autogluon.common 1.2.1b20250116__tar.gz → 1.2.1b20250130__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. autogluon.common-1.2.1b20250130/PKG-INFO +139 -0
  2. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/s3_utils.py +1 -1
  3. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/utils.py +14 -7
  4. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/version.py +1 -1
  5. autogluon.common-1.2.1b20250130/src/autogluon.common.egg-info/PKG-INFO +139 -0
  6. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/SOURCES.txt +2 -2
  7. autogluon.common-1.2.1b20250116/LICENSE +0 -175
  8. autogluon.common-1.2.1b20250116/NOTICE +0 -2
  9. autogluon.common-1.2.1b20250116/PKG-INFO +0 -135
  10. autogluon.common-1.2.1b20250116/src/autogluon.common.egg-info/PKG-INFO +0 -135
  11. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/setup.cfg +0 -0
  12. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/setup.py +0 -0
  13. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/__init__.py +0 -0
  14. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/dataset.py +0 -0
  15. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/features/__init__.py +0 -0
  16. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/features/feature_metadata.py +0 -0
  17. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/features/infer_types.py +0 -0
  18. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/features/types.py +0 -0
  19. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/__init__.py +0 -0
  20. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/_utils.py +0 -0
  21. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_json.py +0 -0
  22. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_pd.py +0 -0
  23. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_pkl.py +0 -0
  24. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_pointer.py +0 -0
  25. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_s3.py +0 -0
  26. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_str.py +0 -0
  27. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/loaders/load_zip.py +0 -0
  28. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/model_filter/__init__.py +0 -0
  29. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/model_filter/_model_filter.py +0 -0
  30. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/__init__.py +0 -0
  31. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/save_json.py +0 -0
  32. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/save_pd.py +0 -0
  33. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/save_pkl.py +0 -0
  34. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/save_pointer.py +0 -0
  35. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/savers/save_str.py +0 -0
  36. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/space.py +0 -0
  37. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/__init__.py +0 -0
  38. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/compression_utils.py +0 -0
  39. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/context.py +0 -0
  40. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/deprecated_utils.py +0 -0
  41. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/distribute_utils.py +0 -0
  42. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/file_utils.py +0 -0
  43. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/hyperparameter_utils.py +0 -0
  44. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/lite.py +0 -0
  45. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/log_utils.py +0 -0
  46. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/multiprocessing_utils.py +0 -0
  47. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/nvutil.py +0 -0
  48. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/pandas_utils.py +0 -0
  49. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/path_converter.py +0 -0
  50. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/resource_utils.py +0 -0
  51. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/simulation_utils.py +0 -0
  52. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/system_info.py +0 -0
  53. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon/common/utils/try_import.py +0 -0
  54. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/dependency_links.txt +0 -0
  55. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/namespace_packages.txt +0 -0
  56. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/requires.txt +1 -1
  57. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/top_level.txt +0 -0
  58. {autogluon.common-1.2.1b20250116 → autogluon.common-1.2.1b20250130}/src/autogluon.common.egg-info/zip-safe +0 -0
@@ -0,0 +1,139 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.common
3
+ Version: 1.2.1b20250130
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ Provides-Extra: tests
38
+ License-File: ../LICENSE
39
+ License-File: ../NOTICE
40
+
41
+
42
+
43
+ <div align="center">
44
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
45
+
46
+ ## Fast and Accurate ML in 3 Lines of Code
47
+
48
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
49
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
50
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
51
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
52
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
53
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
54
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
55
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
56
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
57
+
58
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
59
+
60
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
61
+ </div>
62
+
63
+ ## 💾 Installation
64
+
65
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
66
+
67
+ You can install AutoGluon with:
68
+
69
+ ```python
70
+ pip install autogluon
71
+ ```
72
+
73
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
74
+
75
+ ## :zap: Quickstart
76
+
77
+ Build accurate end-to-end ML models in just 3 lines of code!
78
+
79
+ ```python
80
+ from autogluon.tabular import TabularPredictor
81
+ predictor = TabularPredictor(label="class").fit("train.csv")
82
+ predictions = predictor.predict("test.csv")
83
+ ```
84
+
85
+ | AutoGluon Task | Quickstart | API |
86
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
87
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
88
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
89
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
90
+
91
+ ## :mag: Resources
92
+
93
+ ### Hands-on Tutorials / Talks
94
+
95
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
96
+
97
+ | Title | Format | Location | Date |
98
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
99
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
100
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
101
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
102
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
103
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
104
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
105
+
106
+ ### Scientific Publications
107
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
108
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
109
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
110
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
111
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
112
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
113
+
114
+ ### Articles
115
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
116
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
117
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
118
+
119
+ ### Train/Deploy AutoGluon in the Cloud
120
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
121
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
122
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
123
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
124
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
125
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
126
+
127
+ ## :pencil: Citing AutoGluon
128
+
129
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
130
+
131
+ ## :wave: How to get involved
132
+
133
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
134
+
135
+ ## :classical_building: License
136
+
137
+ This library is licensed under the Apache 2.0 License.
138
+
139
+
@@ -213,7 +213,7 @@ def download_s3_folder(
213
213
  if os.path.isdir(local_path) and not dry_run:
214
214
  if error_if_exists:
215
215
  raise ValueError(
216
- f"Directory {local_path} already exists. Please pass in a different `local_path` or set `error_if_exsits` to `False`"
216
+ f"Directory {local_path} already exists. Please pass in a different `local_path` or set `error_if_exists` to `False`"
217
217
  )
218
218
  if delete_if_exists:
219
219
  logger.warning(
@@ -2,7 +2,7 @@ import logging
2
2
  import os
3
3
  import platform
4
4
  import sys
5
- from datetime import datetime
5
+ from datetime import datetime, timezone
6
6
  from hashlib import md5
7
7
  from pathlib import Path
8
8
  from typing import Any, Dict, Optional
@@ -23,18 +23,23 @@ LITE_MODE: bool = __lite__ is not None and __lite__
23
23
 
24
24
 
25
25
  def setup_outputdir(path, warn_if_exist=True, create_dir=True, path_suffix=None):
26
+ is_s3_path = False
26
27
  if path:
27
28
  assert isinstance(path, (str, Path)), (
28
29
  f"Only str and pathlib.Path types are supported for path, got {path} of type {type(path)}."
29
30
  )
31
+
32
+ is_s3_path = str(path).lower().startswith("s3://")
33
+
30
34
  if path_suffix is None:
31
35
  path_suffix = ""
32
- if path_suffix and path_suffix[-1] == os.path.sep:
36
+ if path_suffix and path_suffix[-1] == os.path.sep if not is_s3_path else "/":
33
37
  path_suffix = path_suffix[:-1]
38
+
34
39
  if path is not None:
35
40
  path = f"{path}{path_suffix}"
36
- if path is None:
37
- utcnow = datetime.utcnow()
41
+ else:
42
+ utcnow = datetime.now(timezone.utc)
38
43
  timestamp = utcnow.strftime("%Y%m%d_%H%M%S")
39
44
  path = os.path.join("AutogluonModels", f"ag-{timestamp}{path_suffix}")
40
45
  for i in range(1, 1000):
@@ -51,7 +56,8 @@ def setup_outputdir(path, warn_if_exist=True, create_dir=True, path_suffix=None)
51
56
  else:
52
57
  raise RuntimeError("more than 1000 jobs launched in the same second")
53
58
  logger.log(25, f'No path specified. Models will be saved in: "{path}"')
54
- elif warn_if_exist:
59
+
60
+ if warn_if_exist and not is_s3_path:
55
61
  try:
56
62
  if create_dir:
57
63
  os.makedirs(path, exist_ok=False)
@@ -61,8 +67,9 @@ def setup_outputdir(path, warn_if_exist=True, create_dir=True, path_suffix=None)
61
67
  logger.warning(
62
68
  f'Warning: path already exists! This predictor may overwrite an existing predictor! path="{path}"'
63
69
  )
64
- path = os.path.expanduser(path) # replace ~ with absolute path if it exists
65
- path = os.path.abspath(path)
70
+ if not is_s3_path:
71
+ path = os.path.expanduser(path) # replace ~ with absolute path if it exists
72
+ path = os.path.abspath(path)
66
73
  return path
67
74
 
68
75
 
@@ -1,4 +1,4 @@
1
1
  """This is the autogluon version file."""
2
2
 
3
- __version__ = "1.2.1b20250116"
3
+ __version__ = "1.2.1b20250130"
4
4
  __lite__ = False
@@ -0,0 +1,139 @@
1
+ Metadata-Version: 2.1
2
+ Name: autogluon.common
3
+ Version: 1.2.1b20250130
4
+ Summary: Fast and Accurate ML in 3 Lines of Code
5
+ Home-page: https://github.com/autogluon/autogluon
6
+ Author: AutoGluon Community
7
+ License: Apache-2.0
8
+ Project-URL: Documentation, https://auto.gluon.ai
9
+ Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
+ Project-URL: Source, https://github.com/autogluon/autogluon/
11
+ Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
+ Platform: UNKNOWN
13
+ Classifier: Development Status :: 4 - Beta
14
+ Classifier: Intended Audience :: Education
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: Science/Research
17
+ Classifier: Intended Audience :: Customer Service
18
+ Classifier: Intended Audience :: Financial and Insurance Industry
19
+ Classifier: Intended Audience :: Healthcare Industry
20
+ Classifier: Intended Audience :: Telecommunications Industry
21
+ Classifier: License :: OSI Approved :: Apache Software License
22
+ Classifier: Operating System :: MacOS
23
+ Classifier: Operating System :: Microsoft :: Windows
24
+ Classifier: Operating System :: POSIX
25
+ Classifier: Operating System :: Unix
26
+ Classifier: Programming Language :: Python :: 3
27
+ Classifier: Programming Language :: Python :: 3.9
28
+ Classifier: Programming Language :: Python :: 3.10
29
+ Classifier: Programming Language :: Python :: 3.11
30
+ Classifier: Programming Language :: Python :: 3.12
31
+ Classifier: Topic :: Software Development
32
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
33
+ Classifier: Topic :: Scientific/Engineering :: Information Analysis
34
+ Classifier: Topic :: Scientific/Engineering :: Image Recognition
35
+ Requires-Python: >=3.9, <3.13
36
+ Description-Content-Type: text/markdown
37
+ Provides-Extra: tests
38
+ License-File: ../LICENSE
39
+ License-File: ../NOTICE
40
+
41
+
42
+
43
+ <div align="center">
44
+ <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
45
+
46
+ ## Fast and Accurate ML in 3 Lines of Code
47
+
48
+ [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
49
+ [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
50
+ [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
51
+ [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
52
+ [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
53
+ [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
54
+ [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
55
+ [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
56
+ [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
57
+
58
+ [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
59
+
60
+ AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
61
+ </div>
62
+
63
+ ## 💾 Installation
64
+
65
+ AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
66
+
67
+ You can install AutoGluon with:
68
+
69
+ ```python
70
+ pip install autogluon
71
+ ```
72
+
73
+ Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
74
+
75
+ ## :zap: Quickstart
76
+
77
+ Build accurate end-to-end ML models in just 3 lines of code!
78
+
79
+ ```python
80
+ from autogluon.tabular import TabularPredictor
81
+ predictor = TabularPredictor(label="class").fit("train.csv")
82
+ predictions = predictor.predict("test.csv")
83
+ ```
84
+
85
+ | AutoGluon Task | Quickstart | API |
86
+ |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
87
+ | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
88
+ | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
89
+ | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
90
+
91
+ ## :mag: Resources
92
+
93
+ ### Hands-on Tutorials / Talks
94
+
95
+ Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
96
+
97
+ | Title | Format | Location | Date |
98
+ |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
99
+ | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
100
+ | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
101
+ | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
102
+ | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
103
+ | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
104
+ | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
105
+
106
+ ### Scientific Publications
107
+ - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
108
+ - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
109
+ - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
110
+ - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
111
+ - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
112
+ - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
113
+
114
+ ### Articles
115
+ - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
116
+ - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
117
+ - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
118
+
119
+ ### Train/Deploy AutoGluon in the Cloud
120
+ - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
121
+ - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
122
+ - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
123
+ - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
124
+ - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
125
+ - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
126
+
127
+ ## :pencil: Citing AutoGluon
128
+
129
+ If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
130
+
131
+ ## :wave: How to get involved
132
+
133
+ We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
134
+
135
+ ## :classical_building: License
136
+
137
+ This library is licensed under the Apache 2.0 License.
138
+
139
+
@@ -1,6 +1,6 @@
1
- LICENSE
2
- NOTICE
3
1
  setup.py
2
+ ../LICENSE
3
+ ../NOTICE
4
4
  src/autogluon.common.egg-info/PKG-INFO
5
5
  src/autogluon.common.egg-info/SOURCES.txt
6
6
  src/autogluon.common.egg-info/dependency_links.txt
@@ -1,175 +0,0 @@
1
-
2
- Apache License
3
- Version 2.0, January 2004
4
- http://www.apache.org/licenses/
5
-
6
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
-
8
- 1. Definitions.
9
-
10
- "License" shall mean the terms and conditions for use, reproduction,
11
- and distribution as defined by Sections 1 through 9 of this document.
12
-
13
- "Licensor" shall mean the copyright owner or entity authorized by
14
- the copyright owner that is granting the License.
15
-
16
- "Legal Entity" shall mean the union of the acting entity and all
17
- other entities that control, are controlled by, or are under common
18
- control with that entity. For the purposes of this definition,
19
- "control" means (i) the power, direct or indirect, to cause the
20
- direction or management of such entity, whether by contract or
21
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
- outstanding shares, or (iii) beneficial ownership of such entity.
23
-
24
- "You" (or "Your") shall mean an individual or Legal Entity
25
- exercising permissions granted by this License.
26
-
27
- "Source" form shall mean the preferred form for making modifications,
28
- including but not limited to software source code, documentation
29
- source, and configuration files.
30
-
31
- "Object" form shall mean any form resulting from mechanical
32
- transformation or translation of a Source form, including but
33
- not limited to compiled object code, generated documentation,
34
- and conversions to other media types.
35
-
36
- "Work" shall mean the work of authorship, whether in Source or
37
- Object form, made available under the License, as indicated by a
38
- copyright notice that is included in or attached to the work
39
- (an example is provided in the Appendix below).
40
-
41
- "Derivative Works" shall mean any work, whether in Source or Object
42
- form, that is based on (or derived from) the Work and for which the
43
- editorial revisions, annotations, elaborations, or other modifications
44
- represent, as a whole, an original work of authorship. For the purposes
45
- of this License, Derivative Works shall not include works that remain
46
- separable from, or merely link (or bind by name) to the interfaces of,
47
- the Work and Derivative Works thereof.
48
-
49
- "Contribution" shall mean any work of authorship, including
50
- the original version of the Work and any modifications or additions
51
- to that Work or Derivative Works thereof, that is intentionally
52
- submitted to Licensor for inclusion in the Work by the copyright owner
53
- or by an individual or Legal Entity authorized to submit on behalf of
54
- the copyright owner. For the purposes of this definition, "submitted"
55
- means any form of electronic, verbal, or written communication sent
56
- to the Licensor or its representatives, including but not limited to
57
- communication on electronic mailing lists, source code control systems,
58
- and issue tracking systems that are managed by, or on behalf of, the
59
- Licensor for the purpose of discussing and improving the Work, but
60
- excluding communication that is conspicuously marked or otherwise
61
- designated in writing by the copyright owner as "Not a Contribution."
62
-
63
- "Contributor" shall mean Licensor and any individual or Legal Entity
64
- on behalf of whom a Contribution has been received by Licensor and
65
- subsequently incorporated within the Work.
66
-
67
- 2. Grant of Copyright License. Subject to the terms and conditions of
68
- this License, each Contributor hereby grants to You a perpetual,
69
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
- copyright license to reproduce, prepare Derivative Works of,
71
- publicly display, publicly perform, sublicense, and distribute the
72
- Work and such Derivative Works in Source or Object form.
73
-
74
- 3. Grant of Patent License. Subject to the terms and conditions of
75
- this License, each Contributor hereby grants to You a perpetual,
76
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
- (except as stated in this section) patent license to make, have made,
78
- use, offer to sell, sell, import, and otherwise transfer the Work,
79
- where such license applies only to those patent claims licensable
80
- by such Contributor that are necessarily infringed by their
81
- Contribution(s) alone or by combination of their Contribution(s)
82
- with the Work to which such Contribution(s) was submitted. If You
83
- institute patent litigation against any entity (including a
84
- cross-claim or counterclaim in a lawsuit) alleging that the Work
85
- or a Contribution incorporated within the Work constitutes direct
86
- or contributory patent infringement, then any patent licenses
87
- granted to You under this License for that Work shall terminate
88
- as of the date such litigation is filed.
89
-
90
- 4. Redistribution. You may reproduce and distribute copies of the
91
- Work or Derivative Works thereof in any medium, with or without
92
- modifications, and in Source or Object form, provided that You
93
- meet the following conditions:
94
-
95
- (a) You must give any other recipients of the Work or
96
- Derivative Works a copy of this License; and
97
-
98
- (b) You must cause any modified files to carry prominent notices
99
- stating that You changed the files; and
100
-
101
- (c) You must retain, in the Source form of any Derivative Works
102
- that You distribute, all copyright, patent, trademark, and
103
- attribution notices from the Source form of the Work,
104
- excluding those notices that do not pertain to any part of
105
- the Derivative Works; and
106
-
107
- (d) If the Work includes a "NOTICE" text file as part of its
108
- distribution, then any Derivative Works that You distribute must
109
- include a readable copy of the attribution notices contained
110
- within such NOTICE file, excluding those notices that do not
111
- pertain to any part of the Derivative Works, in at least one
112
- of the following places: within a NOTICE text file distributed
113
- as part of the Derivative Works; within the Source form or
114
- documentation, if provided along with the Derivative Works; or,
115
- within a display generated by the Derivative Works, if and
116
- wherever such third-party notices normally appear. The contents
117
- of the NOTICE file are for informational purposes only and
118
- do not modify the License. You may add Your own attribution
119
- notices within Derivative Works that You distribute, alongside
120
- or as an addendum to the NOTICE text from the Work, provided
121
- that such additional attribution notices cannot be construed
122
- as modifying the License.
123
-
124
- You may add Your own copyright statement to Your modifications and
125
- may provide additional or different license terms and conditions
126
- for use, reproduction, or distribution of Your modifications, or
127
- for any such Derivative Works as a whole, provided Your use,
128
- reproduction, and distribution of the Work otherwise complies with
129
- the conditions stated in this License.
130
-
131
- 5. Submission of Contributions. Unless You explicitly state otherwise,
132
- any Contribution intentionally submitted for inclusion in the Work
133
- by You to the Licensor shall be under the terms and conditions of
134
- this License, without any additional terms or conditions.
135
- Notwithstanding the above, nothing herein shall supersede or modify
136
- the terms of any separate license agreement you may have executed
137
- with Licensor regarding such Contributions.
138
-
139
- 6. Trademarks. This License does not grant permission to use the trade
140
- names, trademarks, service marks, or product names of the Licensor,
141
- except as required for reasonable and customary use in describing the
142
- origin of the Work and reproducing the content of the NOTICE file.
143
-
144
- 7. Disclaimer of Warranty. Unless required by applicable law or
145
- agreed to in writing, Licensor provides the Work (and each
146
- Contributor provides its Contributions) on an "AS IS" BASIS,
147
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
- implied, including, without limitation, any warranties or conditions
149
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
- PARTICULAR PURPOSE. You are solely responsible for determining the
151
- appropriateness of using or redistributing the Work and assume any
152
- risks associated with Your exercise of permissions under this License.
153
-
154
- 8. Limitation of Liability. In no event and under no legal theory,
155
- whether in tort (including negligence), contract, or otherwise,
156
- unless required by applicable law (such as deliberate and grossly
157
- negligent acts) or agreed to in writing, shall any Contributor be
158
- liable to You for damages, including any direct, indirect, special,
159
- incidental, or consequential damages of any character arising as a
160
- result of this License or out of the use or inability to use the
161
- Work (including but not limited to damages for loss of goodwill,
162
- work stoppage, computer failure or malfunction, or any and all
163
- other commercial damages or losses), even if such Contributor
164
- has been advised of the possibility of such damages.
165
-
166
- 9. Accepting Warranty or Additional Liability. While redistributing
167
- the Work or Derivative Works thereof, You may choose to offer,
168
- and charge a fee for, acceptance of support, warranty, indemnity,
169
- or other liability obligations and/or rights consistent with this
170
- License. However, in accepting such obligations, You may act only
171
- on Your own behalf and on Your sole responsibility, not on behalf
172
- of any other Contributor, and only if You agree to indemnify,
173
- defend, and hold each Contributor harmless for any liability
174
- incurred by, or claims asserted against, such Contributor by reason
175
- of your accepting any such warranty or additional liability.
@@ -1,2 +0,0 @@
1
- AutoML for Text, Image, and Tabular Data
2
- Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
@@ -1,135 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: autogluon.common
3
- Version: 1.2.1b20250116
4
- Summary: Fast and Accurate ML in 3 Lines of Code
5
- Home-page: https://github.com/autogluon/autogluon
6
- Author: AutoGluon Community
7
- License: Apache-2.0
8
- Project-URL: Documentation, https://auto.gluon.ai
9
- Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
- Project-URL: Source, https://github.com/autogluon/autogluon/
11
- Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Description:
13
-
14
- <div align="center">
15
- <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
16
-
17
- ## Fast and Accurate ML in 3 Lines of Code
18
-
19
- [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
20
- [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
21
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
22
- [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
23
- [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
24
- [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
25
- [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
26
- [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
27
- [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
28
-
29
- [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
30
-
31
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
32
- </div>
33
-
34
- ## 💾 Installation
35
-
36
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
37
-
38
- You can install AutoGluon with:
39
-
40
- ```python
41
- pip install autogluon
42
- ```
43
-
44
- Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
45
-
46
- ## :zap: Quickstart
47
-
48
- Build accurate end-to-end ML models in just 3 lines of code!
49
-
50
- ```python
51
- from autogluon.tabular import TabularPredictor
52
- predictor = TabularPredictor(label="class").fit("train.csv")
53
- predictions = predictor.predict("test.csv")
54
- ```
55
-
56
- | AutoGluon Task | Quickstart | API |
57
- |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
58
- | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
59
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
60
- | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
61
-
62
- ## :mag: Resources
63
-
64
- ### Hands-on Tutorials / Talks
65
-
66
- Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
67
-
68
- | Title | Format | Location | Date |
69
- |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
70
- | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
71
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
72
- | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
73
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
74
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
75
- | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
76
-
77
- ### Scientific Publications
78
- - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
79
- - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
80
- - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
81
- - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
82
- - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
83
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
84
-
85
- ### Articles
86
- - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
87
- - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
88
- - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
89
-
90
- ### Train/Deploy AutoGluon in the Cloud
91
- - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
92
- - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
93
- - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
94
- - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
95
- - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
96
- - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
97
-
98
- ## :pencil: Citing AutoGluon
99
-
100
- If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
101
-
102
- ## :wave: How to get involved
103
-
104
- We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
105
-
106
- ## :classical_building: License
107
-
108
- This library is licensed under the Apache 2.0 License.
109
-
110
- Platform: UNKNOWN
111
- Classifier: Development Status :: 4 - Beta
112
- Classifier: Intended Audience :: Education
113
- Classifier: Intended Audience :: Developers
114
- Classifier: Intended Audience :: Science/Research
115
- Classifier: Intended Audience :: Customer Service
116
- Classifier: Intended Audience :: Financial and Insurance Industry
117
- Classifier: Intended Audience :: Healthcare Industry
118
- Classifier: Intended Audience :: Telecommunications Industry
119
- Classifier: License :: OSI Approved :: Apache Software License
120
- Classifier: Operating System :: MacOS
121
- Classifier: Operating System :: Microsoft :: Windows
122
- Classifier: Operating System :: POSIX
123
- Classifier: Operating System :: Unix
124
- Classifier: Programming Language :: Python :: 3
125
- Classifier: Programming Language :: Python :: 3.9
126
- Classifier: Programming Language :: Python :: 3.10
127
- Classifier: Programming Language :: Python :: 3.11
128
- Classifier: Programming Language :: Python :: 3.12
129
- Classifier: Topic :: Software Development
130
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
131
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
132
- Classifier: Topic :: Scientific/Engineering :: Image Recognition
133
- Requires-Python: >=3.9, <3.13
134
- Description-Content-Type: text/markdown
135
- Provides-Extra: tests
@@ -1,135 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: autogluon.common
3
- Version: 1.2.1b20250116
4
- Summary: Fast and Accurate ML in 3 Lines of Code
5
- Home-page: https://github.com/autogluon/autogluon
6
- Author: AutoGluon Community
7
- License: Apache-2.0
8
- Project-URL: Documentation, https://auto.gluon.ai
9
- Project-URL: Bug Reports, https://github.com/autogluon/autogluon/issues
10
- Project-URL: Source, https://github.com/autogluon/autogluon/
11
- Project-URL: Contribute!, https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md
12
- Description:
13
-
14
- <div align="center">
15
- <img src="https://user-images.githubusercontent.com/16392542/77208906-224aa500-6aba-11ea-96bd-e81806074030.png" width="350">
16
-
17
- ## Fast and Accurate ML in 3 Lines of Code
18
-
19
- [![Latest Release](https://img.shields.io/github/v/release/autogluon/autogluon)](https://github.com/autogluon/autogluon/releases)
20
- [![Conda Forge](https://img.shields.io/conda/vn/conda-forge/autogluon.svg)](https://anaconda.org/conda-forge/autogluon)
21
- [![Python Versions](https://img.shields.io/badge/python-3.9%20%7C%203.10%20%7C%203.11%20%7C%203.12-blue)](https://pypi.org/project/autogluon/)
22
- [![Downloads](https://pepy.tech/badge/autogluon/month)](https://pepy.tech/project/autogluon)
23
- [![GitHub license](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](./LICENSE)
24
- [![Discord](https://img.shields.io/discord/1043248669505368144?color=7289da&label=Discord&logo=discord&logoColor=ffffff)](https://discord.gg/wjUmjqAc2N)
25
- [![Twitter](https://img.shields.io/twitter/follow/autogluon?style=social)](https://twitter.com/autogluon)
26
- [![Continuous Integration](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml/badge.svg)](https://github.com/autogluon/autogluon/actions/workflows/continuous_integration.yml)
27
- [![Platform Tests](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml/badge.svg?event=schedule)](https://github.com/autogluon/autogluon/actions/workflows/platform_tests-command.yml)
28
-
29
- [Installation](https://auto.gluon.ai/stable/install.html) | [Documentation](https://auto.gluon.ai/stable/index.html) | [Release Notes](https://auto.gluon.ai/stable/whats_new/index.html)
30
-
31
- AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, time series, and tabular data.
32
- </div>
33
-
34
- ## 💾 Installation
35
-
36
- AutoGluon is supported on Python 3.9 - 3.12 and is available on Linux, MacOS, and Windows.
37
-
38
- You can install AutoGluon with:
39
-
40
- ```python
41
- pip install autogluon
42
- ```
43
-
44
- Visit our [Installation Guide](https://auto.gluon.ai/stable/install.html) for detailed instructions, including GPU support, Conda installs, and optional dependencies.
45
-
46
- ## :zap: Quickstart
47
-
48
- Build accurate end-to-end ML models in just 3 lines of code!
49
-
50
- ```python
51
- from autogluon.tabular import TabularPredictor
52
- predictor = TabularPredictor(label="class").fit("train.csv")
53
- predictions = predictor.predict("test.csv")
54
- ```
55
-
56
- | AutoGluon Task | Quickstart | API |
57
- |:--------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------:|
58
- | TabularPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/tabular/tabular-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.tabular.TabularPredictor.html) |
59
- | MultiModalPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/multimodal/multimodal_prediction/multimodal-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.multimodal.MultiModalPredictor.html) |
60
- | TimeSeriesPredictor | [![Quick Start](https://img.shields.io/static/v1?label=&message=tutorial&color=grey)](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-quick-start.html) | [![API](https://img.shields.io/badge/api-reference-blue.svg)](https://auto.gluon.ai/stable/api/autogluon.timeseries.TimeSeriesPredictor.html) |
61
-
62
- ## :mag: Resources
63
-
64
- ### Hands-on Tutorials / Talks
65
-
66
- Below is a curated list of recent tutorials and talks on AutoGluon. A comprehensive list is available [here](AWESOME.md#videos--tutorials).
67
-
68
- | Title | Format | Location | Date |
69
- |--------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------|------------|
70
- | :tv: [AutoGluon: Towards No-Code Automated Machine Learning](https://www.youtube.com/watch?v=SwPq9qjaN2Q) | Tutorial | [AutoML 2024](https://2024.automl.cc/) | 2024/09/09 |
71
- | :tv: [AutoGluon 1.0: Shattering the AutoML Ceiling with Zero Lines of Code](https://www.youtube.com/watch?v=5tvp_Ihgnuk) | Tutorial | [AutoML 2023](https://2023.automl.cc/) | 2023/09/12 |
72
- | :sound: [AutoGluon: The Story](https://automlpodcast.com/episode/autogluon-the-story) | Podcast | [The AutoML Podcast](https://automlpodcast.com/) | 2023/09/05 |
73
- | :tv: [AutoGluon: AutoML for Tabular, Multimodal, and Time Series Data](https://youtu.be/Lwu15m5mmbs?si=jSaFJDqkTU27C0fa) | Tutorial | PyData Berlin | 2023/06/20 |
74
- | :tv: [Solving Complex ML Problems in a few Lines of Code with AutoGluon](https://www.youtube.com/watch?v=J1UQUCPB88I) | Tutorial | PyData Seattle | 2023/06/20 |
75
- | :tv: [The AutoML Revolution](https://www.youtube.com/watch?v=VAAITEds-28) | Tutorial | [Fall AutoML School 2022](https://sites.google.com/view/automl-fall-school-2022) | 2022/10/18 |
76
-
77
- ### Scientific Publications
78
- - [AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data](https://arxiv.org/pdf/2003.06505.pdf) (*Arxiv*, 2020) ([BibTeX](CITING.md#general-usage--autogluontabular))
79
- - [Fast, Accurate, and Simple Models for Tabular Data via Augmented Distillation](https://proceedings.neurips.cc/paper/2020/hash/62d75fb2e3075506e8837d8f55021ab1-Abstract.html) (*NeurIPS*, 2020) ([BibTeX](CITING.md#tabular-distillation))
80
- - [Benchmarking Multimodal AutoML for Tabular Data with Text Fields](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/9bf31c7ff062936a96d3c8bd1f8f2ff3-Paper-round2.pdf) (*NeurIPS*, 2021) ([BibTeX](CITING.md#autogluonmultimodal))
81
- - [XTab: Cross-table Pretraining for Tabular Transformers](https://proceedings.mlr.press/v202/zhu23k/zhu23k.pdf) (*ICML*, 2023)
82
- - [AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting](https://arxiv.org/abs/2308.05566) (*AutoML Conf*, 2023) ([BibTeX](CITING.md#autogluontimeseries))
83
- - [TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications](https://arxiv.org/pdf/2311.02971.pdf) (*Under Review*, 2024)
84
-
85
- ### Articles
86
- - [AutoGluon-TimeSeries: Every Time Series Forecasting Model In One Library](https://towardsdatascience.com/autogluon-timeseries-every-time-series-forecasting-model-in-one-library-29a3bf6879db) (*Towards Data Science*, Jan 2024)
87
- - [AutoGluon for tabular data: 3 lines of code to achieve top 1% in Kaggle competitions](https://aws.amazon.com/blogs/opensource/machine-learning-with-autogluon-an-open-source-automl-library/) (*AWS Open Source Blog*, Mar 2020)
88
- - [AutoGluon overview & example applications](https://towardsdatascience.com/autogluon-deep-learning-automl-5cdb4e2388ec?source=friends_link&sk=e3d17d06880ac714e47f07f39178fdf2) (*Towards Data Science*, Dec 2019)
89
-
90
- ### Train/Deploy AutoGluon in the Cloud
91
- - [AutoGluon Cloud](https://auto.gluon.ai/cloud/stable/index.html) (Recommended)
92
- - [AutoGluon on SageMaker AutoPilot](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/autopilot-autogluon.html)
93
- - [AutoGluon on Amazon SageMaker](https://auto.gluon.ai/stable/tutorials/cloud_fit_deploy/cloud-aws-sagemaker-train-deploy.html)
94
- - [AutoGluon Deep Learning Containers](https://github.com/aws/deep-learning-containers/blob/master/available_images.md#autogluon-training-containers) (Security certified & maintained by the AutoGluon developers)
95
- - [AutoGluon Official Docker Container](https://hub.docker.com/r/autogluon/autogluon)
96
- - [AutoGluon-Tabular on AWS Marketplace](https://aws.amazon.com/marketplace/pp/prodview-n4zf5pmjt7ism) (Not maintained by us)
97
-
98
- ## :pencil: Citing AutoGluon
99
-
100
- If you use AutoGluon in a scientific publication, please refer to our [citation guide](CITING.md).
101
-
102
- ## :wave: How to get involved
103
-
104
- We are actively accepting code contributions to the AutoGluon project. If you are interested in contributing to AutoGluon, please read the [Contributing Guide](https://github.com/autogluon/autogluon/blob/master/CONTRIBUTING.md) to get started.
105
-
106
- ## :classical_building: License
107
-
108
- This library is licensed under the Apache 2.0 License.
109
-
110
- Platform: UNKNOWN
111
- Classifier: Development Status :: 4 - Beta
112
- Classifier: Intended Audience :: Education
113
- Classifier: Intended Audience :: Developers
114
- Classifier: Intended Audience :: Science/Research
115
- Classifier: Intended Audience :: Customer Service
116
- Classifier: Intended Audience :: Financial and Insurance Industry
117
- Classifier: Intended Audience :: Healthcare Industry
118
- Classifier: Intended Audience :: Telecommunications Industry
119
- Classifier: License :: OSI Approved :: Apache Software License
120
- Classifier: Operating System :: MacOS
121
- Classifier: Operating System :: Microsoft :: Windows
122
- Classifier: Operating System :: POSIX
123
- Classifier: Operating System :: Unix
124
- Classifier: Programming Language :: Python :: 3
125
- Classifier: Programming Language :: Python :: 3.9
126
- Classifier: Programming Language :: Python :: 3.10
127
- Classifier: Programming Language :: Python :: 3.11
128
- Classifier: Programming Language :: Python :: 3.12
129
- Classifier: Topic :: Software Development
130
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
131
- Classifier: Topic :: Scientific/Engineering :: Information Analysis
132
- Classifier: Topic :: Scientific/Engineering :: Image Recognition
133
- Requires-Python: >=3.9, <3.13
134
- Description-Content-Type: text/markdown
135
- Provides-Extra: tests
@@ -7,5 +7,5 @@ tqdm<5,>=4.38
7
7
  [tests]
8
8
  pytest
9
9
  pytest-mypy
10
- types-requests
11
10
  types-setuptools
11
+ types-requests