autogaita 1.0.3__tar.gz → 1.0.5__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {autogaita-1.0.3 → autogaita-1.0.5}/PKG-INFO +1 -1
- autogaita-1.0.5/autogaita/batchrun_scripts/group_dlcrun.py +112 -0
- autogaita-1.0.3/autogaita/batchrun_scripts/group_dlcrun.py → autogaita-1.0.5/autogaita/batchrun_scripts/group_dlcrun_forpaper.py +36 -91
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/group_universal3Drun.py +1 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_1_preparation.py +50 -34
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_2_data_processing.py +72 -3
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_4_stats.py +17 -4
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_main.py +37 -30
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_utils.py +4 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/group_gui.py +100 -59
- autogaita-1.0.5/autogaita/gui/group_gui_config.json +42 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/sleap/sleap_1_preparation.py +3 -8
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita.egg-info/PKG-INFO +1 -1
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita.egg-info/SOURCES.txt +1 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/setup.py +1 -1
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_group_approval.py +39 -8
- autogaita-1.0.5/tests/test_group_unit.py +278 -0
- autogaita-1.0.3/autogaita/gui/group_gui_config.json +0 -114
- autogaita-1.0.3/tests/test_group_unit.py +0 -133
- {autogaita-1.0.3 → autogaita-1.0.5}/LICENSE +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/README.md +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/__main__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/dlc_multirun.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/dlc_singlerun.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/sleap_singlerun.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/universal3D_multirun.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/batchrun_scripts/universal3D_singlerun.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/common2D/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/common2D/common2D_3_analysis.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/common2D/common2D_4_plots.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/common2D/common2D_constants.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/common2D/common2D_utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/dlc/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/dlc/dlc_1_preparation.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/dlc/dlc_2_sc_extraction.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/dlc/dlc_main.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/dlc/dlc_utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_3_PCA.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_5_plots.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/group/group_constants.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/dlc_gui.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/dlc_gui_config.json +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/first_level_gui_utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/gaita_widgets.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/gui_constants.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/gui_utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/main_gui.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/sleap_gui.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/sleap_gui_config.json +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/universal3D_gui.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/universal3D_gui_config.json +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/window_2D_advanced_config.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/window_2D_columninfo.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/gui/window_2D_run_and_done.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/constants.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/icon.icns +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/icon.ico +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/logo.png +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/pic_to_demo_for_repo.png +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/resources/utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/sleap/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/sleap/sleap_2_sc_extraction.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/sleap/sleap_main.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_1_preparation.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_2_sc_extraction.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_3_analysis.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_4_plots.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_constants.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_datafile_preparation.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_main.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita/universal3D/universal3D_utils.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita.egg-info/dependency_links.txt +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita.egg-info/requires.txt +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/autogaita.egg-info/top_level.txt +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/setup.cfg +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/__init__.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_common2D_unit_3_main_analysis.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_dlc_approval.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_dlc_unit_1_preparation.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_dlc_unit_2_sc_extraction.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_universal3D_approval.py +0 -0
- {autogaita-1.0.3 → autogaita-1.0.5}/tests/test_universal3D_unit.py +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: autogaita
|
|
3
|
-
Version: 1.0.
|
|
3
|
+
Version: 1.0.5
|
|
4
4
|
Summary: Automatic Gait Analysis in Python. A toolbox to streamline and standardise the analysis of kinematics across species after ML-based body posture tracking. Despite being optimised for gait analyses, AutoGaitA has the potential to be used for any kind of kinematic analysis.
|
|
5
5
|
Home-page: https://github.com/mahan-hosseini/AutoGaitA/
|
|
6
6
|
Author: Mahan Hosseini
|
|
@@ -0,0 +1,112 @@
|
|
|
1
|
+
import autogaita
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def group_dlcrun():
|
|
5
|
+
"""
|
|
6
|
+
Batchrun script to run AutoGaitA Group for Results obtained with AutoGaitA DLC.
|
|
7
|
+
folderinfo & cfg dictionaries must be configured as explained in our documentation. See the "AutoGaitA without the GUI" section of our documentation for references to in-depth explanations to all dictionary keys (note that each key of dicts corresponds to some object in the AutoGaitA Group GUI)
|
|
8
|
+
"""
|
|
9
|
+
# folderinfo
|
|
10
|
+
# => Note that length of folderinfo's group_names & group_dirs lists determines how # many groups are compared.
|
|
11
|
+
# => Also note that indices must correspond (i.e., idx # 1's name will be used # for dataset stored in group_dir's idx 1)
|
|
12
|
+
folderinfo = {}
|
|
13
|
+
folderinfo["group_names"] = [
|
|
14
|
+
# RM Dataset
|
|
15
|
+
"5mm",
|
|
16
|
+
"12mm",
|
|
17
|
+
"25mm",
|
|
18
|
+
# Interaction Issue Dataset
|
|
19
|
+
# "Control",
|
|
20
|
+
# "Silenced",
|
|
21
|
+
# Testing Dataset
|
|
22
|
+
# "one",
|
|
23
|
+
# "two",
|
|
24
|
+
]
|
|
25
|
+
folderinfo["group_dirs"] = [
|
|
26
|
+
# --------------------------
|
|
27
|
+
# Full Dataset (39 subjects)
|
|
28
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Control Full",
|
|
29
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Silenced Full/",
|
|
30
|
+
# --------------------------
|
|
31
|
+
# Reduced Dataset (5 subjects)
|
|
32
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Control",
|
|
33
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Silenced/",
|
|
34
|
+
# --------------------------
|
|
35
|
+
# Testing Dataset
|
|
36
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/Group 1/",
|
|
37
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/Group 2/",
|
|
38
|
+
# --------------------------
|
|
39
|
+
# RM Dataset (example data in repo)
|
|
40
|
+
"/Users/mahan/sciebo/PythonCode/gaita_repo/example data/5mm/Results/",
|
|
41
|
+
"/Users/mahan/sciebo/PythonCode/gaita_repo/example data/12mm/Results/",
|
|
42
|
+
"/Users/mahan/sciebo/PythonCode/gaita_repo/example data/25mm/Results/",
|
|
43
|
+
]
|
|
44
|
+
folderinfo["results_dir"] = (
|
|
45
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/example_data_results5/"
|
|
46
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Mahan Results/"
|
|
47
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/GroupResults/"
|
|
48
|
+
)
|
|
49
|
+
folderinfo["load_dir"] = (
|
|
50
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/example_data_results/"
|
|
51
|
+
# ""
|
|
52
|
+
)
|
|
53
|
+
# cfg
|
|
54
|
+
cfg = {}
|
|
55
|
+
cfg["do_permtest"] = True
|
|
56
|
+
cfg["do_anova"] = True
|
|
57
|
+
cfg["permutation_number"] = 100
|
|
58
|
+
cfg["PCA_n_components"] = 3
|
|
59
|
+
# cfg["PCA_n_components"] = 0.33
|
|
60
|
+
# cfg["PCA_custom_scatter_PCs"] = "4,5,6;4,5;2,4,6"
|
|
61
|
+
cfg["PCA_custom_scatter_PCs"] = ""
|
|
62
|
+
cfg["PCA_save_3D_video"] = False # True
|
|
63
|
+
cfg["PCA_bins"] = "" # "0-10,24,50-75"
|
|
64
|
+
cfg["stats_threshold"] = 0.05
|
|
65
|
+
cfg["plot_SE"] = False
|
|
66
|
+
cfg["color_palette"] = "viridis"
|
|
67
|
+
cfg["dont_show_plots"] = True
|
|
68
|
+
cfg["legend_outside"] = True
|
|
69
|
+
cfg["which_leg"] = "left"
|
|
70
|
+
cfg["anova_design"] = "RM ANOVA"
|
|
71
|
+
# cfg["anova_design"] = "Mixed ANOVA"
|
|
72
|
+
cfg["permutation_number"] = 100
|
|
73
|
+
cfg["PCA_variables"] = [
|
|
74
|
+
"Hind paw tao y",
|
|
75
|
+
"Ankle y",
|
|
76
|
+
"Knee y",
|
|
77
|
+
"Ankle Angle",
|
|
78
|
+
"Knee Angle",
|
|
79
|
+
"Nose x",
|
|
80
|
+
"Knee y",
|
|
81
|
+
"Knee x",
|
|
82
|
+
"Knee Velocity",
|
|
83
|
+
"Knee Acceleration",
|
|
84
|
+
"Knee Angle",
|
|
85
|
+
"Knee Angle Velocity",
|
|
86
|
+
"Knee Angle Acceleration",
|
|
87
|
+
"Hip Angle",
|
|
88
|
+
]
|
|
89
|
+
cfg["stats_variables"] = [
|
|
90
|
+
"Hind paw tao y",
|
|
91
|
+
# "Ankle y",
|
|
92
|
+
# "Knee y",
|
|
93
|
+
# "Ankle Angle",
|
|
94
|
+
# "Knee Angle",
|
|
95
|
+
# "Nose x",
|
|
96
|
+
# "Knee y",
|
|
97
|
+
# "Knee x",
|
|
98
|
+
# "Knee Velocity",
|
|
99
|
+
# "Knee Acceleration",
|
|
100
|
+
# "Knee Angle",
|
|
101
|
+
# "Knee Angle Velocity",
|
|
102
|
+
# "Knee Angle Acceleration",
|
|
103
|
+
# "Hip Angle",
|
|
104
|
+
# "Elbow Angle"
|
|
105
|
+
]
|
|
106
|
+
# run
|
|
107
|
+
autogaita.group(folderinfo, cfg)
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
# %% what happens if we just hit run
|
|
111
|
+
if __name__ == "__main__":
|
|
112
|
+
group_dlcrun()
|
|
@@ -6,26 +6,27 @@ def group_dlcrun():
|
|
|
6
6
|
Batchrun script to run AutoGaitA Group for Results obtained with AutoGaitA DLC.
|
|
7
7
|
folderinfo & cfg dictionaries must be configured as explained in our documentation. See the "AutoGaitA without the GUI" section of our documentation for references to in-depth explanations to all dictionary keys (note that each key of dicts corresponds to some object in the AutoGaitA Group GUI)
|
|
8
8
|
"""
|
|
9
|
-
|
|
10
|
-
#
|
|
11
|
-
#
|
|
9
|
+
|
|
10
|
+
# ----------------------------- 3 Months 3 Beams --------------------------------
|
|
11
|
+
# folderinfo = {}
|
|
12
|
+
# folderinfo["group_names"] = [
|
|
13
|
+
# # RM Dataset
|
|
14
|
+
# "3m_5mm",
|
|
15
|
+
# "3m_12mm",
|
|
16
|
+
# "3m_25mm",
|
|
17
|
+
# ]
|
|
18
|
+
# folderinfo["group_dirs"] = [
|
|
19
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/5mm/9w/",
|
|
20
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/12mm/9w/",
|
|
21
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/25mm/9w/",
|
|
22
|
+
# ]
|
|
23
|
+
# folderinfo["results_dir"] = (
|
|
24
|
+
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/3Months3BeamsForPaper"
|
|
25
|
+
|
|
26
|
+
# ----------------------------- Old Young 3 Beams --------------------------------
|
|
12
27
|
folderinfo = {}
|
|
13
28
|
folderinfo["group_names"] = [
|
|
14
|
-
# ----------
|
|
15
29
|
# RM Dataset
|
|
16
|
-
# "5mm",
|
|
17
|
-
# "12mm",
|
|
18
|
-
# "25mm",
|
|
19
|
-
# -------
|
|
20
|
-
# Interaction Issue Dataset
|
|
21
|
-
# "Control",
|
|
22
|
-
# "Silenced",
|
|
23
|
-
# --------
|
|
24
|
-
# Testing Dataset
|
|
25
|
-
# "one",
|
|
26
|
-
# "two",
|
|
27
|
-
# --------
|
|
28
|
-
# Beam x Age for Manuscript
|
|
29
30
|
"3m_5mm",
|
|
30
31
|
"3m_12mm",
|
|
31
32
|
"3m_25mm",
|
|
@@ -34,57 +35,37 @@ def group_dlcrun():
|
|
|
34
35
|
"24m_25mm",
|
|
35
36
|
]
|
|
36
37
|
folderinfo["group_dirs"] = [
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Control",
|
|
44
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Silenced/",
|
|
45
|
-
# --------------------------
|
|
46
|
-
# Testing Dataset
|
|
47
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/Group 1/",
|
|
48
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/Group 2/",
|
|
49
|
-
# --------------------------
|
|
50
|
-
# RM Dataset (example data in repo)
|
|
51
|
-
# "/Users/mahan/sciebo/PythonCode/gaita_repo/example data/5mm/Results/",
|
|
52
|
-
# "/Users/mahan/sciebo/PythonCode/gaita_repo/example data/12mm/Results/",
|
|
53
|
-
# "/Users/mahan/sciebo/PythonCode/gaita_repo/example data/25mm/Results/",
|
|
54
|
-
# --------------------------
|
|
55
|
-
# Beam x Age for Manuscript
|
|
56
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/5mm/9w",
|
|
57
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/12mm/9w",
|
|
58
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/25mm/9w",
|
|
59
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/5mm/104w",
|
|
60
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/12mm/104w",
|
|
61
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/25mm/104w"
|
|
38
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/5mm/9w/",
|
|
39
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/12mm/9w/",
|
|
40
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/25mm/9w/",
|
|
41
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/5mm/104w/",
|
|
42
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/12mm/104w/",
|
|
43
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/255mm/104w/",
|
|
62
44
|
]
|
|
63
45
|
folderinfo["results_dir"] = (
|
|
64
|
-
|
|
65
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Sanity Test Interaction Graziana/Result 10 joints/Mahan Results/"
|
|
66
|
-
# "/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Testing/GroupResults/"
|
|
67
|
-
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/YoungOld3BeamsForPaper"
|
|
46
|
+
"/Users/mahan/sciebo/Research/AutoGaitA/Mouse/Full Dataset and Results Nov 2024/YoungOld3BeamsForPaper_v2"
|
|
68
47
|
)
|
|
48
|
+
folderinfo["load_dir"] = ""
|
|
49
|
+
|
|
69
50
|
# cfg
|
|
70
51
|
cfg = {}
|
|
71
|
-
cfg["do_permtest"] = False
|
|
52
|
+
cfg["do_permtest"] = False
|
|
72
53
|
cfg["do_anova"] = True
|
|
73
|
-
cfg["permutation_number"] =
|
|
74
|
-
cfg["PCA_n_components"] =
|
|
75
|
-
cfg["
|
|
76
|
-
cfg["
|
|
54
|
+
cfg["permutation_number"] = 10000
|
|
55
|
+
cfg["PCA_n_components"] = 3
|
|
56
|
+
# cfg["PCA_n_components"] = 0.33
|
|
57
|
+
# cfg["PCA_custom_scatter_PCs"] = "4,5,6;4,5;2,4,6"
|
|
58
|
+
cfg["PCA_custom_scatter_PCs"] = ""
|
|
59
|
+
cfg["PCA_save_3D_video"] = False # True
|
|
77
60
|
cfg["PCA_bins"] = "" # "0-10,24,50-75"
|
|
78
61
|
cfg["stats_threshold"] = 0.05
|
|
79
62
|
cfg["plot_SE"] = True
|
|
80
|
-
cfg["color_palette"] = "
|
|
63
|
+
cfg["color_palette"] = "Set2"
|
|
81
64
|
cfg["dont_show_plots"] = True
|
|
82
65
|
cfg["legend_outside"] = True
|
|
83
66
|
cfg["which_leg"] = "left"
|
|
84
67
|
cfg["anova_design"] = "RM ANOVA"
|
|
85
|
-
# cfg["anova_design"] = "Mixed ANOVA"
|
|
86
68
|
cfg["PCA_variables"] = [
|
|
87
|
-
# Beam x Age
|
|
88
69
|
"Nose x",
|
|
89
70
|
"Nose y",
|
|
90
71
|
"Ear base x",
|
|
@@ -144,44 +125,8 @@ def group_dlcrun():
|
|
|
144
125
|
"Lower Shoulder Angle Acceleration",
|
|
145
126
|
"Iliac Crest Angle Velocity",
|
|
146
127
|
"Iliac Crest Angle Acceleration",
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
# PREVIOUS TESTING FEATURES
|
|
150
|
-
# -----------------
|
|
151
|
-
# "Hind paw tao y",
|
|
152
|
-
# "Ankle y",
|
|
153
|
-
# "Knee y",
|
|
154
|
-
# "Ankle Angle",
|
|
155
|
-
# "Knee Angle",
|
|
156
|
-
# "Nose x",
|
|
157
|
-
# "Knee y",
|
|
158
|
-
# "Knee x",
|
|
159
|
-
# "Knee Velocity",
|
|
160
|
-
# "Knee Acceleration",
|
|
161
|
-
# "Knee Angle",
|
|
162
|
-
# "Knee Angle Velocity",
|
|
163
|
-
# "Knee Angle Acceleration",
|
|
164
|
-
# "Hip Angle",
|
|
165
128
|
]
|
|
166
129
|
cfg["stats_variables"] = [
|
|
167
|
-
# "Hind paw tao y",
|
|
168
|
-
# "Ankle y",
|
|
169
|
-
# "Knee y",
|
|
170
|
-
# "Ankle Angle",
|
|
171
|
-
# "Knee Angle",
|
|
172
|
-
# "Nose x",
|
|
173
|
-
# "Knee y",
|
|
174
|
-
# "Knee x",
|
|
175
|
-
# "Knee Velocity",
|
|
176
|
-
# "Knee Acceleration",
|
|
177
|
-
# "Knee Angle",
|
|
178
|
-
# "Knee Angle Velocity",
|
|
179
|
-
# "Knee Angle Acceleration",
|
|
180
|
-
# "Hip Angle",
|
|
181
|
-
# "Elbow Angle"
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
# Beam x Age
|
|
185
130
|
"Hip x",
|
|
186
131
|
"Hip y",
|
|
187
132
|
"Knee x",
|
|
@@ -195,7 +140,7 @@ def group_dlcrun():
|
|
|
195
140
|
"Knee Velocity",
|
|
196
141
|
"Ankle Angle",
|
|
197
142
|
"Knee Angle",
|
|
198
|
-
"Hip Angle"
|
|
143
|
+
"Hip Angle",
|
|
199
144
|
]
|
|
200
145
|
# run
|
|
201
146
|
autogaita.group(folderinfo, cfg)
|
|
@@ -49,43 +49,59 @@ def some_prep(folderinfo, cfg):
|
|
|
49
49
|
if os.path.exists(info_file_path):
|
|
50
50
|
os.remove(info_file_path)
|
|
51
51
|
|
|
52
|
-
#
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
#
|
|
56
|
-
|
|
52
|
+
# *********** IMPORTANT ***********
|
|
53
|
+
# if load_dir, we have already saved a group config.json (see below before return)
|
|
54
|
+
# => use this and just return the cfg
|
|
55
|
+
# => make sure to write folderinfo["contrast"] manually above as is and then return
|
|
56
|
+
# that folderinfo plus the cfg you load from the file
|
|
57
|
+
if folderinfo["load_dir"]:
|
|
57
58
|
with open(
|
|
58
|
-
os.path.join(
|
|
59
|
+
os.path.join(folderinfo["load_dir"], CONFIG_JSON_FILENAME), "r"
|
|
59
60
|
) as config_json_file:
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
else:
|
|
61
|
+
cfg = json.load(config_json_file)
|
|
62
|
+
cfg["loaded"] = True # used in a unit test in test_group_unit.py
|
|
63
|
+
|
|
64
|
+
else: # if not, do the below things based on group dirs' configs
|
|
65
|
+
# 1. extracted_cfg_vars: save_to_xls, PCA stuff & dont show plots
|
|
66
|
+
cfg = extract_cfg_vars(folderinfo, cfg)
|
|
67
|
+
|
|
68
|
+
# 2. ennsure each key's across-group-equivalence and then add to cfg dict
|
|
69
|
+
for g_idx, group_dir in enumerate(group_dirs):
|
|
70
|
+
with open(
|
|
71
|
+
os.path.join(group_dir, CONFIG_JSON_FILENAME), "r"
|
|
72
|
+
) as config_json_file:
|
|
73
|
+
config_vars_from_json = json.load(config_json_file)
|
|
74
|
+
for key in config_vars_from_json.keys():
|
|
75
|
+
# assigning like this ensure all keys are in all jsons across groups
|
|
76
|
+
if g_idx == 0:
|
|
77
77
|
cfg[key] = config_vars_from_json[key]
|
|
78
|
+
else:
|
|
79
|
+
# sanity check for group-differences in cfg variables!
|
|
80
|
+
if (key not in cfg.keys()) | (
|
|
81
|
+
cfg[key] != config_vars_from_json[key]
|
|
82
|
+
):
|
|
83
|
+
error_message = (
|
|
84
|
+
"config.json variables differ between groups!"
|
|
85
|
+
+ "\nPlease make sure that all cfg variables between "
|
|
86
|
+
+ "groups match & try again!"
|
|
87
|
+
)
|
|
88
|
+
raise ValueError(error_message)
|
|
89
|
+
else:
|
|
90
|
+
cfg[key] = config_vars_from_json[key]
|
|
78
91
|
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
# okay that we do this
|
|
83
|
-
if cfg["tracking_software"] == "DLC":
|
|
84
|
-
cfg["joints"] = cfg["hind_joints"]
|
|
85
|
-
joints = cfg["joints"]
|
|
86
|
-
angles = cfg["angles"]
|
|
92
|
+
# 3. rename hind_joints is to joints if DLC or SLEAP
|
|
93
|
+
if "hind_joints" in cfg.keys():
|
|
94
|
+
cfg["joints"] = cfg["hind_joints"]
|
|
87
95
|
|
|
88
|
-
#
|
|
96
|
+
# ******** IMPORTANT *******
|
|
97
|
+
# => Do the following two things regardless of load_dir:
|
|
98
|
+
# 1. save cfg to json file in results_dir for load_dir capability
|
|
99
|
+
config_json_path = os.path.join(results_dir, CONFIG_JSON_FILENAME)
|
|
100
|
+
if os.path.exists(config_json_path): # overwrite if exists
|
|
101
|
+
os.remove(config_json_path)
|
|
102
|
+
with open(config_json_path, "w") as config_json_file:
|
|
103
|
+
json.dump(cfg, config_json_file)
|
|
104
|
+
# 2. create this plot stuff manually (cycler objects cannot be written to json)
|
|
89
105
|
cfg["group_color_cycler"] = plt.cycler(
|
|
90
106
|
"color", sns.color_palette(cfg["color_palette"], len(group_names))
|
|
91
107
|
)
|
|
@@ -93,10 +109,10 @@ def some_prep(folderinfo, cfg):
|
|
|
93
109
|
zip(group_names, cfg["group_color_cycler"].by_key()["color"])
|
|
94
110
|
)
|
|
95
111
|
cfg["joint_color_cycler"] = plt.cycler(
|
|
96
|
-
"color", sns.color_palette(cfg["color_palette"], len(joints))
|
|
112
|
+
"color", sns.color_palette(cfg["color_palette"], len(cfg["joints"]))
|
|
97
113
|
)
|
|
98
114
|
cfg["angle_color_cycler"] = plt.cycler(
|
|
99
|
-
"color", sns.color_palette(cfg["color_palette"], len(angles["name"]))
|
|
115
|
+
"color", sns.color_palette(cfg["color_palette"], len(cfg["angles"]["name"]))
|
|
100
116
|
)
|
|
101
117
|
|
|
102
118
|
return folderinfo, cfg
|
|
@@ -190,7 +190,7 @@ def bin_num_error_helper_function(folderinfo, dfs, g, group_names, sc_breaks, b)
|
|
|
190
190
|
raise ValueError(message)
|
|
191
191
|
|
|
192
192
|
|
|
193
|
-
def
|
|
193
|
+
def check_PCA_and_stats_variables(df, group_name, name, folderinfo, cfg):
|
|
194
194
|
"""Tests if PCA & stats variables are present in all groups' datasets"""
|
|
195
195
|
PCA_variables = cfg["PCA_variables"]
|
|
196
196
|
stats_variables = cfg["stats_variables"]
|
|
@@ -275,7 +275,7 @@ def import_and_combine_dfs(
|
|
|
275
275
|
else:
|
|
276
276
|
df_copy = df.copy()
|
|
277
277
|
# test: are our PCA & stats variables present in this ID's dataset?
|
|
278
|
-
|
|
278
|
+
check_PCA_and_stats_variables(df_copy, group_name, name, folderinfo, cfg)
|
|
279
279
|
# add some final info & append to group_df
|
|
280
280
|
if tracking_software == "DLC":
|
|
281
281
|
# add this run's info to df (& prepare Stepcycle column)
|
|
@@ -542,7 +542,6 @@ def idxs_list_to_list_of_SC_lists(idxs):
|
|
|
542
542
|
|
|
543
543
|
def grand_avg_and_std(avg_dfs, folderinfo, cfg):
|
|
544
544
|
"""Compute the grand averages & standard deviations for all columns of df"""
|
|
545
|
-
|
|
546
545
|
# unpack
|
|
547
546
|
group_names = folderinfo["group_names"]
|
|
548
547
|
results_dir = folderinfo["results_dir"]
|
|
@@ -592,3 +591,73 @@ def grand_avg_and_std(avg_dfs, folderinfo, cfg):
|
|
|
592
591
|
)
|
|
593
592
|
save_results_sheet(g_std_dfs[g], save_to_xls, g_std_filepath)
|
|
594
593
|
return g_avg_dfs, g_std_dfs
|
|
594
|
+
|
|
595
|
+
|
|
596
|
+
# %% ................. local functions #4 - load previous dataframes .................
|
|
597
|
+
def load_previous_runs_dataframes(folderinfo, cfg):
|
|
598
|
+
"""If user asked for it load previous runs dataframes instead of generating them (i.e., avg_dfs, g_avg_dfs, g_std_dfs)"""
|
|
599
|
+
avg_dfs = [[]] * len(folderinfo["group_names"])
|
|
600
|
+
g_avg_dfs = [[]] * len(folderinfo["group_names"])
|
|
601
|
+
g_std_dfs = [[]] * len(folderinfo["group_names"])
|
|
602
|
+
for g, group_name in enumerate((folderinfo["group_names"])):
|
|
603
|
+
try:
|
|
604
|
+
avg_dfs[g] = pd.read_excel(
|
|
605
|
+
os.path.join(
|
|
606
|
+
folderinfo["load_dir"],
|
|
607
|
+
group_name + " - " + AVG_GROUP_SHEET_NAME + ".xlsx",
|
|
608
|
+
)
|
|
609
|
+
)
|
|
610
|
+
g_avg_dfs[g] = pd.read_excel(
|
|
611
|
+
os.path.join(
|
|
612
|
+
folderinfo["load_dir"],
|
|
613
|
+
group_name + " - " + G_AVG_GROUP_SHEET_NAME + ".xlsx",
|
|
614
|
+
)
|
|
615
|
+
)
|
|
616
|
+
g_std_dfs[g] = pd.read_excel(
|
|
617
|
+
os.path.join(
|
|
618
|
+
folderinfo["load_dir"],
|
|
619
|
+
group_name + " - " + G_STD_GROUP_SHEET_NAME + ".xlsx",
|
|
620
|
+
)
|
|
621
|
+
)
|
|
622
|
+
except FileNotFoundError:
|
|
623
|
+
error_msg = (
|
|
624
|
+
"\n******************\n! CRITICAL ERROR !\n******************\n"
|
|
625
|
+
+ f"Unable to load the data of group '{group_name}' from \n"
|
|
626
|
+
+ f"{folderinfo['load_dir']}"
|
|
627
|
+
+ "\n\nTry again!"
|
|
628
|
+
)
|
|
629
|
+
print(error_msg)
|
|
630
|
+
write_issues_to_textfile(error_msg, folderinfo)
|
|
631
|
+
raise FileNotFoundError
|
|
632
|
+
# re-index avg_dfs based on unique SC Percentages
|
|
633
|
+
array_of_idxs = np.arange(len(avg_dfs[0][SC_PERCENTAGE_COL].unique()))
|
|
634
|
+
for g in range(len(avg_dfs)):
|
|
635
|
+
repeat_index_this_often = len(avg_dfs[g]) // len(array_of_idxs)
|
|
636
|
+
new_idx = np.tile(array_of_idxs, repeat_index_this_often)
|
|
637
|
+
avg_dfs[g] = avg_dfs[g].set_index(new_idx)
|
|
638
|
+
# check if PCA & stats variables are present in all dataframes
|
|
639
|
+
for g, group_name in enumerate(folderinfo["group_names"]):
|
|
640
|
+
check_PCA_and_stats_variables(
|
|
641
|
+
avg_dfs[g], group_name, "Average", folderinfo, cfg
|
|
642
|
+
)
|
|
643
|
+
check_PCA_and_stats_variables(
|
|
644
|
+
g_avg_dfs[g], group_name, "Grand Average", folderinfo, cfg
|
|
645
|
+
)
|
|
646
|
+
check_PCA_and_stats_variables(
|
|
647
|
+
g_std_dfs[g], group_name, "Grand Standard Deviation", folderinfo, cfg
|
|
648
|
+
)
|
|
649
|
+
# since import_data writes bin_num (running a sanity check before) we have to do
|
|
650
|
+
# it here too. No need to run the sanity check again since that was done previously
|
|
651
|
+
cfg["bin_num"] = len(np.unique(avg_dfs[0][SC_PERCENTAGE_COL]))
|
|
652
|
+
if cfg["bin_num"] * len(np.unique(avg_dfs[0][ID_COL])) != len(avg_dfs[0]):
|
|
653
|
+
error_msg = (
|
|
654
|
+
"\n******************\n! CRITICAL ERROR !\n******************\n"
|
|
655
|
+
+ "Something is wrong with your IDs and SC Percentage columns."
|
|
656
|
+
+ "\nThere seem to be duplicates. Make sure that this is not the case."
|
|
657
|
+
+ "\nOtherwise, run it again without loading your previous run's results."
|
|
658
|
+
)
|
|
659
|
+
print(error_msg)
|
|
660
|
+
write_issues_to_textfile(error_msg, folderinfo)
|
|
661
|
+
raise ValueError(error_msg)
|
|
662
|
+
else:
|
|
663
|
+
return avg_dfs, g_avg_dfs, g_std_dfs, cfg
|
|
@@ -446,7 +446,7 @@ def plot_permutation_test_results(
|
|
|
446
446
|
if tracking_software in ["DLC", "SLEAP"]:
|
|
447
447
|
unit = "x in pixels"
|
|
448
448
|
elif tracking_software == "Universal 3D":
|
|
449
|
-
unit = "Y
|
|
449
|
+
unit = "Y"
|
|
450
450
|
f.supylabel(
|
|
451
451
|
ylabel_velocity_and_acceleration(feature, unit, sampling_rate),
|
|
452
452
|
fontsize=STATS_PLOTS_SUPLABEL_SIZE,
|
|
@@ -586,6 +586,8 @@ def ANOVA_main(
|
|
|
586
586
|
# => note pingouin checks both or sphericity by default
|
|
587
587
|
if just_do_tukeys is False:
|
|
588
588
|
ANOVA_result = run_ANOVA(stats_df, stats_var, cfg)
|
|
589
|
+
else:
|
|
590
|
+
ANOVA_result = None
|
|
589
591
|
|
|
590
592
|
# run Tukeys for pairwise comparisons
|
|
591
593
|
# => always running multiple comparison tests as well. see Prism's doc for why
|
|
@@ -894,7 +896,7 @@ def plot_multcomp_results(
|
|
|
894
896
|
if tracking_software in ["DLC", "SLEAP"]:
|
|
895
897
|
unit = "x in pixels"
|
|
896
898
|
elif tracking_software == "Universal 3D":
|
|
897
|
-
unit = "Y
|
|
899
|
+
unit = "Y"
|
|
898
900
|
f.supylabel(
|
|
899
901
|
ylabel_velocity_and_acceleration(feature, unit, sampling_rate),
|
|
900
902
|
fontsize=STATS_PLOTS_SUPLABEL_SIZE,
|
|
@@ -995,14 +997,25 @@ def save_stats_summary_to_text(
|
|
|
995
997
|
message = ""
|
|
996
998
|
|
|
997
999
|
# only for ANOVA - add the table above contrast loop
|
|
998
|
-
if "ANOVA" in which_test:
|
|
1000
|
+
if "ANOVA" in which_test and ANOVA_result is not None:
|
|
999
1001
|
message = (
|
|
1000
1002
|
message
|
|
1001
1003
|
+ "\n\n--------------------\nA N O V A T A B L E"
|
|
1002
1004
|
+ "\n--------------------"
|
|
1003
1005
|
+ "\n"
|
|
1004
|
-
+ str(ANOVA_result)
|
|
1005
1006
|
)
|
|
1007
|
+
message += "\n" # col header row
|
|
1008
|
+
for col in ANOVA_result.columns:
|
|
1009
|
+
message += f"| {col} | "
|
|
1010
|
+
n_rows, n_cols = np.shape(ANOVA_result)
|
|
1011
|
+
for row_idx in range(n_rows):
|
|
1012
|
+
message += "\n" # new row
|
|
1013
|
+
for col_idx in range(n_cols):
|
|
1014
|
+
val = ANOVA_result.iloc[row_idx, col_idx]
|
|
1015
|
+
if isinstance(val, str):
|
|
1016
|
+
message += f"| {val} | "
|
|
1017
|
+
else:
|
|
1018
|
+
message += f"| {str(round(val, 4))} | "
|
|
1006
1019
|
|
|
1007
1020
|
# contrast specific info
|
|
1008
1021
|
for contrast in contrasts:
|