autochunks 0.0.8__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (66) hide show
  1. autochunks-0.0.8/LICENSE +15 -0
  2. autochunks-0.0.8/PKG-INFO +133 -0
  3. autochunks-0.0.8/README.md +97 -0
  4. autochunks-0.0.8/autochunk/__init__.py +9 -0
  5. autochunks-0.0.8/autochunk/__main__.py +5 -0
  6. autochunks-0.0.8/autochunk/adapters/__init__.py +3 -0
  7. autochunks-0.0.8/autochunk/adapters/haystack.py +68 -0
  8. autochunks-0.0.8/autochunk/adapters/langchain.py +81 -0
  9. autochunks-0.0.8/autochunk/adapters/llamaindex.py +94 -0
  10. autochunks-0.0.8/autochunk/autochunker.py +606 -0
  11. autochunks-0.0.8/autochunk/chunkers/__init__.py +100 -0
  12. autochunks-0.0.8/autochunk/chunkers/agentic.py +184 -0
  13. autochunks-0.0.8/autochunk/chunkers/base.py +16 -0
  14. autochunks-0.0.8/autochunk/chunkers/contextual_retrieval.py +151 -0
  15. autochunks-0.0.8/autochunk/chunkers/fixed_length.py +110 -0
  16. autochunks-0.0.8/autochunk/chunkers/html_section.py +225 -0
  17. autochunks-0.0.8/autochunk/chunkers/hybrid_semantic_stat.py +199 -0
  18. autochunks-0.0.8/autochunk/chunkers/layout_aware.py +192 -0
  19. autochunks-0.0.8/autochunk/chunkers/parent_child.py +172 -0
  20. autochunks-0.0.8/autochunk/chunkers/proposition.py +175 -0
  21. autochunks-0.0.8/autochunk/chunkers/python_ast.py +248 -0
  22. autochunks-0.0.8/autochunk/chunkers/recursive_character.py +215 -0
  23. autochunks-0.0.8/autochunk/chunkers/semantic_local.py +140 -0
  24. autochunks-0.0.8/autochunk/chunkers/sentence_aware.py +102 -0
  25. autochunks-0.0.8/autochunk/cli.py +135 -0
  26. autochunks-0.0.8/autochunk/config.py +76 -0
  27. autochunks-0.0.8/autochunk/embedding/__init__.py +22 -0
  28. autochunks-0.0.8/autochunk/embedding/adapter.py +14 -0
  29. autochunks-0.0.8/autochunk/embedding/base.py +33 -0
  30. autochunks-0.0.8/autochunk/embedding/hashing.py +42 -0
  31. autochunks-0.0.8/autochunk/embedding/local.py +154 -0
  32. autochunks-0.0.8/autochunk/embedding/ollama.py +66 -0
  33. autochunks-0.0.8/autochunk/embedding/openai.py +62 -0
  34. autochunks-0.0.8/autochunk/embedding/tokenizer.py +9 -0
  35. autochunks-0.0.8/autochunk/enrichment/__init__.py +0 -0
  36. autochunks-0.0.8/autochunk/enrichment/contextual.py +29 -0
  37. autochunks-0.0.8/autochunk/eval/__init__.py +0 -0
  38. autochunks-0.0.8/autochunk/eval/harness.py +177 -0
  39. autochunks-0.0.8/autochunk/eval/metrics.py +27 -0
  40. autochunks-0.0.8/autochunk/eval/ragas_eval.py +234 -0
  41. autochunks-0.0.8/autochunk/eval/synthetic.py +104 -0
  42. autochunks-0.0.8/autochunk/quality/__init__.py +31 -0
  43. autochunks-0.0.8/autochunk/quality/deduplicator.py +326 -0
  44. autochunks-0.0.8/autochunk/quality/overlap_optimizer.py +402 -0
  45. autochunks-0.0.8/autochunk/quality/post_processor.py +245 -0
  46. autochunks-0.0.8/autochunk/quality/scorer.py +459 -0
  47. autochunks-0.0.8/autochunk/retrieval/__init__.py +0 -0
  48. autochunks-0.0.8/autochunk/retrieval/in_memory.py +47 -0
  49. autochunks-0.0.8/autochunk/retrieval/parent_child.py +4 -0
  50. autochunks-0.0.8/autochunk/storage/__init__.py +0 -0
  51. autochunks-0.0.8/autochunk/storage/cache.py +34 -0
  52. autochunks-0.0.8/autochunk/storage/plan.py +40 -0
  53. autochunks-0.0.8/autochunk/utils/__init__.py +0 -0
  54. autochunks-0.0.8/autochunk/utils/hashing.py +8 -0
  55. autochunks-0.0.8/autochunk/utils/io.py +176 -0
  56. autochunks-0.0.8/autochunk/utils/logger.py +64 -0
  57. autochunks-0.0.8/autochunk/utils/telemetry.py +44 -0
  58. autochunks-0.0.8/autochunk/utils/text.py +199 -0
  59. autochunks-0.0.8/autochunks.egg-info/PKG-INFO +133 -0
  60. autochunks-0.0.8/autochunks.egg-info/SOURCES.txt +65 -0
  61. autochunks-0.0.8/autochunks.egg-info/dependency_links.txt +1 -0
  62. autochunks-0.0.8/autochunks.egg-info/entry_points.txt +2 -0
  63. autochunks-0.0.8/autochunks.egg-info/requires.txt +14 -0
  64. autochunks-0.0.8/autochunks.egg-info/top_level.txt +1 -0
  65. autochunks-0.0.8/pyproject.toml +47 -0
  66. autochunks-0.0.8/setup.cfg +11 -0
@@ -0,0 +1,15 @@
1
+ Apache License 2.0
2
+
3
+ Copyright 2026 Sumit Joshi
4
+
5
+ Licensed under the Apache License, Version 2.0 (the "License");
6
+ you may not use this file except in compliance with the License.
7
+ You may obtain a copy of the License at
8
+
9
+ http://www.apache.org/licenses/LICENSE-2.0
10
+
11
+ Unless required by applicable law or agreed to in writing, software
12
+ distributed under the License is distributed on an "AS IS" BASIS,
13
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ See the License for the specific language governing permissions and
15
+ limitations under the License.
@@ -0,0 +1,133 @@
1
+ Metadata-Version: 2.4
2
+ Name: autochunks
3
+ Version: 0.0.8
4
+ Summary: Autonomous Retrieval Optimization for RAG
5
+ Author: Sumit Joshi
6
+ License: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/s8ilabs/AutoChunks
8
+ Project-URL: Documentation, https://autochunks.readthedocs.io/
9
+ Project-URL: Repository, https://github.com/s8ilabs/AutoChunks
10
+ Project-URL: Issues, https://github.com/s8ilabs/AutoChunks/issues
11
+ Keywords: rag,chunking,retrieval,nlp
12
+ Classifier: Development Status :: 3 - Alpha
13
+ Classifier: Intended Audience :: Science/Research
14
+ Classifier: License :: OSI Approved :: Apache Software License
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
18
+ Requires-Python: >=3.10
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ Requires-Dist: numpy>=1.24
22
+ Requires-Dist: pyyaml>=6.0
23
+ Requires-Dist: loguru
24
+ Requires-Dist: arize-phoenix>=4.3.0
25
+ Requires-Dist: opentelemetry-api
26
+ Requires-Dist: opentelemetry-sdk
27
+ Requires-Dist: opentelemetry-exporter-otlp
28
+ Requires-Dist: nltk
29
+ Requires-Dist: pymupdf4llm
30
+ Requires-Dist: sentence-transformers
31
+ Requires-Dist: torch
32
+ Requires-Dist: fastapi
33
+ Requires-Dist: uvicorn
34
+ Requires-Dist: python-multipart
35
+ Dynamic: license-file
36
+
37
+ # AutoChunks
38
+ ### The Intelligent Data Optimization Layer for RAG Engineering
39
+
40
+ [![Version](https://img.shields.io/badge/version-0.08--alpha-blue)](https://github.com/s8ilabs/AutoChunks)
41
+ [![Documentation](https://img.shields.io/badge/docs-read--the--docs-teal)](https://autochunks.readthedocs.io/)
42
+ [![License](https://img.shields.io/badge/license-Apache--2.0-green)](LICENSE)
43
+
44
+ ![AutoChunks Hero](docs/assets/hero_banner.png)
45
+
46
+ AutoChunks is a specialized engine designed to eliminate the guesswork from Retrieval-Augmented Generation (RAG). By treating chunking as an optimization problem rather than a set of heuristics, it empirically discovers the most performant data structures for your specific documents and retrieval models.
47
+
48
+ ---
49
+
50
+ ## From Heuristics to Evidence
51
+
52
+ Most RAG pipelines today rely on arbitrary settings—like a 512-token chunk size with a 10% overlap. These values are often chosen without validation, leading to:
53
+
54
+ * **Fragmented Context**: Related information is split across multiple retrieval units.
55
+ * **Semantic Noise**: Poorly defined boundaries dilute the signal-to-noise ratio in LLM prompts.
56
+ * **Retrieval Gaps**: Critical information hidden in "dead zones" between chunks results in recall failure.
57
+
58
+ **AutoChunks replaces trial-and-error with a data-driven tournament.** It generates adversarial synthetic ground truth from your documents and pits over 15+ chunking strategies against each other to find the mathematical optimum for your corpus.
59
+
60
+ ---
61
+
62
+ ## Core Pillars
63
+
64
+ ### The Vectorized Tournament
65
+ AutoChunks runs an exhaustive parallel search across multiple strategy families—Recursive, Semantic, Layout-Aware, and Hybrid. Every candidate is evaluated in a high-speed NumPy-accelerated retrieval simulation, measuring performance across hundreds of queries in seconds.
66
+
67
+ ### Adversarial Synthetic QA
68
+ The system performs a structural audit of your documents to generate "needle-in-a-haystack" question-answer pairs. This ensures that your chunking strategy is optimized against real-world search intent, not just random text splits.
69
+
70
+ ### Optimization Goals
71
+ Align your data engineering with your business objectives. Choose from intent-based presets that guide the engine toward specific outcomes:
72
+ * **Balanced Ranking**: Optimizes for general-purpose retrieval quality.
73
+ * **Speed and Precision**: Minimizes LLM reading time by prioritizing Rank #1 hits.
74
+ * **Comprehensive Retrieval**: Prioritizes recall for compliance or legal use cases.
75
+ * **Cost Efficiency**: Minimizes vector storage and inference costs for massive datasets.
76
+
77
+ ---
78
+
79
+ ## Advanced Feature Set
80
+
81
+ * **Hybrid Semantic-Statistical Chunker**: Uses real-time embedding distance analysis to detect topic shifts while maintaining strict token limits.
82
+ * **Framework Bridges**: Native adapters for LangChain, LlamaIndex, and Haystack, allowing you to benchmark and optimize your existing framework code directly.
83
+ * **Layout-Aware Processing**: High-fidelity extraction that respects the nested structures of PDFs, HTML sections, and Markdown hierarchies.
84
+ * **Fidelity Inspector**: A visual debugging dashboard to qualitatively verify how different strategies fragment complex documents.
85
+ * **Enterprise Security**: Air-gap compatible. Supports local model deployment, SHA-256 binary fingerprinting for data privacy, and SecretStr protection for all cloud credentials.
86
+
87
+ ---
88
+
89
+ ## Quick Start
90
+
91
+ ### Installation
92
+ ```bash
93
+ pip install -r requirements.txt
94
+ ```
95
+ *Note: For GPU acceleration with Local Embeddings or Ragas, please refer to the [Getting Started guide](docs/getting_started.md).*
96
+
97
+ ### Launch the Dashboard
98
+ The most effective way to optimize your data is through the visual interactive dashboard.
99
+ ```bash
100
+ python -m autochunk.web.server
101
+ ```
102
+ Navigate to `http://localhost:8000` to begin your first optimization run.
103
+
104
+ ### Python API
105
+ ```python
106
+ from autochunk import AutoChunker
107
+
108
+ # Initialize in Light Mode for rapid iteration
109
+ optimizer = AutoChunker(mode="light")
110
+
111
+ # Discover the optimal plan for your dataset
112
+ plan, report = optimizer.optimize(
113
+ documents_path="./my_data_folder",
114
+ objective="balanced"
115
+ )
116
+
117
+ # Apply the winning strategy
118
+ chunks = plan.apply("./new_documents", optimizer)
119
+ ```
120
+
121
+ ---
122
+
123
+ ## Documentation and Resources
124
+
125
+ * [Getting Started](docs/getting_started.md)
126
+ * [The Optimization Lifecycle](docs/core_concepts/eval_flow.md)
127
+ * [Metric Definitions and Scoring](docs/core_concepts/evaluation.md)
128
+ * [RAGAS Semantic Evaluation](docs/guides/ragas_evaluation.md)
129
+
130
+ ---
131
+
132
+ Developed for the RAG and LLM Community.
133
+ AutoChunks is released under the Apache License 2.0.
@@ -0,0 +1,97 @@
1
+ # AutoChunks
2
+ ### The Intelligent Data Optimization Layer for RAG Engineering
3
+
4
+ [![Version](https://img.shields.io/badge/version-0.08--alpha-blue)](https://github.com/s8ilabs/AutoChunks)
5
+ [![Documentation](https://img.shields.io/badge/docs-read--the--docs-teal)](https://autochunks.readthedocs.io/)
6
+ [![License](https://img.shields.io/badge/license-Apache--2.0-green)](LICENSE)
7
+
8
+ ![AutoChunks Hero](docs/assets/hero_banner.png)
9
+
10
+ AutoChunks is a specialized engine designed to eliminate the guesswork from Retrieval-Augmented Generation (RAG). By treating chunking as an optimization problem rather than a set of heuristics, it empirically discovers the most performant data structures for your specific documents and retrieval models.
11
+
12
+ ---
13
+
14
+ ## From Heuristics to Evidence
15
+
16
+ Most RAG pipelines today rely on arbitrary settings—like a 512-token chunk size with a 10% overlap. These values are often chosen without validation, leading to:
17
+
18
+ * **Fragmented Context**: Related information is split across multiple retrieval units.
19
+ * **Semantic Noise**: Poorly defined boundaries dilute the signal-to-noise ratio in LLM prompts.
20
+ * **Retrieval Gaps**: Critical information hidden in "dead zones" between chunks results in recall failure.
21
+
22
+ **AutoChunks replaces trial-and-error with a data-driven tournament.** It generates adversarial synthetic ground truth from your documents and pits over 15+ chunking strategies against each other to find the mathematical optimum for your corpus.
23
+
24
+ ---
25
+
26
+ ## Core Pillars
27
+
28
+ ### The Vectorized Tournament
29
+ AutoChunks runs an exhaustive parallel search across multiple strategy families—Recursive, Semantic, Layout-Aware, and Hybrid. Every candidate is evaluated in a high-speed NumPy-accelerated retrieval simulation, measuring performance across hundreds of queries in seconds.
30
+
31
+ ### Adversarial Synthetic QA
32
+ The system performs a structural audit of your documents to generate "needle-in-a-haystack" question-answer pairs. This ensures that your chunking strategy is optimized against real-world search intent, not just random text splits.
33
+
34
+ ### Optimization Goals
35
+ Align your data engineering with your business objectives. Choose from intent-based presets that guide the engine toward specific outcomes:
36
+ * **Balanced Ranking**: Optimizes for general-purpose retrieval quality.
37
+ * **Speed and Precision**: Minimizes LLM reading time by prioritizing Rank #1 hits.
38
+ * **Comprehensive Retrieval**: Prioritizes recall for compliance or legal use cases.
39
+ * **Cost Efficiency**: Minimizes vector storage and inference costs for massive datasets.
40
+
41
+ ---
42
+
43
+ ## Advanced Feature Set
44
+
45
+ * **Hybrid Semantic-Statistical Chunker**: Uses real-time embedding distance analysis to detect topic shifts while maintaining strict token limits.
46
+ * **Framework Bridges**: Native adapters for LangChain, LlamaIndex, and Haystack, allowing you to benchmark and optimize your existing framework code directly.
47
+ * **Layout-Aware Processing**: High-fidelity extraction that respects the nested structures of PDFs, HTML sections, and Markdown hierarchies.
48
+ * **Fidelity Inspector**: A visual debugging dashboard to qualitatively verify how different strategies fragment complex documents.
49
+ * **Enterprise Security**: Air-gap compatible. Supports local model deployment, SHA-256 binary fingerprinting for data privacy, and SecretStr protection for all cloud credentials.
50
+
51
+ ---
52
+
53
+ ## Quick Start
54
+
55
+ ### Installation
56
+ ```bash
57
+ pip install -r requirements.txt
58
+ ```
59
+ *Note: For GPU acceleration with Local Embeddings or Ragas, please refer to the [Getting Started guide](docs/getting_started.md).*
60
+
61
+ ### Launch the Dashboard
62
+ The most effective way to optimize your data is through the visual interactive dashboard.
63
+ ```bash
64
+ python -m autochunk.web.server
65
+ ```
66
+ Navigate to `http://localhost:8000` to begin your first optimization run.
67
+
68
+ ### Python API
69
+ ```python
70
+ from autochunk import AutoChunker
71
+
72
+ # Initialize in Light Mode for rapid iteration
73
+ optimizer = AutoChunker(mode="light")
74
+
75
+ # Discover the optimal plan for your dataset
76
+ plan, report = optimizer.optimize(
77
+ documents_path="./my_data_folder",
78
+ objective="balanced"
79
+ )
80
+
81
+ # Apply the winning strategy
82
+ chunks = plan.apply("./new_documents", optimizer)
83
+ ```
84
+
85
+ ---
86
+
87
+ ## Documentation and Resources
88
+
89
+ * [Getting Started](docs/getting_started.md)
90
+ * [The Optimization Lifecycle](docs/core_concepts/eval_flow.md)
91
+ * [Metric Definitions and Scoring](docs/core_concepts/evaluation.md)
92
+ * [RAGAS Semantic Evaluation](docs/guides/ragas_evaluation.md)
93
+
94
+ ---
95
+
96
+ Developed for the RAG and LLM Community.
97
+ AutoChunks is released under the Apache License 2.0.
@@ -0,0 +1,9 @@
1
+ import warnings
2
+ # Suppress Pydantic v2 namespace conflicts common in docling models
3
+ warnings.filterwarnings("ignore", message='.*conflict with protected namespace "model_".*', category=UserWarning)
4
+
5
+ from .autochunker import AutoChunker
6
+ from .embedding.adapter import EmbeddingFn
7
+ from .config import AutoChunkConfig, EvalConfig, ProxyConfig, RetrievalStrategy, SafetyConstraints, ParallelConfig, TokenizerConfig, NetworkConfig, RagasConfig
8
+ from .adapters import AutoChunkLangChainAdapter, AutoChunkLlamaIndexAdapter, AutoChunkHaystackAdapter
9
+ from .storage.plan import Plan
@@ -0,0 +1,5 @@
1
+
2
+ from .cli import main
3
+
4
+ if __name__ == "__main__":
5
+ main()
@@ -0,0 +1,3 @@
1
+ from .langchain import AutoChunkLangChainAdapter
2
+ from .llamaindex import AutoChunkLlamaIndexAdapter
3
+ from .haystack import AutoChunkHaystackAdapter
@@ -0,0 +1,68 @@
1
+
2
+ from __future__ import annotations
3
+ from typing import List, Dict, Any, Optional, Union
4
+ from ..storage.plan import Plan
5
+ from ..autochunker import AutoChunker
6
+
7
+ try:
8
+ from haystack import component, Document
9
+ HAYSTACK_AVAILABLE = True
10
+ except ImportError:
11
+ # Robust fallback for environment without Haystack
12
+ def component(cls): return cls
13
+ def output_types(**kwargs):
14
+ def decorator(func): return func
15
+ return decorator
16
+ component.output_types = output_types
17
+ class Document: pass
18
+ HAYSTACK_AVAILABLE = False
19
+
20
+ @component
21
+ class AutoChunkHaystackAdapter:
22
+ """
23
+ Official AutoChunks Adapter for Haystack 2.0.
24
+ Acts as a Pipeline Component for optimized document splitting.
25
+ """
26
+ def __init__(self, plan: Union[Plan, str]):
27
+ if isinstance(plan, str):
28
+ self.plan = Plan.read(plan)
29
+ else:
30
+ self.plan = plan
31
+
32
+ # Initialize internal engine
33
+ self.chunker = AutoChunker(
34
+ embedding_provider=self.plan.embedding.get("name"),
35
+ embedding_model_or_path=self.plan.embedding.get("model")
36
+ )
37
+
38
+ @component.output_types(documents=List[Document])
39
+ def run(self, documents: List[Document]):
40
+ """
41
+ Implementation of the Haystack Component interface.
42
+ """
43
+ if not HAYSTACK_AVAILABLE:
44
+ raise ImportError("Please install haystack-ai: pip install haystack-ai")
45
+
46
+ # Convert Haystack docs to AutoChunks format
47
+ ac_docs = []
48
+ for d in documents:
49
+ ac_docs.append({
50
+ "id": str(getattr(d, "id", hash(d.content))),
51
+ "text": d.content,
52
+ "metadata": d.meta
53
+ })
54
+
55
+ # Process via pipeline
56
+ gen_name = self.plan.generator_pipeline.get("name")
57
+ params = self.plan.generator_pipeline.get("params", {})
58
+ ac_chunks = self.chunker.apply_with_generator(ac_docs, gen_name, params)
59
+
60
+ # Re-wrap as Haystack Documents
61
+ return {
62
+ "documents": [
63
+ Document(
64
+ content=ch["text"],
65
+ meta={**ch.get("meta", {}), "autochunk_plan_id": self.plan.id}
66
+ ) for ch in ac_chunks
67
+ ]
68
+ }
@@ -0,0 +1,81 @@
1
+
2
+ from __future__ import annotations
3
+ from typing import List, Dict, Any, TYPE_CHECKING, Union
4
+ from ..storage.plan import Plan
5
+ from ..autochunker import AutoChunker, AutoChunkConfig
6
+
7
+ if TYPE_CHECKING:
8
+ from langchain_core.documents import Document
9
+
10
+ try:
11
+ from langchain_core.documents import BaseDocumentTransformer, Document
12
+ LANGCHAIN_AVAILABLE = True
13
+ except ImportError:
14
+ class BaseDocumentTransformer: pass
15
+ LANGCHAIN_AVAILABLE = False
16
+
17
+ class AutoChunkLangChainAdapter(BaseDocumentTransformer):
18
+ """
19
+ Official AutoChunks Adapter for LangChain.
20
+ Inherits from BaseDocumentTransformer for seamless integration
21
+ into LangChain Indexing and LCEL pipelines.
22
+ """
23
+ def __init__(self, plan: Union[Plan, str], config: AutoChunkConfig = None):
24
+ if isinstance(plan, str):
25
+ self.plan = Plan.read(plan)
26
+ else:
27
+ self.plan = plan
28
+
29
+ # We use a configured AutoChunker to execute the plan
30
+ self.chunker = AutoChunker(
31
+ embedding_provider=self.plan.embedding.get("name"),
32
+ embedding_model_or_path=self.plan.embedding.get("model")
33
+ )
34
+
35
+ def transform_documents(self, documents: List[Document], **kwargs: Any) -> List[Document]:
36
+ """
37
+ Apply the optimized AutoChunks plan to a list of LangChain documents.
38
+ This processes ALL documents provided.
39
+ """
40
+ try:
41
+ from langchain_core.documents import Document
42
+ except ImportError:
43
+ raise ImportError("Please install langchain-core: pip install langchain-core")
44
+
45
+ # Convert LangChain docs to AutoChunks format
46
+ ac_docs = []
47
+ for d in documents:
48
+ # We use metadata.get('source', id(d)) as a unique doc_id
49
+ doc_id = str(d.metadata.get("source", id(d)))
50
+ ac_docs.append({
51
+ "id": doc_id,
52
+ "text": d.page_content,
53
+ "metadata": d.metadata
54
+ })
55
+
56
+ # Run the execution pipeline
57
+ gen_name = self.plan.generator_pipeline.get("name")
58
+ params = self.plan.generator_pipeline.get("params", {})
59
+
60
+ ac_chunks = self.chunker.apply_with_generator(ac_docs, gen_name, params)
61
+
62
+ # Convert back to LangChain docs
63
+ lc_docs = []
64
+ for ch in ac_chunks:
65
+ # Preserve original metadata and add chunking metadata
66
+ meta = ch.get("meta", {}).copy()
67
+ # If original metadata was passed through, it might be nested or direct
68
+ # For now, we assume simple merger
69
+ lc_docs.append(Document(
70
+ page_content=ch["text"],
71
+ metadata={**meta, "autochunk_plan_id": self.plan.id}
72
+ ))
73
+
74
+ return lc_docs
75
+
76
+ def split_documents(self, documents: List[Document]) -> List[Document]:
77
+ """Alias for transform_documents to match TextSplitter interface."""
78
+ return self.transform_documents(documents)
79
+
80
+ def __call__(self, documents: List[Document]) -> List[Document]:
81
+ return self.transform_documents(documents)
@@ -0,0 +1,94 @@
1
+
2
+ from __future__ import annotations
3
+ from typing import List, Dict, Any, TYPE_CHECKING, Union
4
+ from ..storage.plan import Plan
5
+ from ..autochunker import AutoChunker
6
+
7
+ if TYPE_CHECKING:
8
+ from llama_index.core.schema import BaseNode, Document
9
+
10
+ try:
11
+ from llama_index.core.node_parser import NodeParser, BaseNodeParser
12
+ from llama_index.core.schema import TextNode, BaseNode, Document
13
+ LLAMA_INDEX_AVAILABLE = True
14
+ except ImportError:
15
+ class BaseNodeParser: pass
16
+ LLAMA_INDEX_AVAILABLE = False
17
+
18
+ class AutoChunkLlamaIndexAdapter(BaseNodeParser):
19
+ """
20
+ Official AutoChunks Adapter for LlamaIndex.
21
+ Acts as a native NodeParser for seamless integration into IngestionPipelines.
22
+ """
23
+ def __init__(self, plan: Union[Plan, str]):
24
+ if isinstance(plan, str):
25
+ self.plan = Plan.read(plan)
26
+ else:
27
+ self.plan = plan
28
+
29
+ self.chunker = AutoChunker(
30
+ embedding_provider=self.plan.embedding.get("name"),
31
+ embedding_model_or_path=self.plan.embedding.get("model")
32
+ )
33
+
34
+ def _parse_nodes(self, nodes: List[BaseNode], show_progress: bool = False, **kwargs: Any) -> List[BaseNode]:
35
+ """
36
+ Internal implementation for LlamaIndex BaseNodeParser.
37
+ """
38
+ # Convert Nodes to AutoChunks format
39
+ ac_docs = []
40
+ for n in nodes:
41
+ ac_docs.append({
42
+ "id": n.node_id,
43
+ "text": n.get_content(),
44
+ "metadata": n.metadata
45
+ })
46
+
47
+ # Run the execution pipeline
48
+ gen_name = self.plan.generator_pipeline.get("name")
49
+ params = self.plan.generator_pipeline.get("params", {})
50
+
51
+ ac_chunks = self.chunker.apply_with_generator(ac_docs, gen_name, params)
52
+
53
+ # Convert back to LlamaIndex Nodes
54
+ final_nodes = []
55
+ for ch in ac_chunks:
56
+ node = TextNode(
57
+ text=ch["text"],
58
+ metadata={**ch.get("meta", {}), "autochunk_plan_id": self.plan.id}
59
+ )
60
+ final_nodes.append(node)
61
+
62
+ return final_nodes
63
+
64
+ def get_nodes_from_documents(self, documents: List[Document], **kwargs: Any) -> List[BaseNode]:
65
+ try:
66
+ from llama_index.core.schema import TextNode
67
+ except ImportError:
68
+ raise ImportError("Please install llama-index-core: pip install llama-index-core")
69
+
70
+ # Convert LlamaIndex docs to AutoChunks format
71
+ ac_docs = []
72
+ for d in documents:
73
+ ac_docs.append({
74
+ "id": d.doc_id,
75
+ "text": d.get_content(),
76
+ "metadata": d.metadata
77
+ })
78
+
79
+ # Run the execution pipeline
80
+ gen_name = self.plan.generator_pipeline.get("name")
81
+ params = self.plan.generator_pipeline.get("params", {})
82
+
83
+ ac_chunks = self.chunker.apply_with_generator(ac_docs, gen_name, params)
84
+
85
+ # Convert back to LlamaIndex Nodes
86
+ nodes = []
87
+ for ch in ac_chunks:
88
+ node = TextNode(
89
+ text=ch["text"],
90
+ metadata={**ch.get("meta", {}), "autochunk_plan_id": self.plan.id}
91
+ )
92
+ nodes.append(node)
93
+
94
+ return nodes