asyncpg-typed 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- asyncpg_typed-0.1.0/LICENSE +21 -0
- asyncpg_typed-0.1.0/PKG-INFO +187 -0
- asyncpg_typed-0.1.0/README.md +149 -0
- asyncpg_typed-0.1.0/asyncpg_typed/__init__.py +827 -0
- asyncpg_typed-0.1.0/asyncpg_typed/py.typed +0 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/PKG-INFO +187 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/SOURCES.txt +16 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/dependency_links.txt +1 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/requires.txt +13 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/top_level.txt +1 -0
- asyncpg_typed-0.1.0/asyncpg_typed.egg-info/zip-safe +1 -0
- asyncpg_typed-0.1.0/pyproject.toml +71 -0
- asyncpg_typed-0.1.0/setup.cfg +4 -0
- asyncpg_typed-0.1.0/test/test_code.py +187 -0
- asyncpg_typed-0.1.0/test/test_data.py +356 -0
- asyncpg_typed-0.1.0/test/test_template.py +71 -0
- asyncpg_typed-0.1.0/test/test_type.py +30 -0
- asyncpg_typed-0.1.0/test/test_vector.py +79 -0
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
MIT License
|
|
2
|
+
|
|
3
|
+
Copyright (c) 2025 Levente Hunyadi
|
|
4
|
+
|
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
7
|
+
in the Software without restriction, including without limitation the rights
|
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
10
|
+
furnished to do so, subject to the following conditions:
|
|
11
|
+
|
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
|
13
|
+
copies or substantial portions of the Software.
|
|
14
|
+
|
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
21
|
+
SOFTWARE.
|
|
@@ -0,0 +1,187 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: asyncpg_typed
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Type-safe queries for asyncpg
|
|
5
|
+
Author-email: Levente Hunyadi <hunyadi@gmail.com>
|
|
6
|
+
Maintainer-email: Levente Hunyadi <hunyadi@gmail.com>
|
|
7
|
+
License-Expression: MIT
|
|
8
|
+
Project-URL: Homepage, https://github.com/hunyadi/asyncpg_typed
|
|
9
|
+
Project-URL: Source, https://github.com/hunyadi/asyncpg_typed
|
|
10
|
+
Keywords: asyncpg,typed,database-client
|
|
11
|
+
Classifier: Development Status :: 5 - Production/Stable
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
19
|
+
Classifier: Programming Language :: Python :: 3.14
|
|
20
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
21
|
+
Classifier: Programming Language :: SQL
|
|
22
|
+
Classifier: Topic :: Database
|
|
23
|
+
Classifier: Topic :: Utilities
|
|
24
|
+
Classifier: Typing :: Typed
|
|
25
|
+
Requires-Python: >=3.10
|
|
26
|
+
Description-Content-Type: text/markdown
|
|
27
|
+
License-File: LICENSE
|
|
28
|
+
Requires-Dist: asyncpg>=0.31
|
|
29
|
+
Requires-Dist: typing-extensions>=4.15; python_version < "3.11"
|
|
30
|
+
Provides-Extra: vector
|
|
31
|
+
Requires-Dist: asyncpg-vector>=0.1; extra == "vector"
|
|
32
|
+
Provides-Extra: dev
|
|
33
|
+
Requires-Dist: asyncpg-stubs>=0.31; extra == "dev"
|
|
34
|
+
Requires-Dist: build>=1.3; extra == "dev"
|
|
35
|
+
Requires-Dist: mypy>=1.19; extra == "dev"
|
|
36
|
+
Requires-Dist: ruff>=0.14; extra == "dev"
|
|
37
|
+
Dynamic: license-file
|
|
38
|
+
|
|
39
|
+
# Type-safe queries for asyncpg
|
|
40
|
+
|
|
41
|
+
[asyncpg](https://magicstack.github.io/asyncpg/current/) is a high-performance database client to connect to a PostgreSQL server, and execute SQL statements using the async/await paradigm in Python. The library exposes a `Connection` object, which has methods like `execute` and `fetch` that run SQL queries against the database. Unfortunately, these methods take the query as a plain `str`, arguments as `object`, and the resultset is exposed as a `Record`, which is a `tuple`/`dict` hybrid whose `get` and indexer have a return type of `Any`. There is no mechanism to check compatibility of input or output arguments, even if their types are preliminarily known.
|
|
42
|
+
|
|
43
|
+
This Python library provides "compile-time" validation for SQL queries that linters and type checkers can enforce. By creating a generic `SQL` object and associating input and output type information with the query, the signatures of `execute` and `fetch` reveal the exact expected and returned types.
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
## Motivating example
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
# create a typed object, setting expected and returned types
|
|
50
|
+
select_where_sql = sql(
|
|
51
|
+
"""--sql
|
|
52
|
+
SELECT boolean_value, integer_value, string_value
|
|
53
|
+
FROM sample_data
|
|
54
|
+
WHERE boolean_value = $1 AND integer_value > $2
|
|
55
|
+
ORDER BY integer_value;
|
|
56
|
+
""",
|
|
57
|
+
args=tuple[bool, int],
|
|
58
|
+
resultset=tuple[bool, int, str | None],
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
conn = await asyncpg.connect(host="localhost", port=5432, user="postgres", password="postgres")
|
|
62
|
+
try:
|
|
63
|
+
# ✅ Valid signature
|
|
64
|
+
rows = await select_where_sql.fetch(conn, False, 2)
|
|
65
|
+
|
|
66
|
+
# ✅ Type of "rows" is "list[tuple[bool, int, str | None]]"
|
|
67
|
+
reveal_type(rows)
|
|
68
|
+
|
|
69
|
+
# ⚠️ Argument missing for parameter "arg2"
|
|
70
|
+
rows = await select_where_sql.fetch(conn, False)
|
|
71
|
+
|
|
72
|
+
# ⚠️ Argument of type "float" cannot be assigned to parameter "arg2" of type "int" in function "fetch"; "float" is not assignable to "int"
|
|
73
|
+
rows = await select_where_sql.fetch(conn, False, 3.14)
|
|
74
|
+
|
|
75
|
+
finally:
|
|
76
|
+
await conn.close()
|
|
77
|
+
```
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
## Syntax
|
|
81
|
+
|
|
82
|
+
### Creating a SQL object
|
|
83
|
+
|
|
84
|
+
Instantiate a SQL object with the `sql` function:
|
|
85
|
+
|
|
86
|
+
```python
|
|
87
|
+
def sql(
|
|
88
|
+
stmt: str | string.templatelib.Template,
|
|
89
|
+
*,
|
|
90
|
+
args: None | type[P1] | type[tuple[P1, P2]] | type[tuple[P1, P2, P3]] | ... = None,
|
|
91
|
+
resultset: None | type[R1] | type[tuple[R1, R2]] | type[tuple[R1, R2, R3]] | ... = None
|
|
92
|
+
) -> _SQL: ...
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
The parameter `stmt` represents a SQL expression, either as a string (including an *f-string*) or a template (i.e. a *t-string*).
|
|
96
|
+
|
|
97
|
+
If the expression is a string, it can have PostgreSQL parameter placeholders such as `$1`, `$2` or `$3`:
|
|
98
|
+
|
|
99
|
+
```python
|
|
100
|
+
f"INSERT INTO table_name (col_1, col_2, col_3) VALUES ($1, $2, $3);"
|
|
101
|
+
```
|
|
102
|
+
|
|
103
|
+
If the expression is a *t-string*, it can have replacement fields that evaluate to integers:
|
|
104
|
+
|
|
105
|
+
```python
|
|
106
|
+
t"INSERT INTO table_name (col_1, col_2, col_3) VALUES ({1}, {2}, {3});"
|
|
107
|
+
```
|
|
108
|
+
|
|
109
|
+
The parameters `args` and `resultset` take a series type `P` or `R`, which may be any of the following:
|
|
110
|
+
|
|
111
|
+
* (required) simple type
|
|
112
|
+
* optional simple type (`T | None`)
|
|
113
|
+
* `tuple` of several (required or optional) simple types.
|
|
114
|
+
|
|
115
|
+
Simple types include:
|
|
116
|
+
|
|
117
|
+
* `bool`
|
|
118
|
+
* `int`
|
|
119
|
+
* `float`
|
|
120
|
+
* `decimal.Decimal`
|
|
121
|
+
* `datetime.date`
|
|
122
|
+
* `datetime.time`
|
|
123
|
+
* `datetime.datetime`
|
|
124
|
+
* `str`
|
|
125
|
+
* `bytes`
|
|
126
|
+
* `uuid.UUID`
|
|
127
|
+
|
|
128
|
+
Types are grouped together with `tuple`:
|
|
129
|
+
|
|
130
|
+
```python
|
|
131
|
+
tuple[bool, int, str | None]
|
|
132
|
+
```
|
|
133
|
+
|
|
134
|
+
Passing a simple type directly (e.g. `type[T]`) is for convenience, and is equivalent to passing a one-element tuple of the same simple type (i.e. `type[tuple[T]]`).
|
|
135
|
+
|
|
136
|
+
The number of types in `args` must correspond to the number of query parameters. (This is validated on calling `sql(...)` for the *t-string* syntax.) The number of types in `resultset` must correspond to the number of columns returned by the query.
|
|
137
|
+
|
|
138
|
+
Both `args` and `resultset` types must be compatible with their corresponding PostgreSQL query parameter types and resultset column types, respectively. The following table shows the mapping between PostgreSQL and Python types.
|
|
139
|
+
|
|
140
|
+
| PostgreSQL type | Python type |
|
|
141
|
+
| ----------------- | ------------------ |
|
|
142
|
+
| `bool` | `bool` |
|
|
143
|
+
| `smallint` | `int` |
|
|
144
|
+
| `integer` | `int` |
|
|
145
|
+
| `bigint` | `int` |
|
|
146
|
+
| `real`/`float4` | `float` |
|
|
147
|
+
| `double`/`float8` | `float` |
|
|
148
|
+
| `decimal` | `Decimal` |
|
|
149
|
+
| `numeric` | `Decimal` |
|
|
150
|
+
| `date` | `date` |
|
|
151
|
+
| `time` | `time` (naive) |
|
|
152
|
+
| `timetz` | `time` (tz) |
|
|
153
|
+
| `timestamp` | `datetime` (naive) |
|
|
154
|
+
| `timestamptz` | `datetime` (tz) |
|
|
155
|
+
| `char(N)` | `str` |
|
|
156
|
+
| `varchar(N)` | `str` |
|
|
157
|
+
| `text` | `str` |
|
|
158
|
+
| `bytea` | `bytes` |
|
|
159
|
+
| `json` | `str` |
|
|
160
|
+
| `jsonb` | `str` |
|
|
161
|
+
| `uuid` | `UUID` |
|
|
162
|
+
|
|
163
|
+
### Using a SQL object
|
|
164
|
+
|
|
165
|
+
The function `sql` returns an object that derives from the base class `_SQL` and is specific to the number and types of parameters passed in `args` and `resultset`.
|
|
166
|
+
|
|
167
|
+
The following functions are available on SQL objects:
|
|
168
|
+
|
|
169
|
+
```python
|
|
170
|
+
async def execute(self, connection: Connection, *args: *P) -> None: ...
|
|
171
|
+
async def executemany(self, connection: Connection, args: Iterable[tuple[*P]]) -> None: ...
|
|
172
|
+
async def fetch(self, connection: Connection, *args: *P) -> list[tuple[*R]]: ...
|
|
173
|
+
async def fetchmany(self, connection: Connection, args: Iterable[tuple[*P]]) -> list[tuple[*R]]: ...
|
|
174
|
+
async def fetchrow(self, connection: Connection, *args: *P) -> tuple[*R] | None: ...
|
|
175
|
+
async def fetchval(self, connection: Connection, *args: *P) -> R1: ...
|
|
176
|
+
```
|
|
177
|
+
|
|
178
|
+
`Connection` may be an `asyncpg.Connection` or an `asyncpg.pool.PoolConnectionProxy` acquired from a connection pool.
|
|
179
|
+
|
|
180
|
+
`*P` and `*R` denote several types (a type pack) corresponding to those listed in `args` and `resultset`, respectively.
|
|
181
|
+
|
|
182
|
+
Only those functions are prompted on code completion that make sense in the context of the given number of input and output arguments. Specifically, `fetchval` is available only for a single type passed to `resultset`, and `executemany` and `fetchmany` are available only if the query takes (one or more) parameters.
|
|
183
|
+
|
|
184
|
+
|
|
185
|
+
## Run-time behavior
|
|
186
|
+
|
|
187
|
+
When a call such as `sql.executemany(conn, records)` or `sql.fetch(conn, param1, param2)` is made on a `SQL` object at run time, the library invokes `connection.prepare(sql)` to create a `PreparedStatement` and compares the actual statement signature against the expected Python types. Unfortunately, PostgreSQL doesn't propagate nullability via prepared statements: resultset types that are declared as required (e.g. `T` as opposed to `T | None`) are validated at run time.
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# Type-safe queries for asyncpg
|
|
2
|
+
|
|
3
|
+
[asyncpg](https://magicstack.github.io/asyncpg/current/) is a high-performance database client to connect to a PostgreSQL server, and execute SQL statements using the async/await paradigm in Python. The library exposes a `Connection` object, which has methods like `execute` and `fetch` that run SQL queries against the database. Unfortunately, these methods take the query as a plain `str`, arguments as `object`, and the resultset is exposed as a `Record`, which is a `tuple`/`dict` hybrid whose `get` and indexer have a return type of `Any`. There is no mechanism to check compatibility of input or output arguments, even if their types are preliminarily known.
|
|
4
|
+
|
|
5
|
+
This Python library provides "compile-time" validation for SQL queries that linters and type checkers can enforce. By creating a generic `SQL` object and associating input and output type information with the query, the signatures of `execute` and `fetch` reveal the exact expected and returned types.
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
## Motivating example
|
|
9
|
+
|
|
10
|
+
```python
|
|
11
|
+
# create a typed object, setting expected and returned types
|
|
12
|
+
select_where_sql = sql(
|
|
13
|
+
"""--sql
|
|
14
|
+
SELECT boolean_value, integer_value, string_value
|
|
15
|
+
FROM sample_data
|
|
16
|
+
WHERE boolean_value = $1 AND integer_value > $2
|
|
17
|
+
ORDER BY integer_value;
|
|
18
|
+
""",
|
|
19
|
+
args=tuple[bool, int],
|
|
20
|
+
resultset=tuple[bool, int, str | None],
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
conn = await asyncpg.connect(host="localhost", port=5432, user="postgres", password="postgres")
|
|
24
|
+
try:
|
|
25
|
+
# ✅ Valid signature
|
|
26
|
+
rows = await select_where_sql.fetch(conn, False, 2)
|
|
27
|
+
|
|
28
|
+
# ✅ Type of "rows" is "list[tuple[bool, int, str | None]]"
|
|
29
|
+
reveal_type(rows)
|
|
30
|
+
|
|
31
|
+
# ⚠️ Argument missing for parameter "arg2"
|
|
32
|
+
rows = await select_where_sql.fetch(conn, False)
|
|
33
|
+
|
|
34
|
+
# ⚠️ Argument of type "float" cannot be assigned to parameter "arg2" of type "int" in function "fetch"; "float" is not assignable to "int"
|
|
35
|
+
rows = await select_where_sql.fetch(conn, False, 3.14)
|
|
36
|
+
|
|
37
|
+
finally:
|
|
38
|
+
await conn.close()
|
|
39
|
+
```
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
## Syntax
|
|
43
|
+
|
|
44
|
+
### Creating a SQL object
|
|
45
|
+
|
|
46
|
+
Instantiate a SQL object with the `sql` function:
|
|
47
|
+
|
|
48
|
+
```python
|
|
49
|
+
def sql(
|
|
50
|
+
stmt: str | string.templatelib.Template,
|
|
51
|
+
*,
|
|
52
|
+
args: None | type[P1] | type[tuple[P1, P2]] | type[tuple[P1, P2, P3]] | ... = None,
|
|
53
|
+
resultset: None | type[R1] | type[tuple[R1, R2]] | type[tuple[R1, R2, R3]] | ... = None
|
|
54
|
+
) -> _SQL: ...
|
|
55
|
+
```
|
|
56
|
+
|
|
57
|
+
The parameter `stmt` represents a SQL expression, either as a string (including an *f-string*) or a template (i.e. a *t-string*).
|
|
58
|
+
|
|
59
|
+
If the expression is a string, it can have PostgreSQL parameter placeholders such as `$1`, `$2` or `$3`:
|
|
60
|
+
|
|
61
|
+
```python
|
|
62
|
+
f"INSERT INTO table_name (col_1, col_2, col_3) VALUES ($1, $2, $3);"
|
|
63
|
+
```
|
|
64
|
+
|
|
65
|
+
If the expression is a *t-string*, it can have replacement fields that evaluate to integers:
|
|
66
|
+
|
|
67
|
+
```python
|
|
68
|
+
t"INSERT INTO table_name (col_1, col_2, col_3) VALUES ({1}, {2}, {3});"
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
The parameters `args` and `resultset` take a series type `P` or `R`, which may be any of the following:
|
|
72
|
+
|
|
73
|
+
* (required) simple type
|
|
74
|
+
* optional simple type (`T | None`)
|
|
75
|
+
* `tuple` of several (required or optional) simple types.
|
|
76
|
+
|
|
77
|
+
Simple types include:
|
|
78
|
+
|
|
79
|
+
* `bool`
|
|
80
|
+
* `int`
|
|
81
|
+
* `float`
|
|
82
|
+
* `decimal.Decimal`
|
|
83
|
+
* `datetime.date`
|
|
84
|
+
* `datetime.time`
|
|
85
|
+
* `datetime.datetime`
|
|
86
|
+
* `str`
|
|
87
|
+
* `bytes`
|
|
88
|
+
* `uuid.UUID`
|
|
89
|
+
|
|
90
|
+
Types are grouped together with `tuple`:
|
|
91
|
+
|
|
92
|
+
```python
|
|
93
|
+
tuple[bool, int, str | None]
|
|
94
|
+
```
|
|
95
|
+
|
|
96
|
+
Passing a simple type directly (e.g. `type[T]`) is for convenience, and is equivalent to passing a one-element tuple of the same simple type (i.e. `type[tuple[T]]`).
|
|
97
|
+
|
|
98
|
+
The number of types in `args` must correspond to the number of query parameters. (This is validated on calling `sql(...)` for the *t-string* syntax.) The number of types in `resultset` must correspond to the number of columns returned by the query.
|
|
99
|
+
|
|
100
|
+
Both `args` and `resultset` types must be compatible with their corresponding PostgreSQL query parameter types and resultset column types, respectively. The following table shows the mapping between PostgreSQL and Python types.
|
|
101
|
+
|
|
102
|
+
| PostgreSQL type | Python type |
|
|
103
|
+
| ----------------- | ------------------ |
|
|
104
|
+
| `bool` | `bool` |
|
|
105
|
+
| `smallint` | `int` |
|
|
106
|
+
| `integer` | `int` |
|
|
107
|
+
| `bigint` | `int` |
|
|
108
|
+
| `real`/`float4` | `float` |
|
|
109
|
+
| `double`/`float8` | `float` |
|
|
110
|
+
| `decimal` | `Decimal` |
|
|
111
|
+
| `numeric` | `Decimal` |
|
|
112
|
+
| `date` | `date` |
|
|
113
|
+
| `time` | `time` (naive) |
|
|
114
|
+
| `timetz` | `time` (tz) |
|
|
115
|
+
| `timestamp` | `datetime` (naive) |
|
|
116
|
+
| `timestamptz` | `datetime` (tz) |
|
|
117
|
+
| `char(N)` | `str` |
|
|
118
|
+
| `varchar(N)` | `str` |
|
|
119
|
+
| `text` | `str` |
|
|
120
|
+
| `bytea` | `bytes` |
|
|
121
|
+
| `json` | `str` |
|
|
122
|
+
| `jsonb` | `str` |
|
|
123
|
+
| `uuid` | `UUID` |
|
|
124
|
+
|
|
125
|
+
### Using a SQL object
|
|
126
|
+
|
|
127
|
+
The function `sql` returns an object that derives from the base class `_SQL` and is specific to the number and types of parameters passed in `args` and `resultset`.
|
|
128
|
+
|
|
129
|
+
The following functions are available on SQL objects:
|
|
130
|
+
|
|
131
|
+
```python
|
|
132
|
+
async def execute(self, connection: Connection, *args: *P) -> None: ...
|
|
133
|
+
async def executemany(self, connection: Connection, args: Iterable[tuple[*P]]) -> None: ...
|
|
134
|
+
async def fetch(self, connection: Connection, *args: *P) -> list[tuple[*R]]: ...
|
|
135
|
+
async def fetchmany(self, connection: Connection, args: Iterable[tuple[*P]]) -> list[tuple[*R]]: ...
|
|
136
|
+
async def fetchrow(self, connection: Connection, *args: *P) -> tuple[*R] | None: ...
|
|
137
|
+
async def fetchval(self, connection: Connection, *args: *P) -> R1: ...
|
|
138
|
+
```
|
|
139
|
+
|
|
140
|
+
`Connection` may be an `asyncpg.Connection` or an `asyncpg.pool.PoolConnectionProxy` acquired from a connection pool.
|
|
141
|
+
|
|
142
|
+
`*P` and `*R` denote several types (a type pack) corresponding to those listed in `args` and `resultset`, respectively.
|
|
143
|
+
|
|
144
|
+
Only those functions are prompted on code completion that make sense in the context of the given number of input and output arguments. Specifically, `fetchval` is available only for a single type passed to `resultset`, and `executemany` and `fetchmany` are available only if the query takes (one or more) parameters.
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
## Run-time behavior
|
|
148
|
+
|
|
149
|
+
When a call such as `sql.executemany(conn, records)` or `sql.fetch(conn, param1, param2)` is made on a `SQL` object at run time, the library invokes `connection.prepare(sql)` to create a `PreparedStatement` and compares the actual statement signature against the expected Python types. Unfortunately, PostgreSQL doesn't propagate nullability via prepared statements: resultset types that are declared as required (e.g. `T` as opposed to `T | None`) are validated at run time.
|