autogluon.features 1.2.1b20250116__tar.gz → 1.2.1b20250131__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. autogluon.features-1.2.1b20250131/PKG-INFO +138 -0
  2. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/binning.py +1 -1
  3. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/version.py +1 -1
  4. autogluon.features-1.2.1b20250131/src/autogluon.features.egg-info/PKG-INFO +138 -0
  5. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/SOURCES.txt +2 -0
  6. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/requires.txt +1 -1
  7. autogluon.features-1.2.1b20250116/PKG-INFO +0 -134
  8. autogluon.features-1.2.1b20250116/src/autogluon.features.egg-info/PKG-INFO +0 -134
  9. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/setup.cfg +0 -0
  10. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/setup.py +0 -0
  11. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/__init__.py +0 -0
  12. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/__init__.py +0 -0
  13. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/abstract.py +0 -0
  14. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/astype.py +0 -0
  15. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/auto_ml_pipeline.py +0 -0
  16. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/binned.py +0 -0
  17. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/bulk.py +0 -0
  18. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/category.py +0 -0
  19. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/datetime.py +0 -0
  20. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/drop_duplicates.py +0 -0
  21. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/drop_unique.py +0 -0
  22. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/dummy.py +0 -0
  23. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/fillna.py +0 -0
  24. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/identity.py +0 -0
  25. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/isnan.py +0 -0
  26. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/label_encoder.py +0 -0
  27. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/memory_minimize.py +0 -0
  28. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/one_hot_encoder.py +0 -0
  29. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/pipeline.py +0 -0
  30. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/rename.py +0 -0
  31. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/text_ngram.py +0 -0
  32. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/generators/text_special.py +0 -0
  33. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/utils.py +0 -0
  34. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon/features/vectorizers.py +0 -0
  35. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/dependency_links.txt +0 -0
  36. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/namespace_packages.txt +0 -0
  37. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/top_level.txt +0 -0
  38. {autogluon.features-1.2.1b20250116 → autogluon.features-1.2.1b20250131}/src/autogluon.features.egg-info/zip-safe +0 -0
@@ -0,0 +1,138 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.features
3
+ Version: 1.2.1b20250131
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ License-File: ../LICENSE
38
+ License-File: ../NOTICE
39
+
40
+
41
+
42
+ <div align="center">
43
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
44
+
45
+ ## Fast and Accurate ML in 3 Lines of Code
46
+
47
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
48
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
49
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
50
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
51
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
52
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
53
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
54
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
55
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
56
+
57
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
58
+
59
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
60
+ </div>
61
+
62
+ ## 💾 Installation
63
+
64
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
65
+
66
+ You can install AutoGluon with:
67
+
68
+ ```python
69
+ pip install autogluon
70
+ ```
71
+
72
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
73
+
74
+ ## :zap: Quickstart
75
+
76
+ Build accurate end-to-end ML models in just 3 lines of code!
77
+
78
+ ```python
79
+ from autogluon.tabular import TabularPredictor
80
+ predictor = TabularPredictor(label="class").fit("train.csv")
81
+ predictions = predictor.predict("test.csv")
82
+ ```
83
+
84
+ | AutoGluon Task | Quickstart | API |
85
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
86
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
87
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
88
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
89
+
90
+ ## :mag: Resources
91
+
92
+ ### Hands-on Tutorials / Talks
93
+
94
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
95
+
96
+ | Title | Format | Location | Date |
97
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
98
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
99
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
100
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
101
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
102
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
103
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
104
+
105
+ ### Scientific Publications
106
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
107
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
108
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
109
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
110
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
111
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
112
+
113
+ ### Articles
114
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
115
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
116
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
117
+
118
+ ### Train/Deploy AutoGluon in the Cloud
119
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
120
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
121
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
122
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
123
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
124
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
125
+
126
+ ## :pencil: Citing AutoGluon
127
+
128
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
129
+
130
+ ## :wave: How to get involved
131
+
132
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
133
+
134
+ ## :classical_building: License
135
+
136
+ This library is licensed under the Apache 2.0 License.
137
+
138
+
@@ -63,7 +63,7 @@ def generate_bins(X_features: DataFrame, features_to_bin: list, ideal_bins: int
63
63
 
64
64
 
65
65
  # TODO: Clean code
66
- # TODO: Consider re-using bins variable instead of making bins_2-7 variables
66
+ # TODO: Consider reusing bins variable instead of making bins_2-7 variables
67
67
  # bins is a sorted int/float series, ascending=True
68
68
  def get_bins(bins: Series, bin_index: list, bin_epsilon: float) -> IntervalIndex:
69
69
  max_val = bins.max()
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250116"
3
+ __version__ = "1.2.1b20250131"
4
4
  __lite__ = False
@@ -0,0 +1,138 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.features
3
+ Version: 1.2.1b20250131
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ License-File: ../LICENSE
38
+ License-File: ../NOTICE
39
+
40
+
41
+
42
+ <div align="center">
43
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
44
+
45
+ ## Fast and Accurate ML in 3 Lines of Code
46
+
47
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
48
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
49
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
50
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
51
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
52
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
53
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
54
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
55
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
56
+
57
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
58
+
59
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
60
+ </div>
61
+
62
+ ## 💾 Installation
63
+
64
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
65
+
66
+ You can install AutoGluon with:
67
+
68
+ ```python
69
+ pip install autogluon
70
+ ```
71
+
72
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
73
+
74
+ ## :zap: Quickstart
75
+
76
+ Build accurate end-to-end ML models in just 3 lines of code!
77
+
78
+ ```python
79
+ from autogluon.tabular import TabularPredictor
80
+ predictor = TabularPredictor(label="class").fit("train.csv")
81
+ predictions = predictor.predict("test.csv")
82
+ ```
83
+
84
+ | AutoGluon Task | Quickstart | API |
85
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
86
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
87
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
88
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
89
+
90
+ ## :mag: Resources
91
+
92
+ ### Hands-on Tutorials / Talks
93
+
94
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
95
+
96
+ | Title | Format | Location | Date |
97
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
98
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
99
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
100
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
101
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
102
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
103
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
104
+
105
+ ### Scientific Publications
106
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
107
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
108
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
109
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
110
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
111
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
112
+
113
+ ### Articles
114
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
115
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
116
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
117
+
118
+ ### Train/Deploy AutoGluon in the Cloud
119
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
120
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
121
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
122
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
123
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
124
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
125
+
126
+ ## :pencil: Citing AutoGluon
127
+
128
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
129
+
130
+ ## :wave: How to get involved
131
+
132
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
133
+
134
+ ## :classical_building: License
135
+
136
+ This library is licensed under the Apache 2.0 License.
137
+
138
+
@@ -1,4 +1,6 @@
1
1
  setup.py
2
+ ../LICENSE
3
+ ../NOTICE
2
4
  src/autogluon.features.egg-info/PKG-INFO
3
5
  src/autogluon.features.egg-info/SOURCES.txt
4
6
  src/autogluon.features.egg-info/dependency_links.txt
@@ -1,4 +1,4 @@
1
1
  numpy<2.1.4,>=1.25.0
2
2
  pandas<2.3.0,>=2.0.0
3
3
  scikit-learn<1.5.3,>=1.4.0
4
- autogluon.common==1.2.1b20250116
4
+ autogluon.common==1.2.1b20250131
@@ -1,134 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: autogluon.features
3
- Version: 1.2.1b20250116
4
- Summary: Fast and Accurate ML in 3 Lines of Code
5
- Home-page: https://github.com/autogluon/autogluon
6
- Author: AutoGluon Community
7
- License: Apache-2.0
8
- Project-URL: Documentation, https://auto.gluon.ai
9
- Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
- Project-URL: Source, https://github.com/autogluon/autogluon/
11
- Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Description:
13
-
14
- <div align="center">
15
- <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
16
-
17
- ## Fast and Accurate ML in 3 Lines of Code
18
-
19
- [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
20
- [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
21
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
22
- [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
23
- [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
24
- [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
25
- [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
26
- [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
27
- [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
28
-
29
- [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
30
-
31
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
32
- </div>
33
-
34
- ## 💾 Installation
35
-
36
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
37
-
38
- You can install AutoGluon with:
39
-
40
- ```python
41
- pip install autogluon
42
- ```
43
-
44
- Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
45
-
46
- ## :zap: Quickstart
47
-
48
- Build accurate end-to-end ML models in just 3 lines of code!
49
-
50
- ```python
51
- from autogluon.tabular import TabularPredictor
52
- predictor = TabularPredictor(label="class").fit("train.csv")
53
- predictions = predictor.predict("test.csv")
54
- ```
55
-
56
- | AutoGluon Task | Quickstart | API |
57
- |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
58
- | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
59
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
60
- | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
61
-
62
- ## :mag: Resources
63
-
64
- ### Hands-on Tutorials / Talks
65
-
66
- Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
67
-
68
- | Title | Format | Location | Date |
69
- |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
70
- | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
71
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
72
- | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
73
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
74
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
75
- | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
76
-
77
- ### Scientific Publications
78
- - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
79
- - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
80
- - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
81
- - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
82
- - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
83
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
84
-
85
- ### Articles
86
- - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
87
- - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
88
- - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
89
-
90
- ### Train/Deploy AutoGluon in the Cloud
91
- - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
92
- - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
93
- - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
94
- - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
95
- - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
96
- - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
97
-
98
- ## :pencil: Citing AutoGluon
99
-
100
- If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
101
-
102
- ## :wave: How to get involved
103
-
104
- We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
105
-
106
- ## :classical_building: License
107
-
108
- This library is licensed under the Apache 2.0 License.
109
-
110
- Platform: UNKNOWN
111
- Classifier: Development Status :: 4 - Beta
112
- Classifier: Intended Audience :: Education
113
- Classifier: Intended Audience :: Developers
114
- Classifier: Intended Audience :: Science/Research
115
- Classifier: Intended Audience :: Customer Service
116
- Classifier: Intended Audience :: Financial and Insurance Industry
117
- Classifier: Intended Audience :: Healthcare Industry
118
- Classifier: Intended Audience :: Telecommunications Industry
119
- Classifier: License :: OSI Approved :: Apache Software License
120
- Classifier: Operating System :: MacOS
121
- Classifier: Operating System :: Microsoft :: Windows
122
- Classifier: Operating System :: POSIX
123
- Classifier: Operating System :: Unix
124
- Classifier: Programming Language :: Python :: 3
125
- Classifier: Programming Language :: Python :: 3.9
126
- Classifier: Programming Language :: Python :: 3.10
127
- Classifier: Programming Language :: Python :: 3.11
128
- Classifier: Programming Language :: Python :: 3.12
129
- Classifier: Topic :: Software Development
130
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
131
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
132
- Classifier: Topic :: Scientific/Engineering :: Image Recognition
133
- Requires-Python: >=3.9, <3.13
134
- Description-Content-Type: text/markdown
@@ -1,134 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: autogluon.features
3
- Version: 1.2.1b20250116
4
- Summary: Fast and Accurate ML in 3 Lines of Code
5
- Home-page: https://github.com/autogluon/autogluon
6
- Author: AutoGluon Community
7
- License: Apache-2.0
8
- Project-URL: Documentation, https://auto.gluon.ai
9
- Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
- Project-URL: Source, https://github.com/autogluon/autogluon/
11
- Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Description:
13
-
14
- <div align="center">
15
- <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
16
-
17
- ## Fast and Accurate ML in 3 Lines of Code
18
-
19
- [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
20
- [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
21
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
22
- [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
23
- [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
24
- [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
25
- [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
26
- [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
27
- [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
28
-
29
- [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
30
-
31
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
32
- </div>
33
-
34
- ## 💾 Installation
35
-
36
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
37
-
38
- You can install AutoGluon with:
39
-
40
- ```python
41
- pip install autogluon
42
- ```
43
-
44
- Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
45
-
46
- ## :zap: Quickstart
47
-
48
- Build accurate end-to-end ML models in just 3 lines of code!
49
-
50
- ```python
51
- from autogluon.tabular import TabularPredictor
52
- predictor = TabularPredictor(label="class").fit("train.csv")
53
- predictions = predictor.predict("test.csv")
54
- ```
55
-
56
- | AutoGluon Task | Quickstart | API |
57
- |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
58
- | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
59
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
60
- | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
61
-
62
- ## :mag: Resources
63
-
64
- ### Hands-on Tutorials / Talks
65
-
66
- Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
67
-
68
- | Title | Format | Location | Date |
69
- |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
70
- | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
71
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
72
- | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
73
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
74
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
75
- | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
76
-
77
- ### Scientific Publications
78
- - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
79
- - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
80
- - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
81
- - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
82
- - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
83
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
84
-
85
- ### Articles
86
- - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
87
- - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
88
- - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
89
-
90
- ### Train/Deploy AutoGluon in the Cloud
91
- - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
92
- - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
93
- - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
94
- - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
95
- - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
96
- - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
97
-
98
- ## :pencil: Citing AutoGluon
99
-
100
- If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
101
-
102
- ## :wave: How to get involved
103
-
104
- We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
105
-
106
- ## :classical_building: License
107
-
108
- This library is licensed under the Apache 2.0 License.
109
-
110
- Platform: UNKNOWN
111
- Classifier: Development Status :: 4 - Beta
112
- Classifier: Intended Audience :: Education
113
- Classifier: Intended Audience :: Developers
114
- Classifier: Intended Audience :: Science/Research
115
- Classifier: Intended Audience :: Customer Service
116
- Classifier: Intended Audience :: Financial and Insurance Industry
117
- Classifier: Intended Audience :: Healthcare Industry
118
- Classifier: Intended Audience :: Telecommunications Industry
119
- Classifier: License :: OSI Approved :: Apache Software License
120
- Classifier: Operating System :: MacOS
121
- Classifier: Operating System :: Microsoft :: Windows
122
- Classifier: Operating System :: POSIX
123
- Classifier: Operating System :: Unix
124
- Classifier: Programming Language :: Python :: 3
125
- Classifier: Programming Language :: Python :: 3.9
126
- Classifier: Programming Language :: Python :: 3.10
127
- Classifier: Programming Language :: Python :: 3.11
128
- Classifier: Programming Language :: Python :: 3.12
129
- Classifier: Topic :: Software Development
130
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
131
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
132
- Classifier: Topic :: Scientific/Engineering :: Image Recognition
133
- Requires-Python: >=3.9, <3.13
134
- Description-Content-Type: text/markdown