asyncpg-typed 0.1.2__tar.gz → 0.1.3__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (25) hide show
  1. {asyncpg_typed-0.1.2/asyncpg_typed.egg-info → asyncpg_typed-0.1.3}/PKG-INFO +121 -41
  2. asyncpg_typed-0.1.3/README.md +255 -0
  3. asyncpg_typed-0.1.3/asyncpg_typed/__init__.py +964 -0
  4. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3/asyncpg_typed.egg-info}/PKG-INFO +121 -41
  5. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed.egg-info/SOURCES.txt +1 -0
  6. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/test_code.py +65 -37
  7. asyncpg_typed-0.1.3/tests/test_data.py +717 -0
  8. asyncpg_typed-0.1.3/tests/test_sql.py +229 -0
  9. asyncpg_typed-0.1.2/README.md +0 -175
  10. asyncpg_typed-0.1.2/asyncpg_typed/__init__.py +0 -681
  11. asyncpg_typed-0.1.2/tests/test_data.py +0 -500
  12. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/LICENSE +0 -0
  13. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/MANIFEST.in +0 -0
  14. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed/py.typed +0 -0
  15. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed.egg-info/dependency_links.txt +0 -0
  16. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed.egg-info/requires.txt +0 -0
  17. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed.egg-info/top_level.txt +0 -0
  18. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/asyncpg_typed.egg-info/zip-safe +0 -0
  19. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/pyproject.toml +0 -0
  20. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/setup.cfg +0 -0
  21. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/__init__.py +0 -0
  22. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/connection.py +0 -0
  23. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/test_template.py +0 -0
  24. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/test_type.py +0 -0
  25. {asyncpg_typed-0.1.2 → asyncpg_typed-0.1.3}/tests/test_vector.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: asyncpg_typed
3
- Version: 0.1.2
3
+ Version: 0.1.3
4
4
  Summary: Type-safe queries for asyncpg
5
5
  Author-email: Levente Hunyadi <hunyadi@gmail.com>
6
6
  Maintainer-email: Levente Hunyadi <hunyadi@gmail.com>
@@ -113,6 +113,8 @@ def sql(
113
113
  ) -> _SQL: ...
114
114
  ```
115
115
 
116
+ #### Parameters to factory function
117
+
116
118
  The parameter `stmt` represents a SQL expression, either as a literal string or a template (i.e. a *t-string*).
117
119
 
118
120
  If the expression is a string, it can have PostgreSQL parameter placeholders such as `$1`, `$2` or `$3`:
@@ -127,24 +129,62 @@ If the expression is a *t-string*, it can have replacement fields that evaluate
127
129
  t"INSERT INTO table_name (col_1, col_2, col_3) VALUES ({1}, {2}, {3});"
128
130
  ```
129
131
 
130
- The parameters `args` and `resultset` take a `tuple` of several types `Px` or `Rx`, each of which may be any of the following:
132
+ The parameters `args` and `resultset` take a `tuple` of several types `Px` or `Rx`.
133
+
134
+ The parameters `arg` and `result` take a single type `P` or `R`. Passing a simple type (e.g. `type[T]`) directly via `arg` and `result` is for convenience, and is equivalent to passing a one-element tuple of the same simple type (i.e. `type[tuple[T]]`) via `args` and `resultset`.
135
+
136
+ The number of types in `args` must correspond to the number of query parameters. (This is validated on calling `sql(...)` for the *t-string* syntax.) The number of types in `resultset` must correspond to the number of columns returned by the query.
137
+
138
+ #### Argument and resultset types
139
+
140
+ When passing Python types via the parameters `args` and `resultset`, each type may be any of the following:
131
141
 
132
142
  * (required) simple type
133
143
  * optional simple type (`T | None`)
144
+ * special union type
134
145
 
135
146
  Simple types include:
136
147
 
137
148
  * `bool`
138
- * `int`
139
- * `float`
140
- * `decimal.Decimal`
141
- * `datetime.date`
142
- * `datetime.time`
143
- * `datetime.datetime`
149
+ * numeric types:
150
+ * `int`
151
+ * `float`
152
+ * `decimal.Decimal`
153
+ * date and time types:
154
+ * `datetime.date`
155
+ * `datetime.time`
156
+ * `datetime.datetime`
157
+ * `datetime.timedelta`
144
158
  * `str`
145
159
  * `bytes`
146
160
  * `uuid.UUID`
147
- * a user-defined class that derives from `StrEnum`
161
+ * types defined in the module [ipaddress](https://docs.python.org/3/library/ipaddress.html):
162
+ * `ipaddress.IPv4Address`
163
+ * `ipaddress.IPv6Address`
164
+ * `ipaddress.IPv4Network`
165
+ * `ipaddress.IPv6Network`
166
+ * [asyncpg representations](https://magicstack.github.io/asyncpg/current/api/index.html#module-asyncpg.types) of PostgreSQL geometric types:
167
+ * `asyncpg.Point`
168
+ * `asyncpg.Line`
169
+ * `asyncpg.LineSegment`
170
+ * `asyncpg.Box`
171
+ * `asyncpg.Path`
172
+ * `asyncpg.Polygon`
173
+ * `asyncpg.Circle`
174
+ * concrete types of [asyncpg.Range](https://magicstack.github.io/asyncpg/current/api/index.html#asyncpg.types.Range):
175
+ * `asyncpg.Range[int]`
176
+ * `asyncpg.Range[Decimal]`
177
+ * `asyncpg.Range[date]`
178
+ * `asyncpg.Range[datetime]`
179
+ * a user-defined enumeration class that derives from `StrEnum`
180
+
181
+ Custom Python types corresponding to PostgreSQL scalar or [composite types](https://www.postgresql.org/docs/current/rowtypes.html) are permitted. These types need to be pre-registered with [set_type_codec](https://magicstack.github.io/asyncpg/current/api/index.html#asyncpg.connection.Connection.set_type_codec) passing an encoder, a decoder and typically `format="tuple"`.
182
+
183
+ In general, union types are not allowed. However, there are notable exceptions. Special union types are as follows:
184
+
185
+ * `JsonType` to represent an object reconstructed from a JSON string
186
+ * `IPv4Address | IPv6Address` to denote either an IPv4 or IPv6 address
187
+ * `IPv4Network | IPv6Network` to denote either an IPv4 or IPv6 network definition
148
188
 
149
189
  Types are grouped together with `tuple`:
150
190
 
@@ -152,39 +192,74 @@ Types are grouped together with `tuple`:
152
192
  tuple[bool, int, str | None]
153
193
  ```
154
194
 
155
- The parameters `arg` and `result` take a single type `P` or `R`. Passing a simple type (e.g. `type[T]`) directly via `arg` and `result` is for convenience, and is equivalent to passing a one-element tuple of the same simple type (i.e. `type[tuple[T]]`) via `args` and `resultset`.
195
+ Both `args` and `resultset` types must be compatible with their corresponding PostgreSQL query parameter types and resultset column types, respectively. The following table shows the mapping between PostgreSQL and Python types. When there are multiple options separated by a slash, either of the types can be specified as a source or target type.
156
196
 
157
- The number of types in `args` must correspond to the number of query parameters. (This is validated on calling `sql(...)` for the *t-string* syntax.) The number of types in `resultset` must correspond to the number of columns returned by the query.
197
+ | PostgreSQL type | Python type |
198
+ | ---------------------------- | ---------------------------------- |
199
+ | `bool` | `bool` |
200
+ | `smallint` | `int` |
201
+ | `integer` | `int` |
202
+ | `bigint` | `int` |
203
+ | `real`/`float4` | `float` |
204
+ | `double`/`float8` | `float` |
205
+ | `decimal`/`numeric` | `Decimal` |
206
+ | `date` | `date` |
207
+ | `time` | `time` (naive) |
208
+ | `timetz` | `time` (tz) |
209
+ | `timestamp` | `datetime` (naive) |
210
+ | `timestamptz` | `datetime` (tz) |
211
+ | `interval` | `timedelta` |
212
+ | `char(N)` | `str` |
213
+ | `varchar(N)` | `str` |
214
+ | `text` | `str` |
215
+ | `bytea` | `bytes` |
216
+ | `uuid` | `UUID` |
217
+ | `cidr` | `IPvXNetwork` |
218
+ | `inet` | `IPvXNetwork`/`IPvXAddress` |
219
+ | `macaddr` | `str` |
220
+ | `macaddr8` | `str` |
221
+ | `json` | `str`/`JsonType` |
222
+ | `jsonb` | `str`/`JsonType` |
223
+ | `xml` | `str` |
224
+ | any enumeration type | `E: StrEnum` |
225
+ | `point` | `asyncpg.Point` |
226
+ | `line` | `asyncpg.Line` |
227
+ | `lseg` | `asyncpg.LineSegment` |
228
+ | `box` | `asyncpg.Box` |
229
+ | `path` | `asyncpg.Path` |
230
+ | `polygon` | `asyncpg.Polygon` |
231
+ | `circle` | `asyncpg.Circle` |
232
+ | `int4range` | `asyncpg.Range[int]` |
233
+ | `int8range` | `asyncpg.Range[int]` |
234
+ | `numrange` | `asyncpg.Range[Decimal]` |
235
+ | `tsrange` | `asyncpg.Range[datetime]` (naive) |
236
+ | `tstzrange` | `asyncpg.Range[datetime]` (tz) |
237
+ | `daterange` | `asyncpg.Range[date]` |
238
+
239
+
240
+ PostgreSQL types `json` and `jsonb` are [returned by asyncpg](https://magicstack.github.io/asyncpg/current/usage.html#type-conversion) as Python type `str`. However, if we specify the union type `JsonType` in `args` or `resultset`, the JSON string is parsed as if by calling `json.loads()`. If the library `orjson` is present, its faster routines are invoked instead of the slower standard library implementation in the module `json`.
241
+
242
+ `JsonType` is defined in the module `asyncpg_typed` as follows:
158
243
 
159
- Both `args` and `resultset` types must be compatible with their corresponding PostgreSQL query parameter types and resultset column types, respectively. The following table shows the mapping between PostgreSQL and Python types. When there are multiple options separated by a slash, either of the types can be specified as a source or target type.
244
+ ```python
245
+ JsonType = None | bool | int | float | str | dict[str, "JsonType"] | list["JsonType"]
246
+ ```
247
+
248
+ `IPvXNetwork` is a shorthand for either of the following:
249
+
250
+ * `IPv4Network`
251
+ * `IPv6Network`
252
+ * their union type `IPv4Network | IPv6Network`
160
253
 
161
- | PostgreSQL type | Python type |
162
- | ----------------- | ------------------ |
163
- | `bool` | `bool` |
164
- | `smallint` | `int` |
165
- | `integer` | `int` |
166
- | `bigint` | `int` |
167
- | `real`/`float4` | `float` |
168
- | `double`/`float8` | `float` |
169
- | `decimal` | `Decimal` |
170
- | `numeric` | `Decimal` |
171
- | `date` | `date` |
172
- | `time` | `time` (naive) |
173
- | `timetz` | `time` (tz) |
174
- | `timestamp` | `datetime` (naive) |
175
- | `timestamptz` | `datetime` (tz) |
176
- | `interval` | `timedelta` |
177
- | `char(N)` | `str` |
178
- | `varchar(N)` | `str` |
179
- | `text` | `str` |
180
- | `bytea` | `bytes` |
181
- | `json` | `str`/`JsonType` |
182
- | `jsonb` | `str`/`JsonType` |
183
- | `xml` | `str` |
184
- | `uuid` | `UUID` |
185
- | enumeration | `E: StrEnum` |
186
-
187
- PostgreSQL types `json` and `jsonb` are [returned by asyncpg](https://magicstack.github.io/asyncpg/current/usage.html#type-conversion) as Python type `str`. However, if we specify the union type `JsonType` in `args` or `resultset`, the JSON string is parsed as if by calling `json.loads()`. (`JsonType` is defined in the module `asyncpg_typed`.) If the library `orjson` is present, its faster routines are invoked instead of the slower standard library implementation in the module `json`.
254
+ `IPvXAddress` stands for either of the following:
255
+
256
+ * `IPv4Address`
257
+ * `IPv6Address`
258
+ * their union type `IPv4Address | IPv6Address`
259
+
260
+ #### SQL statement as an f-string
261
+
262
+ In addition to the `sql` function, SQL objects can be created with the functionally identical `unsafe_sql` function. As opposed to its safer alternative, the first parameter of `unsafe_sql` has the plain type `str`, allowing us to pass an f-string. This can prove useful if we want to inject the value of a Python variable at location where binding parameters are not permitted by PostgreSQL syntax, e.g. substitute the name of a database table to dynamically create a SQL statement.
188
263
 
189
264
  ### Using a SQL object
190
265
 
@@ -207,7 +282,12 @@ async def fetchval(self, connection: Connection, *args: *P) -> R1: ...
207
282
 
208
283
  Only those functions are prompted on code completion that make sense in the context of the given number of input and output arguments. Specifically, `fetchval` is available only for a single type passed to `resultset`, and `executemany` and `fetchmany` are available only if the query takes (one or more) parameters.
209
284
 
285
+ #### Run-time behavior
286
+
287
+ When a call such as `sql.executemany(conn, records)` or `sql.fetch(conn, param1, param2)` is made on a `SQL` object at run time, the library invokes `connection.prepare(sql)` to create a `PreparedStatement` and compares the actual statement signature against the expected Python types. If the expected and actual signatures don't match, an exception `TypeMismatchError` (subclass of `TypeError`) is raised.
288
+
289
+ The set of values for an enumeration type is validated when a prepared statement is created. The string values declared in a Python `StrEnum` are compared against the values listed in PostgreSQL `CREATE TYPE ... AS ENUM` by querying the system table `pg_enum`. If there are missing or extra values on either side, an exception `EnumMismatchError` (subclass of `TypeError`) is raised.
210
290
 
211
- ## Run-time behavior
291
+ Unfortunately, PostgreSQL doesn't propagate nullability via prepared statements: resultset types that are declared as required (e.g. `T` as opposed to `T | None`) are validated at run time. When a `None` value is encountered for a required type, an exception `NoneTypeError` (subclass of `TypeError`) is raised.
212
292
 
213
- When a call such as `sql.executemany(conn, records)` or `sql.fetch(conn, param1, param2)` is made on a `SQL` object at run time, the library invokes `connection.prepare(sql)` to create a `PreparedStatement` and compares the actual statement signature against the expected Python types. Unfortunately, PostgreSQL doesn't propagate nullability via prepared statements: resultset types that are declared as required (e.g. `T` as opposed to `T | None`) are validated at run time.
293
+ PostgreSQL doesn't differentiate between IPv4 and IPv6 network definitions, or IPv4 and IPv6 addresses in the types `cidr` and `inet`. This means that semantically a union type is returned. If you specify a more restrictive type, the resultset data is validated dynamically at run time.
@@ -0,0 +1,255 @@
1
+ # Type-safe queries for asyncpg
2
+
3
+ [asyncpg](https://magicstack.github.io/asyncpg/current/) is a high-performance database client to connect to a PostgreSQL server, and execute SQL statements using the async/await paradigm in Python. The library exposes a `Connection` object, which has methods like `execute` and `fetch` that run SQL queries against the database. Unfortunately, these methods take the query as a plain `str`, arguments as `object`, and the resultset is exposed as a `Record`, which is a `tuple`/`dict` hybrid whose `get` and indexer have a return type of `Any`. There is no mechanism to check compatibility of input or output arguments, even if their types are preliminarily known.
4
+
5
+ This Python library provides "compile-time" validation for SQL queries that linters and type checkers can enforce. By creating a generic `SQL` object and associating input and output type information with the query, the signatures of `execute` and `fetch` reveal the exact expected and returned types.
6
+
7
+
8
+ ## Motivating example
9
+
10
+ ```python
11
+ # create a typed object, setting expected and returned types
12
+ select_where_sql = sql(
13
+ """--sql
14
+ SELECT boolean_value, integer_value, string_value
15
+ FROM sample_data
16
+ WHERE boolean_value = $1 AND integer_value > $2
17
+ ORDER BY integer_value;
18
+ """,
19
+ args=tuple[bool, int],
20
+ resultset=tuple[bool, int, str | None],
21
+ )
22
+
23
+ conn = await asyncpg.connect(host="localhost", port=5432, user="postgres", password="postgres")
24
+ try:
25
+ # ✅ Valid signature
26
+ rows = await select_where_sql.fetch(conn, False, 2)
27
+
28
+ # ✅ Type of "rows" is "list[tuple[bool, int, str | None]]"
29
+ reveal_type(rows)
30
+
31
+ # ⚠️ Argument missing for parameter "arg2"
32
+ rows = await select_where_sql.fetch(conn, False)
33
+
34
+ # ⚠️ Argument of type "float" cannot be assigned to parameter "arg2" of type "int" in function "fetch"; "float" is not assignable to "int"
35
+ rows = await select_where_sql.fetch(conn, False, 3.14)
36
+
37
+ finally:
38
+ await conn.close()
39
+
40
+ # create a list of data-class instances from a list of typed tuples
41
+ @dataclass
42
+ class DataObject:
43
+ boolean_value: bool
44
+ integer_value: int
45
+ string_value: str | None
46
+
47
+ # ✅ Valid initializer call
48
+ items = [DataObject(*row) for row in rows]
49
+
50
+ @dataclass
51
+ class MismatchedObject:
52
+ boolean_value: bool
53
+ integer_value: int
54
+ string_value: str
55
+
56
+ # ⚠️ Argument of type "int | None" cannot be assigned to parameter "integer_value" of type "int" in function "__init__"; "None" is not assignable to "int"
57
+ items = [MismatchedObject(*row) for row in rows]
58
+ ```
59
+
60
+
61
+ ## Syntax
62
+
63
+ ### Creating a SQL object
64
+
65
+ Instantiate a SQL object with the `sql` function:
66
+
67
+ ```python
68
+ def sql(
69
+ stmt: LiteralString | string.templatelib.Template,
70
+ *,
71
+ args: None | type[tuple[P1, P2]] | type[tuple[P1, P2, P3]] | ... = None,
72
+ resultset: None | type[tuple[R1, R2]] | type[tuple[R1, R2, R3]] | ... = None,
73
+ arg: None | type[P] = None,
74
+ result: None | type[R] = None,
75
+ ) -> _SQL: ...
76
+ ```
77
+
78
+ #### Parameters to factory function
79
+
80
+ The parameter `stmt` represents a SQL expression, either as a literal string or a template (i.e. a *t-string*).
81
+
82
+ If the expression is a string, it can have PostgreSQL parameter placeholders such as `$1`, `$2` or `$3`:
83
+
84
+ ```python
85
+ "INSERT INTO table_name (col_1, col_2, col_3) VALUES ($1, $2, $3);"
86
+ ```
87
+
88
+ If the expression is a *t-string*, it can have replacement fields that evaluate to integers:
89
+
90
+ ```python
91
+ t"INSERT INTO table_name (col_1, col_2, col_3) VALUES ({1}, {2}, {3});"
92
+ ```
93
+
94
+ The parameters `args` and `resultset` take a `tuple` of several types `Px` or `Rx`.
95
+
96
+ The parameters `arg` and `result` take a single type `P` or `R`. Passing a simple type (e.g. `type[T]`) directly via `arg` and `result` is for convenience, and is equivalent to passing a one-element tuple of the same simple type (i.e. `type[tuple[T]]`) via `args` and `resultset`.
97
+
98
+ The number of types in `args` must correspond to the number of query parameters. (This is validated on calling `sql(...)` for the *t-string* syntax.) The number of types in `resultset` must correspond to the number of columns returned by the query.
99
+
100
+ #### Argument and resultset types
101
+
102
+ When passing Python types via the parameters `args` and `resultset`, each type may be any of the following:
103
+
104
+ * (required) simple type
105
+ * optional simple type (`T | None`)
106
+ * special union type
107
+
108
+ Simple types include:
109
+
110
+ * `bool`
111
+ * numeric types:
112
+ * `int`
113
+ * `float`
114
+ * `decimal.Decimal`
115
+ * date and time types:
116
+ * `datetime.date`
117
+ * `datetime.time`
118
+ * `datetime.datetime`
119
+ * `datetime.timedelta`
120
+ * `str`
121
+ * `bytes`
122
+ * `uuid.UUID`
123
+ * types defined in the module [ipaddress](https://docs.python.org/3/library/ipaddress.html):
124
+ * `ipaddress.IPv4Address`
125
+ * `ipaddress.IPv6Address`
126
+ * `ipaddress.IPv4Network`
127
+ * `ipaddress.IPv6Network`
128
+ * [asyncpg representations](https://magicstack.github.io/asyncpg/current/api/index.html#module-asyncpg.types) of PostgreSQL geometric types:
129
+ * `asyncpg.Point`
130
+ * `asyncpg.Line`
131
+ * `asyncpg.LineSegment`
132
+ * `asyncpg.Box`
133
+ * `asyncpg.Path`
134
+ * `asyncpg.Polygon`
135
+ * `asyncpg.Circle`
136
+ * concrete types of [asyncpg.Range](https://magicstack.github.io/asyncpg/current/api/index.html#asyncpg.types.Range):
137
+ * `asyncpg.Range[int]`
138
+ * `asyncpg.Range[Decimal]`
139
+ * `asyncpg.Range[date]`
140
+ * `asyncpg.Range[datetime]`
141
+ * a user-defined enumeration class that derives from `StrEnum`
142
+
143
+ Custom Python types corresponding to PostgreSQL scalar or [composite types](https://www.postgresql.org/docs/current/rowtypes.html) are permitted. These types need to be pre-registered with [set_type_codec](https://magicstack.github.io/asyncpg/current/api/index.html#asyncpg.connection.Connection.set_type_codec) passing an encoder, a decoder and typically `format="tuple"`.
144
+
145
+ In general, union types are not allowed. However, there are notable exceptions. Special union types are as follows:
146
+
147
+ * `JsonType` to represent an object reconstructed from a JSON string
148
+ * `IPv4Address | IPv6Address` to denote either an IPv4 or IPv6 address
149
+ * `IPv4Network | IPv6Network` to denote either an IPv4 or IPv6 network definition
150
+
151
+ Types are grouped together with `tuple`:
152
+
153
+ ```python
154
+ tuple[bool, int, str | None]
155
+ ```
156
+
157
+ Both `args` and `resultset` types must be compatible with their corresponding PostgreSQL query parameter types and resultset column types, respectively. The following table shows the mapping between PostgreSQL and Python types. When there are multiple options separated by a slash, either of the types can be specified as a source or target type.
158
+
159
+ | PostgreSQL type | Python type |
160
+ | ---------------------------- | ---------------------------------- |
161
+ | `bool` | `bool` |
162
+ | `smallint` | `int` |
163
+ | `integer` | `int` |
164
+ | `bigint` | `int` |
165
+ | `real`/`float4` | `float` |
166
+ | `double`/`float8` | `float` |
167
+ | `decimal`/`numeric` | `Decimal` |
168
+ | `date` | `date` |
169
+ | `time` | `time` (naive) |
170
+ | `timetz` | `time` (tz) |
171
+ | `timestamp` | `datetime` (naive) |
172
+ | `timestamptz` | `datetime` (tz) |
173
+ | `interval` | `timedelta` |
174
+ | `char(N)` | `str` |
175
+ | `varchar(N)` | `str` |
176
+ | `text` | `str` |
177
+ | `bytea` | `bytes` |
178
+ | `uuid` | `UUID` |
179
+ | `cidr` | `IPvXNetwork` |
180
+ | `inet` | `IPvXNetwork`/`IPvXAddress` |
181
+ | `macaddr` | `str` |
182
+ | `macaddr8` | `str` |
183
+ | `json` | `str`/`JsonType` |
184
+ | `jsonb` | `str`/`JsonType` |
185
+ | `xml` | `str` |
186
+ | any enumeration type | `E: StrEnum` |
187
+ | `point` | `asyncpg.Point` |
188
+ | `line` | `asyncpg.Line` |
189
+ | `lseg` | `asyncpg.LineSegment` |
190
+ | `box` | `asyncpg.Box` |
191
+ | `path` | `asyncpg.Path` |
192
+ | `polygon` | `asyncpg.Polygon` |
193
+ | `circle` | `asyncpg.Circle` |
194
+ | `int4range` | `asyncpg.Range[int]` |
195
+ | `int8range` | `asyncpg.Range[int]` |
196
+ | `numrange` | `asyncpg.Range[Decimal]` |
197
+ | `tsrange` | `asyncpg.Range[datetime]` (naive) |
198
+ | `tstzrange` | `asyncpg.Range[datetime]` (tz) |
199
+ | `daterange` | `asyncpg.Range[date]` |
200
+
201
+
202
+ PostgreSQL types `json` and `jsonb` are [returned by asyncpg](https://magicstack.github.io/asyncpg/current/usage.html#type-conversion) as Python type `str`. However, if we specify the union type `JsonType` in `args` or `resultset`, the JSON string is parsed as if by calling `json.loads()`. If the library `orjson` is present, its faster routines are invoked instead of the slower standard library implementation in the module `json`.
203
+
204
+ `JsonType` is defined in the module `asyncpg_typed` as follows:
205
+
206
+ ```python
207
+ JsonType = None | bool | int | float | str | dict[str, "JsonType"] | list["JsonType"]
208
+ ```
209
+
210
+ `IPvXNetwork` is a shorthand for either of the following:
211
+
212
+ * `IPv4Network`
213
+ * `IPv6Network`
214
+ * their union type `IPv4Network | IPv6Network`
215
+
216
+ `IPvXAddress` stands for either of the following:
217
+
218
+ * `IPv4Address`
219
+ * `IPv6Address`
220
+ * their union type `IPv4Address | IPv6Address`
221
+
222
+ #### SQL statement as an f-string
223
+
224
+ In addition to the `sql` function, SQL objects can be created with the functionally identical `unsafe_sql` function. As opposed to its safer alternative, the first parameter of `unsafe_sql` has the plain type `str`, allowing us to pass an f-string. This can prove useful if we want to inject the value of a Python variable at location where binding parameters are not permitted by PostgreSQL syntax, e.g. substitute the name of a database table to dynamically create a SQL statement.
225
+
226
+ ### Using a SQL object
227
+
228
+ The function `sql` returns an object that derives from the base class `_SQL` and is specific to the number and types of parameters passed in `args` and `resultset`.
229
+
230
+ The following functions are available on SQL objects:
231
+
232
+ ```python
233
+ async def execute(self, connection: Connection, *args: *P) -> None: ...
234
+ async def executemany(self, connection: Connection, args: Iterable[tuple[*P]]) -> None: ...
235
+ async def fetch(self, connection: Connection, *args: *P) -> list[tuple[*R]]: ...
236
+ async def fetchmany(self, connection: Connection, args: Iterable[tuple[*P]]) -> list[tuple[*R]]: ...
237
+ async def fetchrow(self, connection: Connection, *args: *P) -> tuple[*R] | None: ...
238
+ async def fetchval(self, connection: Connection, *args: *P) -> R1: ...
239
+ ```
240
+
241
+ `Connection` may be an `asyncpg.Connection` or an `asyncpg.pool.PoolConnectionProxy` acquired from a connection pool.
242
+
243
+ `*P` and `*R` denote several types (a type pack) corresponding to those listed in `args` and `resultset`, respectively.
244
+
245
+ Only those functions are prompted on code completion that make sense in the context of the given number of input and output arguments. Specifically, `fetchval` is available only for a single type passed to `resultset`, and `executemany` and `fetchmany` are available only if the query takes (one or more) parameters.
246
+
247
+ #### Run-time behavior
248
+
249
+ When a call such as `sql.executemany(conn, records)` or `sql.fetch(conn, param1, param2)` is made on a `SQL` object at run time, the library invokes `connection.prepare(sql)` to create a `PreparedStatement` and compares the actual statement signature against the expected Python types. If the expected and actual signatures don't match, an exception `TypeMismatchError` (subclass of `TypeError`) is raised.
250
+
251
+ The set of values for an enumeration type is validated when a prepared statement is created. The string values declared in a Python `StrEnum` are compared against the values listed in PostgreSQL `CREATE TYPE ... AS ENUM` by querying the system table `pg_enum`. If there are missing or extra values on either side, an exception `EnumMismatchError` (subclass of `TypeError`) is raised.
252
+
253
+ Unfortunately, PostgreSQL doesn't propagate nullability via prepared statements: resultset types that are declared as required (e.g. `T` as opposed to `T | None`) are validated at run time. When a `None` value is encountered for a required type, an exception `NoneTypeError` (subclass of `TypeError`) is raised.
254
+
255
+ PostgreSQL doesn't differentiate between IPv4 and IPv6 network definitions, or IPv4 and IPv6 addresses in the types `cidr` and `inet`. This means that semantically a union type is returned. If you specify a more restrictive type, the resultset data is validated dynamically at run time.