autogluon.core 1.2.1b20250115__tar.gz → 1.2.1b20250130__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (102) hide show
  1. autogluon.core-1.2.1b20250130/PKG-INFO +142 -0
  2. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/_setup_utils.py +2 -2
  3. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/learner/abstract_learner.py +1 -1
  4. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/trainer/__init__.py +2 -0
  5. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/trainer/abstract_trainer.py +380 -289
  6. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/version.py +2 -1
  7. autogluon.core-1.2.1b20250130/src/autogluon.core.egg-info/PKG-INFO +142 -0
  8. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/SOURCES.txt +2 -0
  9. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/requires.txt +4 -4
  10. autogluon.core-1.2.1b20250115/PKG-INFO +0 -138
  11. autogluon.core-1.2.1b20250115/src/autogluon.core.egg-info/PKG-INFO +0 -138
  12. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/setup.cfg +0 -0
  13. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/setup.py +0 -0
  14. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/__init__.py +0 -0
  15. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/augmentation/__init__.py +0 -0
  16. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/augmentation/distill_utils.py +0 -0
  17. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/calibrate/__init__.py +0 -0
  18. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/calibrate/_decision_threshold.py +0 -0
  19. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/calibrate/conformity_score.py +0 -0
  20. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/calibrate/temperature_scaling.py +0 -0
  21. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/callbacks/__init__.py +0 -0
  22. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/callbacks/_abstract_callback.py +0 -0
  23. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/callbacks/_early_stopping_callback.py +0 -0
  24. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/callbacks/_early_stopping_ensemble_callback.py +0 -0
  25. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/callbacks/_example_callback.py +0 -0
  26. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/constants.py +0 -0
  27. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/data/__init__.py +0 -0
  28. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/data/cleaner.py +0 -0
  29. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/data/label_cleaner.py +0 -0
  30. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/__init__.py +0 -0
  31. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/constants.py +0 -0
  32. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/exceptions.py +0 -0
  33. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/executors.py +0 -0
  34. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/ray_hpo.py +0 -0
  35. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/ray_tune_constants.py +0 -0
  36. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/ray_tune_scheduler.py +0 -0
  37. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/ray_tune_scheduler_factory.py +0 -0
  38. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/ray_tune_searcher_factory.py +0 -0
  39. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/hpo/space_converter.py +0 -0
  40. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/learner/__init__.py +0 -0
  41. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/learning_curves/plot_curves.py +0 -0
  42. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/metrics/__init__.py +0 -0
  43. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/metrics/classification_metrics.py +0 -0
  44. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/metrics/quantile_metrics.py +0 -0
  45. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/metrics/score_func.py +0 -0
  46. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/metrics/softclass_metrics.py +0 -0
  47. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/__init__.py +0 -0
  48. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/_utils.py +0 -0
  49. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/abstract/__init__.py +0 -0
  50. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/abstract/_tags.py +0 -0
  51. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/abstract/abstract_model.py +0 -0
  52. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/abstract/abstract_nn_model.py +0 -0
  53. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/abstract/model_trial.py +0 -0
  54. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/dummy/__init__.py +0 -0
  55. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/dummy/_dummy_quantile_regressor.py +0 -0
  56. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/dummy/dummy_model.py +0 -0
  57. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/__init__.py +0 -0
  58. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/bagged_ensemble_model.py +0 -0
  59. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/fold_fitting_strategy.py +0 -0
  60. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/ray_parallel_fold_fitting_strategy.py +0 -0
  61. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/stacker_ensemble_model.py +0 -0
  62. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/ensemble/weighted_ensemble_model.py +0 -0
  63. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/greedy_ensemble/__init__.py +0 -0
  64. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/greedy_ensemble/ensemble_selection.py +0 -0
  65. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/models/greedy_ensemble/greedy_weighted_ensemble_model.py +0 -0
  66. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/problem_type.py +0 -0
  67. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/pseudolabeling/__init__.py +0 -0
  68. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/pseudolabeling/pseudolabeling.py +0 -0
  69. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/ray/__init__.py +0 -0
  70. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/ray/distributed_jobs_managers.py +0 -0
  71. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/ray/resources_calculator.py +0 -0
  72. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/scheduler/__init__.py +0 -0
  73. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/scheduler/reporter.py +0 -0
  74. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/scheduler/scheduler_factory.py +0 -0
  75. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/scheduler/seq_scheduler.py +0 -0
  76. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/__init__.py +0 -0
  77. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/dummy_searcher.py +0 -0
  78. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/exceptions.py +0 -0
  79. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/local_grid_searcher.py +0 -0
  80. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/local_random_searcher.py +0 -0
  81. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/local_searcher.py +0 -0
  82. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/searcher/searcher_factory.py +0 -0
  83. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/stacked_overfitting/utils.py +0 -0
  84. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/trainer/utils.py +0 -0
  85. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/__init__.py +0 -0
  86. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/decorators.py +0 -0
  87. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/early_stopping.py +0 -0
  88. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/exceptions.py +0 -0
  89. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/feature_selection.py +0 -0
  90. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/files.py +0 -0
  91. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/infer_utils.py +0 -0
  92. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/loaders/__init__.py +0 -0
  93. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/miscs.py +0 -0
  94. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/plots.py +0 -0
  95. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/savers/__init__.py +0 -0
  96. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/time.py +0 -0
  97. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/utils.py +0 -0
  98. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon/core/utils/version_utils.py +0 -0
  99. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/dependency_links.txt +0 -0
  100. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/namespace_packages.txt +0 -0
  101. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/top_level.txt +0 -0
  102. {autogluon.core-1.2.1b20250115 → autogluon.core-1.2.1b20250130}/src/autogluon.core.egg-info/zip-safe +0 -0
@@ -0,0 +1,142 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.core
3
+ Version: 1.2.1b20250130
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ Provides-Extra: ray
38
+ Provides-Extra: raytune
39
+ Provides-Extra: tests
40
+ Provides-Extra: all
41
+ License-File: ../LICENSE
42
+ License-File: ../NOTICE
43
+
44
+
45
+
46
+ <div align="center">
47
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
48
+
49
+ ## Fast and Accurate ML in 3 Lines of Code
50
+
51
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
52
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
53
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
54
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
55
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
56
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
57
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
58
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
59
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
60
+
61
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
62
+
63
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
64
+ </div>
65
+
66
+ ## 💾 Installation
67
+
68
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
69
+
70
+ You can install AutoGluon with:
71
+
72
+ ```python
73
+ pip install autogluon
74
+ ```
75
+
76
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
77
+
78
+ ## :zap: Quickstart
79
+
80
+ Build accurate end-to-end ML models in just 3 lines of code!
81
+
82
+ ```python
83
+ from autogluon.tabular import TabularPredictor
84
+ predictor = TabularPredictor(label="class").fit("train.csv")
85
+ predictions = predictor.predict("test.csv")
86
+ ```
87
+
88
+ | AutoGluon Task | Quickstart | API |
89
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
90
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
91
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
92
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
93
+
94
+ ## :mag: Resources
95
+
96
+ ### Hands-on Tutorials / Talks
97
+
98
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
99
+
100
+ | Title | Format | Location | Date |
101
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
102
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
103
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
104
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
105
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
106
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
107
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
108
+
109
+ ### Scientific Publications
110
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
111
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
112
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
113
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
114
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
115
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
116
+
117
+ ### Articles
118
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
119
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
120
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
121
+
122
+ ### Train/Deploy AutoGluon in the Cloud
123
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
124
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
125
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
126
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
127
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
128
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
129
+
130
+ ## :pencil: Citing AutoGluon
131
+
132
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
133
+
134
+ ## :wave: How to get involved
135
+
136
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
137
+
138
+ ## :classical_building: License
139
+
140
+ This library is licensed under the Apache 2.0 License.
141
+
142
+
@@ -89,8 +89,8 @@ def create_version_file(*, version, submodule):
89
89
  version_path = os.path.join(AUTOGLUON_ROOT_PATH, AUTOGLUON, "src", AUTOGLUON, "version.py")
90
90
  with open(version_path, "w") as f:
91
91
  f.write(f'"""This is the {AUTOGLUON} version file."""\n')
92
- f.write("__version__ = '{}'\n".format(version))
93
- f.write("__lite__ = {}\n".format(LITE_MODE))
92
+ f.write(f'\n__version__ = "{version}"\n')
93
+ f.write(f"__lite__ = {LITE_MODE}\n")
94
94
 
95
95
 
96
96
  def default_setup_args(*, version, submodule):
@@ -26,7 +26,7 @@ class AbstractLearner:
26
26
  self.path_context_og: str = path_context # Saves path_context used to create the original context of the learner to enable sub-fits.
27
27
  self.is_trainer_present: bool = False
28
28
  self.trainer: Optional[AbstractTrainer] = None
29
- self.trainer_type: Optional[Type] = None
29
+ self.trainer_type: Type
30
30
  self.trainer_path: Optional[str] = None
31
31
  self.reset_paths: bool = False
32
32
 
@@ -1 +1,3 @@
1
1
  from .abstract_trainer import AbstractTrainer
2
+
3
+ __all__ = ["AbstractTrainer"]