atlas-patch 1.0.0.post1__tar.gz → 1.0.0.post3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,9 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: atlas-patch
3
- Version: 1.0.0.post1
3
+ Version: 1.0.0.post3
4
4
  Summary: A Python package for processing and handling whole slide images
5
- Author: Omar Metwally, Ahmed Alagha
6
- Author-email: Yousef Kotp <yousefkotp@outlook.com>
5
+ Author: Yousef Kotp, Omar Metwally, Ahmed Alagha
7
6
  License: CC-BY-NC-SA-4.0
8
7
  Keywords: atlas-patch,whole-slide-image,wsi,tissue-segmentation,patch-extraction,computational-pathology
9
8
  Requires-Python: >=3.10
@@ -39,7 +38,7 @@ Requires-Dist: mypy>=1.0.0; extra == "dev"
39
38
  Dynamic: license-file
40
39
 
41
40
  <p align="center">
42
- <img src="assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
41
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
43
42
  </p>
44
43
 
45
44
  # AtlasPatch: An Efficient and Scalable Tool for Whole Slide Image Preprocessing in Computational Pathology
@@ -192,7 +191,7 @@ AtlasPatch provides a flexible pipeline with **4 checkpoints** that you can use
192
191
  ### Pipeline Checkpoints
193
192
 
194
193
  <p align="center">
195
- <img src="assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
194
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
196
195
  </p>
197
196
 
198
197
  Quick overview of the checkpoint commands:
@@ -266,13 +265,13 @@ Pass a directory instead of a single file to process multiple WSIs; outputs land
266
265
  Below are some examples for the output masks and overlays (original image, predicted mask, overlay, contours, grid).
267
266
 
268
267
  <p align="center">
269
- <img src="assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
268
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
270
269
  </p>
271
270
 
272
271
  Quantitative and qualitative analysis of AtlasPatch tissue detection against existing slide-preprocessing tools.
273
272
 
274
273
  <p align="center">
275
- <img src="assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
274
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
276
275
  </p>
277
276
 
278
277
  Representative WSI thumbnails are shown from diverse tissue features and artifact conditions, with tissue masks predicted by thresholding methods (TIAToolbox, CLAM) and deep learning methods (pretrained "non-finetuned" SAM2 model, Trident-QC, Trident-Hest and AtlasPatch), highlighting differences in boundary fidelity, artifact suppression and handling of fragmented tissue (more tools are shown in the appendix). Tissue detection performance is also shown on the held-out test set for AtlasPatch and baseline pipelines, highlighting that AtlasPatch matches or exceeds their segmentation quality. The segmentation complexity–performance trade-off, plotting F1-score against segmentation runtime (on a random set of 100 WSIs), shows AtlasPatch achieves high performance with substantially lower wall-clock time than tile-wise detectors and heuristic pipelines, underscoring its suitability for large-scale WSI preprocessing.
@@ -1,5 +1,5 @@
1
1
  <p align="center">
2
- <img src="assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
2
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
3
3
  </p>
4
4
 
5
5
  # AtlasPatch: An Efficient and Scalable Tool for Whole Slide Image Preprocessing in Computational Pathology
@@ -152,7 +152,7 @@ AtlasPatch provides a flexible pipeline with **4 checkpoints** that you can use
152
152
  ### Pipeline Checkpoints
153
153
 
154
154
  <p align="center">
155
- <img src="assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
155
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
156
156
  </p>
157
157
 
158
158
  Quick overview of the checkpoint commands:
@@ -226,13 +226,13 @@ Pass a directory instead of a single file to process multiple WSIs; outputs land
226
226
  Below are some examples for the output masks and overlays (original image, predicted mask, overlay, contours, grid).
227
227
 
228
228
  <p align="center">
229
- <img src="assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
229
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
230
230
  </p>
231
231
 
232
232
  Quantitative and qualitative analysis of AtlasPatch tissue detection against existing slide-preprocessing tools.
233
233
 
234
234
  <p align="center">
235
- <img src="assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
235
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
236
236
  </p>
237
237
 
238
238
  Representative WSI thumbnails are shown from diverse tissue features and artifact conditions, with tissue masks predicted by thresholding methods (TIAToolbox, CLAM) and deep learning methods (pretrained "non-finetuned" SAM2 model, Trident-QC, Trident-Hest and AtlasPatch), highlighting differences in boundary fidelity, artifact suppression and handling of fragmented tissue (more tools are shown in the appendix). Tissue detection performance is also shown on the held-out test set for AtlasPatch and baseline pipelines, highlighting that AtlasPatch matches or exceeds their segmentation quality. The segmentation complexity–performance trade-off, plotting F1-score against segmentation runtime (on a random set of 100 WSIs), shows AtlasPatch achieves high performance with substantially lower wall-clock time than tile-wise detectors and heuristic pipelines, underscoring its suitability for large-scale WSI preprocessing.
@@ -2,5 +2,5 @@
2
2
 
3
3
  from . import core, services
4
4
 
5
- __version__ = "1.0.0.post1"
5
+ __version__ = "1.0.0.post3"
6
6
  __all__ = ["core", "services", "__version__"]
@@ -1,9 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: atlas-patch
3
- Version: 1.0.0.post1
3
+ Version: 1.0.0.post3
4
4
  Summary: A Python package for processing and handling whole slide images
5
- Author: Omar Metwally, Ahmed Alagha
6
- Author-email: Yousef Kotp <yousefkotp@outlook.com>
5
+ Author: Yousef Kotp, Omar Metwally, Ahmed Alagha
7
6
  License: CC-BY-NC-SA-4.0
8
7
  Keywords: atlas-patch,whole-slide-image,wsi,tissue-segmentation,patch-extraction,computational-pathology
9
8
  Requires-Python: >=3.10
@@ -39,7 +38,7 @@ Requires-Dist: mypy>=1.0.0; extra == "dev"
39
38
  Dynamic: license-file
40
39
 
41
40
  <p align="center">
42
- <img src="assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
41
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Logo.png" alt="AtlasPatch Logo" width="100%">
43
42
  </p>
44
43
 
45
44
  # AtlasPatch: An Efficient and Scalable Tool for Whole Slide Image Preprocessing in Computational Pathology
@@ -192,7 +191,7 @@ AtlasPatch provides a flexible pipeline with **4 checkpoints** that you can use
192
191
  ### Pipeline Checkpoints
193
192
 
194
193
  <p align="center">
195
- <img src="assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
194
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Checkouts.png" alt="AtlasPatch Pipeline Checkpoints" width="100%">
196
195
  </p>
197
196
 
198
197
  Quick overview of the checkpoint commands:
@@ -266,13 +265,13 @@ Pass a directory instead of a single file to process multiple WSIs; outputs land
266
265
  Below are some examples for the output masks and overlays (original image, predicted mask, overlay, contours, grid).
267
266
 
268
267
  <p align="center">
269
- <img src="assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
268
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/VisualizationSamples.png" alt="AtlasPatch visualization samples" width="100%">
270
269
  </p>
271
270
 
272
271
  Quantitative and qualitative analysis of AtlasPatch tissue detection against existing slide-preprocessing tools.
273
272
 
274
273
  <p align="center">
275
- <img src="assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
274
+ <img src="https://raw.githubusercontent.com/AtlasAnalyticsLab/AtlasPatch/main/assets/images/Comparisons.jpg" alt="AtlasPatch method comparison" width="100%">
276
275
  </p>
277
276
 
278
277
  Representative WSI thumbnails are shown from diverse tissue features and artifact conditions, with tissue masks predicted by thresholding methods (TIAToolbox, CLAM) and deep learning methods (pretrained "non-finetuned" SAM2 model, Trident-QC, Trident-Hest and AtlasPatch), highlighting differences in boundary fidelity, artifact suppression and handling of fragmented tissue (more tools are shown in the appendix). Tissue detection performance is also shown on the held-out test set for AtlasPatch and baseline pipelines, highlighting that AtlasPatch matches or exceeds their segmentation quality. The segmentation complexity–performance trade-off, plotting F1-score against segmentation runtime (on a random set of 100 WSIs), shows AtlasPatch achieves high performance with substantially lower wall-clock time than tile-wise detectors and heuristic pipelines, underscoring its suitability for large-scale WSI preprocessing.
@@ -4,13 +4,13 @@ build-backend = "setuptools.build_meta"
4
4
 
5
5
  [project]
6
6
  name = "atlas-patch"
7
- version = "1.0.0.post1"
7
+ version = "1.0.0.post3"
8
8
  description = "A Python package for processing and handling whole slide images"
9
9
  readme = "README.md"
10
10
  requires-python = ">=3.10"
11
11
  license = {text = "CC-BY-NC-SA-4.0"}
12
12
  authors = [
13
- {name = "Yousef Kotp", email = "yousefkotp@outlook.com"},
13
+ {name = "Yousef Kotp"},
14
14
  {name = "Omar Metwally"},
15
15
  {name = "Ahmed Alagha"},
16
16
  ]