadata_lst:
615
+ return FeatureMetadata(type_map_raw=dict())
616
+ feature_metadata = FeatureMetadata.join_metadatas(
617
+ feature_metadata_lst,
618
+ shared_raw_features=shared_raw_features,
619
+ )
620
+ return feature_metadata
621
+
622
+ @classmethod
623
+ def _concat_features(cls, feature_df_list: list[DataFrame], index: pd.Index) -> DataFrame:
624
+ if not feature_df_list:
625
+ X = DataFrame(index=index)
626
+ elif len(feature_df_list) == 1:
627
+ X = feature_df_list[0]
628
+ else:
629
+ X = pd.concat(feature_df_list, axis=1, ignore_index=False, copy=False)
630
+ return X
631
+
632
+ def _keep_features_in(self, features: list):
633
+ features = set(features)
634
+ features_to_remove = [f for f in self.features_in if f not in features]
635
+ return self._remove_features_in(features=features_to_remove)
636
+
534
637
  def _remove_features_in(self, features: list):
535
638
  """
536
639
  Removes features from all relevant objects which represent the content of the input data or how the input features are used.
@@ -836,3 +939,23 @@ class AbstractFeatureGenerator:
836
939
  more_tags = base_class._more_tags(self)
837
940
  collected_tags.update(more_tags)
838
941
  return collected_tags
942
+
943
+
944
+ # FIXME: this logic still needs more work to become general purpose.
945
+ # - Needs to make it work for multiple feature generator groups
946
+ # - Need to support for all possible feature generators
947
+ def estimate_feature_metadata_after_generators(
948
+ *, feature_generators: list[list[AbstractFeatureGenerator]] | None, feature_metadata_in: FeatureMetadata, **kwargs
949
+ ) -> FeatureMetadata:
950
+ """Estimate the feature metadata after applying a set of feature generators."""
951
+ feature_metadata = copy.deepcopy(feature_metadata_in)
952
+ if feature_generators is not None:
953
+ for fg_group in feature_generators:
954
+ feature_metadatas = [
955
+ fg.estimate_output_feature_metadata(feature_metadata_in=feature_metadata, **kwargs) for fg in fg_group
956
+ ]
957
+ feature_metadata = FeatureMetadata.join_metadatas(
958
+ feature_metadatas,
959
+ shared_raw_features="error",
960
+ )
961
+ return feature_metadata
@@ -0,0 +1 @@
1
+ from .preprocessor import ArithmeticFeatureGenerator