autogluon.core 1.2.1b20250116__tar.gz → 1.2.1b20250131__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- autogluon.core-1.2.1b20250131/PKG-INFO +142 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/learner/abstract_learner.py +1 -1
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/trainer/__init__.py +2 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/trainer/abstract_trainer.py +380 -289
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/version.py +1 -1
- autogluon.core-1.2.1b20250131/src/autogluon.core.egg-info/PKG-INFO +142 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/SOURCES.txt +2 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/requires.txt +6 -6
- autogluon.core-1.2.1b20250116/PKG-INFO +0 -138
- autogluon.core-1.2.1b20250116/src/autogluon.core.egg-info/PKG-INFO +0 -138
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/setup.cfg +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/setup.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/_setup_utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/augmentation/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/augmentation/distill_utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/calibrate/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/calibrate/_decision_threshold.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/calibrate/conformity_score.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/calibrate/temperature_scaling.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/callbacks/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/callbacks/_abstract_callback.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/callbacks/_early_stopping_callback.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/callbacks/_early_stopping_ensemble_callback.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/callbacks/_example_callback.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/constants.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/data/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/data/cleaner.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/data/label_cleaner.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/constants.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/exceptions.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/executors.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/ray_hpo.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/ray_tune_constants.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/ray_tune_scheduler.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/ray_tune_scheduler_factory.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/ray_tune_searcher_factory.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/hpo/space_converter.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/learner/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/learning_curves/plot_curves.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/metrics/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/metrics/classification_metrics.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/metrics/quantile_metrics.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/metrics/score_func.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/metrics/softclass_metrics.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/_utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/abstract/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/abstract/_tags.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/abstract/abstract_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/abstract/abstract_nn_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/abstract/model_trial.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/dummy/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/dummy/_dummy_quantile_regressor.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/dummy/dummy_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/bagged_ensemble_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/fold_fitting_strategy.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/ray_parallel_fold_fitting_strategy.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/stacker_ensemble_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/ensemble/weighted_ensemble_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/greedy_ensemble/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/greedy_ensemble/ensemble_selection.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/models/greedy_ensemble/greedy_weighted_ensemble_model.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/problem_type.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/pseudolabeling/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/pseudolabeling/pseudolabeling.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/ray/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/ray/distributed_jobs_managers.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/ray/resources_calculator.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/scheduler/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/scheduler/reporter.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/scheduler/scheduler_factory.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/scheduler/seq_scheduler.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/dummy_searcher.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/exceptions.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/local_grid_searcher.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/local_random_searcher.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/local_searcher.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/searcher/searcher_factory.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/stacked_overfitting/utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/trainer/utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/decorators.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/early_stopping.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/exceptions.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/feature_selection.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/files.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/infer_utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/loaders/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/miscs.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/plots.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/savers/__init__.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/time.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon/core/utils/version_utils.py +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/dependency_links.txt +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/namespace_packages.txt +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/top_level.txt +0 -0
- {autogluon.core-1.2.1b20250116 → autogluon.core-1.2.1b20250131}/src/autogluon.core.egg-info/zip-safe +0 -0
@@ -0,0 +1,142 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: autogluon.core
|
3
|
+
Version: 1.2.1b20250131
|
4
|
+
Summary: Fast and Accurate ML in 3 Lines of Code
|
5
|
+
Home-page: https://github.com/autogluon/autogluon
|
6
|
+
Author: AutoGluon Community
|
7
|
+
License: Apache-2.0
|
8
|
+
Project-URL: Documentation, https://auto.gluon.ai
|
9
|
+
Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
|
10
|
+
Project-URL: Source, https://github.com/autogluon/autogluon/
|
11
|
+
Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
|
12
|
+
Platform: UNKNOWN
|
13
|
+
Classifier: Development Status :: 4 - Beta
|
14
|
+
Classifier: Intended Audience :: Education
|
15
|
+
Classifier: Intended Audience :: Developers
|
16
|
+
Classifier: Intended Audience :: Science/Research
|
17
|
+
Classifier: Intended Audience :: Customer Service
|
18
|
+
Classifier: Intended Audience :: Financial and Insurance Industry
|
19
|
+
Classifier: Intended Audience :: Healthcare Industry
|
20
|
+
Classifier: Intended Audience :: Telecommunications Industry
|
21
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
22
|
+
Classifier: Operating System :: MacOS
|
23
|
+
Classifier: Operating System :: Microsoft :: Windows
|
24
|
+
Classifier: Operating System :: POSIX
|
25
|
+
Classifier: Operating System :: Unix
|
26
|
+
Classifier: Programming Language :: Python :: 3
|
27
|
+
Classifier: Programming Language :: Python :: 3.9
|
28
|
+
Classifier: Programming Language :: Python :: 3.10
|
29
|
+
Classifier: Programming Language :: Python :: 3.11
|
30
|
+
Classifier: Programming Language :: Python :: 3.12
|
31
|
+
Classifier: Topic :: Software Development
|
32
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
33
|
+
Classifier: Topic :: Scientific/Engineering :: Information Analysis
|
34
|
+
Classifier: Topic :: Scientific/Engineering :: Image Recognition
|
35
|
+
Requires-Python: >=3.9, <3.13
|
36
|
+
Description-Content-Type: text/markdown
|
37
|
+
Provides-Extra: ray
|
38
|
+
Provides-Extra: raytune
|
39
|
+
Provides-Extra: tests
|
40
|
+
Provides-Extra: all
|
41
|
+
License-File: ../LICENSE
|
42
|
+
License-File: ../NOTICE
|
43
|
+
|
44
|
+
|
45
|
+
|
46
|
+
<div align="center">
|
47
|
+
<img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
|
48
|
+
|
49
|
+
## Fast and Accurate ML in 3 Lines of Code
|
50
|
+
|
51
|
+
[](https://github.com/autogluon/autogluon/releases)
|
52
|
+
[](https://anaconda.org/conda-forge/autogluon)
|
53
|
+
[](https://pypi.org/project/autogluon/)
|
54
|
+
[](https://pepy.tech/project/autogluon)
|
55
|
+
[](./LICENSE)
|
56
|
+
[](https://discord.gg/wjUmjqAc2N)
|
57
|
+
[](https://twitter.com/autogluon)
|
58
|
+
[](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
|
59
|
+
[](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
|
60
|
+
|
61
|
+
[Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
|
62
|
+
|
63
|
+
AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
|
64
|
+
</div>
|
65
|
+
|
66
|
+
## 💾 Installation
|
67
|
+
|
68
|
+
AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
|
69
|
+
|
70
|
+
You can install AutoGluon with:
|
71
|
+
|
72
|
+
```python
|
73
|
+
pip install autogluon
|
74
|
+
```
|
75
|
+
|
76
|
+
Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
|
77
|
+
|
78
|
+
## :zap: Quickstart
|
79
|
+
|
80
|
+
Build accurate end-to-end ML models in just 3 lines of code!
|
81
|
+
|
82
|
+
```python
|
83
|
+
from autogluon.tabular import TabularPredictor
|
84
|
+
predictor = TabularPredictor(label="class").fit("train.csv")
|
85
|
+
predictions = predictor.predict("test.csv")
|
86
|
+
```
|
87
|
+
|
88
|
+
| AutoGluon Task | Quickstart | API |
|
89
|
+
|:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
|
90
|
+
| TabularPredictor | [](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
|
91
|
+
| MultiModalPredictor | [](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
|
92
|
+
| TimeSeriesPredictor | [](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
|
93
|
+
|
94
|
+
## :mag: Resources
|
95
|
+
|
96
|
+
### Hands-on Tutorials / Talks
|
97
|
+
|
98
|
+
Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
|
99
|
+
|
100
|
+
| Title | Format | Location | Date |
|
101
|
+
|--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
|
102
|
+
| :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
|
103
|
+
| :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
|
104
|
+
| :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
|
105
|
+
| :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
|
106
|
+
| :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
|
107
|
+
| :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
|
108
|
+
|
109
|
+
### Scientific Publications
|
110
|
+
- [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
|
111
|
+
- [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
|
112
|
+
- [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
|
113
|
+
- [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
|
114
|
+
- [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
|
115
|
+
- [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
|
116
|
+
|
117
|
+
### Articles
|
118
|
+
- [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
|
119
|
+
- [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
|
120
|
+
- [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
|
121
|
+
|
122
|
+
### Train/Deploy AutoGluon in the Cloud
|
123
|
+
- [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
|
124
|
+
- [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
|
125
|
+
- [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
|
126
|
+
- [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
|
127
|
+
- [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
|
128
|
+
- [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
|
129
|
+
|
130
|
+
## :pencil: Citing AutoGluon
|
131
|
+
|
132
|
+
If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
|
133
|
+
|
134
|
+
## :wave: How to get involved
|
135
|
+
|
136
|
+
We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
|
137
|
+
|
138
|
+
## :classical_building: License
|
139
|
+
|
140
|
+
This library is licensed under the Apache 2.0 License.
|
141
|
+
|
142
|
+
|
@@ -26,7 +26,7 @@ class AbstractLearner:
|
|
26
26
|
self.path_context_og: str = path_context # Saves path_context used to create the original context of the learner to enable sub-fits.
|
27
27
|
self.is_trainer_present: bool = False
|
28
28
|
self.trainer: Optional[AbstractTrainer] = None
|
29
|
-
self.trainer_type:
|
29
|
+
self.trainer_type: Type
|
30
30
|
self.trainer_path: Optional[str] = None
|
31
31
|
self.reset_paths: bool = False
|
32
32
|
|