arize 8.0.0a23__tar.gz → 8.0.0b1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (177) hide show
  1. {arize-8.0.0a23 → arize-8.0.0b1}/PKG-INFO +56 -59
  2. {arize-8.0.0a23 → arize-8.0.0b1}/README.md +29 -27
  3. {arize-8.0.0a23 → arize-8.0.0b1}/pyproject.toml +21 -42
  4. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/__init__.py +11 -10
  5. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_exporter/client.py +1 -1
  6. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/__init__.py +0 -2
  7. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/__init__.py +0 -1
  8. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/datasets_create_request.py +2 -10
  9. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/datasets_examples_insert_request.py +2 -10
  10. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_create_request.py +2 -6
  11. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_examples_insert_request.py +2 -6
  12. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_examples_list200_response.py +2 -6
  13. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_examples_update_request.py +2 -6
  14. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiments_create_request.py +2 -6
  15. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiments_runs_list200_response.py +2 -6
  16. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client_README.md +0 -1
  17. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/client.py +47 -163
  18. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/config.py +59 -100
  19. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/datasets/client.py +11 -6
  20. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/nlp_generators.py +12 -6
  21. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/tabular_generators.py +14 -11
  22. arize-8.0.0b1/src/arize/experiments/__init__.py +13 -0
  23. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/client.py +13 -9
  24. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/functions.py +6 -6
  25. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/types.py +3 -3
  26. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/batch_validation/errors.py +2 -2
  27. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/batch_validation/validator.py +5 -3
  28. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/casting.py +42 -78
  29. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/client.py +19 -17
  30. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/proto.py +2 -2
  31. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/stream_validation.py +1 -1
  32. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/surrogate_explainer/mimic.py +6 -2
  33. {arize-8.0.0a23/src/arize → arize-8.0.0b1/src/arize/ml}/types.py +99 -234
  34. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/pre_releases.py +2 -1
  35. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/projects/client.py +11 -6
  36. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/client.py +91 -86
  37. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/conversion.py +11 -4
  38. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/common/value_validation.py +1 -1
  39. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/spans/dataframe_form_validation.py +1 -1
  40. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/spans/value_validation.py +2 -1
  41. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/dataframe.py +1 -1
  42. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/online_tasks/dataframe_preprocessor.py +5 -6
  43. arize-8.0.0b1/src/arize/utils/types.py +105 -0
  44. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/version.py +1 -1
  45. arize-8.0.0a23/src/arize/_generated/api_client/models/primitive_value.py +0 -172
  46. arize-8.0.0a23/src/arize/_generated/api_client/test/test_primitive_value.py +0 -50
  47. arize-8.0.0a23/src/arize/experiments/__init__.py +0 -1
  48. {arize-8.0.0a23 → arize-8.0.0b1}/.gitignore +0 -0
  49. {arize-8.0.0a23 → arize-8.0.0b1}/LICENSE +0 -0
  50. {arize-8.0.0a23 → arize-8.0.0b1}/NOTICE +0 -0
  51. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_exporter/__init__.py +0 -0
  52. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_exporter/parsers/__init__.py +0 -0
  53. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_exporter/parsers/tracing_data_parser.py +0 -0
  54. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_exporter/validation.py +0 -0
  55. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_flight/__init__.py +0 -0
  56. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_flight/client.py +0 -0
  57. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_flight/types.py +0 -0
  58. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/__init__.py +0 -0
  59. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api/__init__.py +0 -0
  60. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api/datasets_api.py +0 -0
  61. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api/experiments_api.py +0 -0
  62. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api/projects_api.py +0 -0
  63. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api_client.py +0 -0
  64. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/api_response.py +0 -0
  65. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/configuration.py +0 -0
  66. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/exceptions.py +0 -0
  67. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/dataset.py +0 -0
  68. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/dataset_example.py +0 -0
  69. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/dataset_example_update.py +0 -0
  70. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/dataset_version.py +0 -0
  71. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/datasets_examples_list200_response.py +0 -0
  72. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/datasets_examples_update_request.py +0 -0
  73. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/datasets_list200_response.py +0 -0
  74. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiment.py +0 -0
  75. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiment_run.py +0 -0
  76. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiment_run_create.py +0 -0
  77. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiments_create_request.py +0 -0
  78. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiments_list200_response.py +0 -0
  79. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/experiments_runs_list200_response.py +0 -0
  80. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/pagination_metadata.py +0 -0
  81. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/problem.py +0 -0
  82. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/project.py +0 -0
  83. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/projects_create_request.py +0 -0
  84. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/models/projects_list200_response.py +0 -0
  85. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/rest.py +0 -0
  86. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/__init__.py +0 -0
  87. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_dataset.py +0 -0
  88. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_dataset_example.py +0 -0
  89. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_dataset_example_update.py +0 -0
  90. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_dataset_version.py +0 -0
  91. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_api.py +0 -0
  92. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_datasets_list200_response.py +0 -0
  93. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiment.py +0 -0
  94. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiment_run.py +0 -0
  95. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiment_run_create.py +0 -0
  96. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiments_api.py +0 -0
  97. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_experiments_list200_response.py +0 -0
  98. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_pagination_metadata.py +0 -0
  99. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_problem.py +0 -0
  100. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_project.py +0 -0
  101. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_projects_api.py +0 -0
  102. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_projects_create_request.py +0 -0
  103. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/api_client/test/test_projects_list200_response.py +0 -0
  104. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/protocol/__init__.py +0 -0
  105. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/protocol/flight/__init__.py +0 -0
  106. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/protocol/flight/flight_pb2.py +0 -0
  107. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/protocol/rec/__init__.py +0 -0
  108. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_generated/protocol/rec/public_pb2.py +0 -0
  109. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/_lazy.py +0 -0
  110. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/__init__.py +0 -0
  111. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/config.py +0 -0
  112. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/ml.py +0 -0
  113. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/model_mapping.json +0 -0
  114. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/openinference.py +0 -0
  115. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/pyarrow.py +0 -0
  116. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/constants/spans.py +0 -0
  117. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/datasets/__init__.py +0 -0
  118. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/datasets/errors.py +0 -0
  119. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/datasets/validation.py +0 -0
  120. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/__init__.py +0 -0
  121. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/auto_generator.py +0 -0
  122. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/base_generators.py +0 -0
  123. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/constants.py +0 -0
  124. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/cv_generators.py +0 -0
  125. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/errors.py +0 -0
  126. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/embeddings/usecases.py +0 -0
  127. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/__init__.py +0 -0
  128. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/auth.py +0 -0
  129. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/base.py +0 -0
  130. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/models.py +0 -0
  131. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/parameters.py +0 -0
  132. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/spaces.py +0 -0
  133. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/types.py +0 -0
  134. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/exceptions/values.py +0 -0
  135. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/__init__.py +0 -0
  136. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/base.py +0 -0
  137. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/exceptions.py +0 -0
  138. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/executors.py +0 -0
  139. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/rate_limiters.py +0 -0
  140. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/types.py +0 -0
  141. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/evaluators/utils.py +0 -0
  142. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/experiments/tracing.py +0 -0
  143. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/logging.py +0 -0
  144. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/__init__.py +0 -0
  145. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/batch_validation/__init__.py +0 -0
  146. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/bounded_executor.py +0 -0
  147. {arize-8.0.0a23/src/arize/models → arize-8.0.0b1/src/arize/ml}/surrogate_explainer/__init__.py +0 -0
  148. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/projects/__init__.py +0 -0
  149. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/regions.py +0 -0
  150. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/__init__.py +0 -0
  151. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/columns.py +0 -0
  152. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/__init__.py +0 -0
  153. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/annotations/__init__.py +0 -0
  154. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/annotations/annotations_validation.py +0 -0
  155. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/annotations/dataframe_form_validation.py +0 -0
  156. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/annotations/value_validation.py +0 -0
  157. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/common/__init__.py +0 -0
  158. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/common/argument_validation.py +0 -0
  159. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/common/dataframe_form_validation.py +0 -0
  160. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/common/errors.py +0 -0
  161. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/evals/__init__.py +0 -0
  162. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/evals/dataframe_form_validation.py +0 -0
  163. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/evals/evals_validation.py +0 -0
  164. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/evals/value_validation.py +0 -0
  165. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/metadata/__init__.py +0 -0
  166. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/metadata/argument_validation.py +0 -0
  167. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/metadata/dataframe_form_validation.py +0 -0
  168. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/metadata/value_validation.py +0 -0
  169. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/spans/__init__.py +0 -0
  170. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/spans/validation/spans/spans_validation.py +0 -0
  171. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/__init__.py +0 -0
  172. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/arrow.py +0 -0
  173. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/cache.py +0 -0
  174. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/online_tasks/__init__.py +0 -0
  175. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/openinference_conversion.py +0 -0
  176. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/proto.py +0 -0
  177. {arize-8.0.0a23 → arize-8.0.0b1}/src/arize/utils/size.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: arize
3
- Version: 8.0.0a23
3
+ Version: 8.0.0b1
4
4
  Summary: A helper library to interact with Arize AI APIs
5
5
  Project-URL: Homepage, https://arize.com
6
6
  Project-URL: Documentation, https://docs.arize.com/arize
@@ -26,41 +26,36 @@ Classifier: Topic :: Software Development :: Libraries :: Python Modules
26
26
  Classifier: Topic :: System :: Logging
27
27
  Classifier: Topic :: System :: Monitoring
28
28
  Requires-Python: >=3.10
29
- Requires-Dist: lazy-imports
30
29
  Requires-Dist: numpy>=2.0.0
31
- Provides-Extra: auto-embeddings
32
- Requires-Dist: datasets!=2.14.*,<3,>=2.8; extra == 'auto-embeddings'
33
- Requires-Dist: pandas<3,>=1.0.0; extra == 'auto-embeddings'
34
- Requires-Dist: pillow<11,>=8.4.0; extra == 'auto-embeddings'
35
- Requires-Dist: tokenizers<1,>=0.13; extra == 'auto-embeddings'
36
- Requires-Dist: torch<3,>=1.13; extra == 'auto-embeddings'
37
- Requires-Dist: transformers<5,>=4.25; extra == 'auto-embeddings'
38
- Provides-Extra: datasets-experiments
39
- Requires-Dist: numpy>=2.0.0; extra == 'datasets-experiments'
40
- Requires-Dist: pydantic; extra == 'datasets-experiments'
41
- Requires-Dist: wrapt<2.0.0,>=1.0.0; extra == 'datasets-experiments'
30
+ Requires-Dist: openinference-semantic-conventions<1,>=0.1.25
31
+ Requires-Dist: opentelemetry-exporter-otlp-proto-common>=1.38.0
32
+ Requires-Dist: opentelemetry-exporter-otlp-proto-grpc>=1.38.0
33
+ Requires-Dist: opentelemetry-sdk>=1.38.0
34
+ Requires-Dist: opentelemetry-semantic-conventions<1,>=0.43b0
35
+ Requires-Dist: pandas<3,>=2.0.0
36
+ Requires-Dist: protobuf<6,>=4.21.0
37
+ Requires-Dist: pyarrow>=0.15.0
38
+ Requires-Dist: pydantic<3,>=2
39
+ Requires-Dist: python-dateutil<3,>=2.8.2
40
+ Requires-Dist: requests-futures<2,>=1.0.0
41
+ Requires-Dist: requests<3,>=2.0.0
42
+ Requires-Dist: tqdm<5,>4
43
+ Requires-Dist: typing-extensions<5,>=4.7.1
44
+ Requires-Dist: urllib3<3,>=2.1.0
45
+ Requires-Dist: wrapt<2.0.0,>=1.0.0
42
46
  Provides-Extra: dev
43
47
  Requires-Dist: pytest==8.4.2; extra == 'dev'
44
48
  Requires-Dist: ruff==0.13.2; extra == 'dev'
45
- Provides-Extra: mimic-explainer
46
- Requires-Dist: interpret-community[mimic]<1,>=0.22.0; extra == 'mimic-explainer'
47
- Provides-Extra: ml-batch
48
- Requires-Dist: pandas<3,>=1.0.0; extra == 'ml-batch'
49
- Requires-Dist: protobuf<6,>=4.21.0; extra == 'ml-batch'
50
- Requires-Dist: pyarrow>=0.15.0; extra == 'ml-batch'
51
- Requires-Dist: requests<3,>=2.0.0; extra == 'ml-batch'
52
- Requires-Dist: tqdm; extra == 'ml-batch'
53
- Provides-Extra: ml-stream
54
- Requires-Dist: protobuf<6,>=4.21.0; extra == 'ml-stream'
55
- Requires-Dist: requests-futures<2,>=1.0.0; extra == 'ml-stream'
56
- Provides-Extra: spans
57
- Requires-Dist: openinference-semantic-conventions<1,>=0.1.21; extra == 'spans'
58
- Requires-Dist: opentelemetry-semantic-conventions<1,>=0.43b0; extra == 'spans'
59
- Requires-Dist: pandas<3,>=1.0.0; extra == 'spans'
60
- Requires-Dist: protobuf<6,>=4.21.0; extra == 'spans'
61
- Requires-Dist: pyarrow>=0.15.0; extra == 'spans'
62
- Requires-Dist: requests<3,>=2.0.0; extra == 'spans'
63
- Requires-Dist: tqdm; extra == 'spans'
49
+ Provides-Extra: embeddings
50
+ Requires-Dist: datasets!=2.14.*,<3,>=2.8; extra == 'embeddings'
51
+ Requires-Dist: pillow<11,>=8.4.0; extra == 'embeddings'
52
+ Requires-Dist: tokenizers<1,>=0.13; extra == 'embeddings'
53
+ Requires-Dist: torch<3,>=1.13; extra == 'embeddings'
54
+ Requires-Dist: transformers<5,>=4.25; extra == 'embeddings'
55
+ Provides-Extra: mimic
56
+ Requires-Dist: interpret-community[mimic]<1,>=0.22.0; extra == 'mimic'
57
+ Provides-Extra: otel
58
+ Requires-Dist: arize-otel<1,>=0.11.0; extra == 'otel'
64
59
  Description-Content-Type: text/markdown
65
60
 
66
61
  <p align="center">
@@ -124,16 +119,18 @@ Description-Content-Type: text/markdown
124
119
 
125
120
  A helper package to interact with Arize AI APIs.
126
121
 
127
- Arize is an AI engineering platform. It helps engineers develop, evaluate, and observe AI applications and agents.
122
+ Arize is an AI engineering platform. It helps engineers develop, evaluate, and observe AI applications and agents.
123
+
124
+ Arize has both Enterprise and OSS products to support this goal:
128
125
 
129
- Arize has both Enterprise and OSS products to support this goal:
130
126
  - [Arize AX](https://arize.com/) — an enterprise AI engineering platform from development to production, with an embedded AI Copilot
131
127
  - [Phoenix](https://github.com/Arize-ai/phoenix) — a lightweight, open-source project for tracing, prompt engineering, and evaluation
132
128
  - [OpenInference](https://github.com/Arize-ai/openinference) — an open-source instrumentation package to trace LLM applications across models and frameworks
133
129
 
134
- We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 million OSS downloads every month.
130
+ We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 million OSS downloads every month.
135
131
 
136
132
  # Key Features
133
+
137
134
  - [**_Tracing_**](https://docs.arize.com/arize/observe/tracing) - Trace your LLM application's runtime using OpenTelemetry-based instrumentation.
138
135
  - [**_Evaluation_**](https://docs.arize.com/arize/evaluate/online-evals) - Leverage LLMs to benchmark your application's performance using response and retrieval evals.
139
136
  - [**_Datasets_**](https://docs.arize.com/arize/develop/datasets) - Create versioned datasets of examples for experimentation, evaluation, and fine-tuning.
@@ -143,19 +140,21 @@ We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 m
143
140
 
144
141
  # Installation
145
142
 
146
- Install Arize (version 8 is currently under alpha release) via `pip` or `conda`:
143
+ Install Arize (version 8 is currently under beta release) via `pip`:
147
144
 
148
145
  ```bash
149
- pip install arize==8.0.0ax
146
+ pip install --pre arize
150
147
  ```
151
- where `x` denotes the specific alpha release. Install the `arize-otel` package for auto-instrumentation of your LLM library:
148
+
149
+ where `--pre` denotes the installation of pre-release versions. Install the
150
+ `arize-otel` package for auto-instrumentation of your LLM library:
152
151
 
153
152
  ```bash
154
153
  pip install arize-otel
155
154
  ```
156
155
 
157
156
  # Usage
158
-
157
+
159
158
  ## Instrumentation
160
159
 
161
160
  See [arize-otel in PyPI](https://pypi.org/project/arize-otel/):
@@ -177,9 +176,8 @@ OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)
177
176
 
178
177
  ## Operations on Spans
179
178
 
180
- Use `arize.spans` to interact with spans: log spans into Arize, update the span's evaluations, annotations and metadata in bulk.
181
-
182
- > **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
179
+ Use `arize.spans` to interact with spans: log spans into Arize, update the span's
180
+ evaluations, annotations and metadata in bulk.
183
181
 
184
182
  ### Logging spans
185
183
 
@@ -253,15 +251,14 @@ df = client.spans.export_to_df(
253
251
 
254
252
  ## Operations on ML Models
255
253
 
256
- Use `arize.models` to interact with ML models: log ML data (traininv, validation, production) into Arize, either streaming or in batches.
257
-
258
- > **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
254
+ Use `arize.ml` to interact with ML models: log ML data (training, validation, production)
255
+ into Arize, either streaming or in batches.
259
256
 
260
257
  ### Stream log ML Data for a Classification use-case
261
258
 
262
259
  ```python
263
260
  from arize import ArizeClient
264
- from arize.types import ModelTypes, Environments
261
+ from arize.ml.types import ModelTypes, Environments
265
262
 
266
263
  client = ArizeClient(api_key=API_KEY)
267
264
  SPACE_ID = "<your-space-id>"
@@ -270,7 +267,7 @@ MODEL_NAME = "<your-model-name>"
270
267
  features=...
271
268
  embedding_features=...
272
269
 
273
- response = client.models.log_stream(
270
+ response = client.ml.log_stream(
274
271
  space_id=SPACE_ID,
275
272
  model_name=MODEL_NAME,
276
273
  model_type=ModelTypes.SCORE_CATEGORICAL,
@@ -286,14 +283,14 @@ response = client.models.log_stream(
286
283
 
287
284
  ```python
288
285
  from arize import ArizeClient
289
- from arize.types import ModelTypes, Environments
286
+ from arize.ml.types import ModelTypes, Environments
290
287
 
291
288
  client = ArizeClient(api_key=API_KEY)
292
289
  SPACE_ID = "<your-space-id>"
293
290
  MODEL_NAME = "<your-model-name>"
294
291
  MODEL_VERSION = "1.0"
295
292
 
296
- from arize.types import Schema, EmbeddingColumnNames, ObjectDetectionColumnNames, ModelTypes, Environments
293
+ from arize.ml.types import Schema, EmbeddingColumnNames, ObjectDetectionColumnNames, ModelTypes, Environments
297
294
 
298
295
  tags = ["drift_type"]
299
296
  embedding_feature_column_names = {
@@ -322,7 +319,7 @@ schema = Schema(
322
319
  )
323
320
 
324
321
  # Logging Production DataFrame
325
- response = client.models.log_batch(
322
+ response = client.ml.log_batch(
326
323
  space_id=SPACE_ID,
327
324
  model_name=MODEL_NAME,
328
325
  model_type=ModelTypes.OBJECT_DETECTION,
@@ -350,7 +347,7 @@ SPACE_ID = "<your-space-id>"
350
347
  MODEL_NAME = "<your-model-name>"
351
348
  MODEL_VERSION = "1.0"
352
349
 
353
- df = client.models.export_to_df(
350
+ df = client.ml.export_to_df(
354
351
  space_id=SPACE_ID,
355
352
  model_name=MODEL_NAME,
356
353
  environment=Environments.TRAINING,
@@ -408,7 +405,7 @@ The response is an object of type `DatasetsList200Response`, and you can access
408
405
 
409
406
  ```python
410
407
  # Get the list of datasets from the response
411
- dataset_list = resp.datasets
408
+ dataset_list = resp.datasets
412
409
  # Get the response as a dictionary
413
410
  resp_dict = resp.to_dict()
414
411
  # Get the response in JSON format
@@ -524,7 +521,7 @@ The response is an object of type `ExperimentsList200Response`, and you can acce
524
521
 
525
522
  ```python
526
523
  # Get the list of datasets from the response
527
- experiment_list = resp.experiments
524
+ experiment_list = resp.experiments
528
525
  # Get the response as a dictionary
529
526
  resp_dict = resp.to_dict()
530
527
  # Get the response in JSON format
@@ -548,7 +545,7 @@ experiment, experiment_df = client.run_experiment(
548
545
  concurrency=..., # The number of concurrent tasks to run. Defaults to 3.
549
546
  set_global_tracer_provider=..., # If True, sets the global tracer provider for the experiment. Defaults to False
550
547
  exit_on_error=..., # If True, the experiment will stop running on first occurrence of an error. Defaults to False
551
- )
548
+ )
552
549
  ```
553
550
 
554
551
  The `Experiment` object also counts with convenience method similar to `List***` objects:
@@ -643,7 +640,7 @@ resp_df = resp.to_df()
643
640
 
644
641
  ### In Code
645
642
 
646
- You can use `configure_logging` to set up the logging behavior of the Arize package to your needs.
643
+ You can use `configure_logging` to set up the logging behavior of the Arize package to your needs.
647
644
 
648
645
  ```python
649
646
  from arize.logging import configure_logging
@@ -651,7 +648,7 @@ from arize.logging import configure_logging
651
648
  configure_logging(
652
649
  level=..., # Defaults to logging.INFO
653
650
  structured=..., # if True, emit JSON logs. Defaults to False
654
- )
651
+ )
655
652
  ```
656
653
 
657
654
  ### Via Environment Variables
@@ -662,11 +659,11 @@ Configure the same options as the section above, via:
662
659
  import os
663
660
 
664
661
  # Whether or not you want to disable logging altogether
665
- os.environ["ARIZE_LOG_ENABLE"] = "true"
662
+ os.environ["ARIZE_LOG_ENABLE"] = "true"
666
663
  # Set up the logging level
667
- os.environ["ARIZE_LOG_LEVEL"] = "debug"
664
+ os.environ["ARIZE_LOG_LEVEL"] = "debug"
668
665
  # Whether or not you want structured JSON logs
669
- os.environ["ARIZE_LOG_STRUCTURED"] = "false"
666
+ os.environ["ARIZE_LOG_STRUCTURED"] = "false"
670
667
  ```
671
668
 
672
669
  The default behavior of Arize's logs is: enabled, `INFO` level, and not structured.
@@ -59,16 +59,18 @@
59
59
 
60
60
  A helper package to interact with Arize AI APIs.
61
61
 
62
- Arize is an AI engineering platform. It helps engineers develop, evaluate, and observe AI applications and agents.
62
+ Arize is an AI engineering platform. It helps engineers develop, evaluate, and observe AI applications and agents.
63
+
64
+ Arize has both Enterprise and OSS products to support this goal:
63
65
 
64
- Arize has both Enterprise and OSS products to support this goal:
65
66
  - [Arize AX](https://arize.com/) — an enterprise AI engineering platform from development to production, with an embedded AI Copilot
66
67
  - [Phoenix](https://github.com/Arize-ai/phoenix) — a lightweight, open-source project for tracing, prompt engineering, and evaluation
67
68
  - [OpenInference](https://github.com/Arize-ai/openinference) — an open-source instrumentation package to trace LLM applications across models and frameworks
68
69
 
69
- We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 million OSS downloads every month.
70
+ We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 million OSS downloads every month.
70
71
 
71
72
  # Key Features
73
+
72
74
  - [**_Tracing_**](https://docs.arize.com/arize/observe/tracing) - Trace your LLM application's runtime using OpenTelemetry-based instrumentation.
73
75
  - [**_Evaluation_**](https://docs.arize.com/arize/evaluate/online-evals) - Leverage LLMs to benchmark your application's performance using response and retrieval evals.
74
76
  - [**_Datasets_**](https://docs.arize.com/arize/develop/datasets) - Create versioned datasets of examples for experimentation, evaluation, and fine-tuning.
@@ -78,19 +80,21 @@ We log over 1 trillion inferences and spans, 10 million evaluation runs, and 2 m
78
80
 
79
81
  # Installation
80
82
 
81
- Install Arize (version 8 is currently under alpha release) via `pip` or `conda`:
83
+ Install Arize (version 8 is currently under beta release) via `pip`:
82
84
 
83
85
  ```bash
84
- pip install arize==8.0.0ax
86
+ pip install --pre arize
85
87
  ```
86
- where `x` denotes the specific alpha release. Install the `arize-otel` package for auto-instrumentation of your LLM library:
88
+
89
+ where `--pre` denotes the installation of pre-release versions. Install the
90
+ `arize-otel` package for auto-instrumentation of your LLM library:
87
91
 
88
92
  ```bash
89
93
  pip install arize-otel
90
94
  ```
91
95
 
92
96
  # Usage
93
-
97
+
94
98
  ## Instrumentation
95
99
 
96
100
  See [arize-otel in PyPI](https://pypi.org/project/arize-otel/):
@@ -112,9 +116,8 @@ OpenAIInstrumentor().instrument(tracer_provider=tracer_provider)
112
116
 
113
117
  ## Operations on Spans
114
118
 
115
- Use `arize.spans` to interact with spans: log spans into Arize, update the span's evaluations, annotations and metadata in bulk.
116
-
117
- > **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
119
+ Use `arize.spans` to interact with spans: log spans into Arize, update the span's
120
+ evaluations, annotations and metadata in bulk.
118
121
 
119
122
  ### Logging spans
120
123
 
@@ -188,15 +191,14 @@ df = client.spans.export_to_df(
188
191
 
189
192
  ## Operations on ML Models
190
193
 
191
- Use `arize.models` to interact with ML models: log ML data (traininv, validation, production) into Arize, either streaming or in batches.
192
-
193
- > **WARNING**: This is currently under an alpha release. Install with `pip install arize==8.0.0ax` where the `x` denotes the specific alpha version. Check the [pre-releases](https://pypi.org/project/arize/#history) page in PyPI.
194
+ Use `arize.ml` to interact with ML models: log ML data (training, validation, production)
195
+ into Arize, either streaming or in batches.
194
196
 
195
197
  ### Stream log ML Data for a Classification use-case
196
198
 
197
199
  ```python
198
200
  from arize import ArizeClient
199
- from arize.types import ModelTypes, Environments
201
+ from arize.ml.types import ModelTypes, Environments
200
202
 
201
203
  client = ArizeClient(api_key=API_KEY)
202
204
  SPACE_ID = "<your-space-id>"
@@ -205,7 +207,7 @@ MODEL_NAME = "<your-model-name>"
205
207
  features=...
206
208
  embedding_features=...
207
209
 
208
- response = client.models.log_stream(
210
+ response = client.ml.log_stream(
209
211
  space_id=SPACE_ID,
210
212
  model_name=MODEL_NAME,
211
213
  model_type=ModelTypes.SCORE_CATEGORICAL,
@@ -221,14 +223,14 @@ response = client.models.log_stream(
221
223
 
222
224
  ```python
223
225
  from arize import ArizeClient
224
- from arize.types import ModelTypes, Environments
226
+ from arize.ml.types import ModelTypes, Environments
225
227
 
226
228
  client = ArizeClient(api_key=API_KEY)
227
229
  SPACE_ID = "<your-space-id>"
228
230
  MODEL_NAME = "<your-model-name>"
229
231
  MODEL_VERSION = "1.0"
230
232
 
231
- from arize.types import Schema, EmbeddingColumnNames, ObjectDetectionColumnNames, ModelTypes, Environments
233
+ from arize.ml.types import Schema, EmbeddingColumnNames, ObjectDetectionColumnNames, ModelTypes, Environments
232
234
 
233
235
  tags = ["drift_type"]
234
236
  embedding_feature_column_names = {
@@ -257,7 +259,7 @@ schema = Schema(
257
259
  )
258
260
 
259
261
  # Logging Production DataFrame
260
- response = client.models.log_batch(
262
+ response = client.ml.log_batch(
261
263
  space_id=SPACE_ID,
262
264
  model_name=MODEL_NAME,
263
265
  model_type=ModelTypes.OBJECT_DETECTION,
@@ -285,7 +287,7 @@ SPACE_ID = "<your-space-id>"
285
287
  MODEL_NAME = "<your-model-name>"
286
288
  MODEL_VERSION = "1.0"
287
289
 
288
- df = client.models.export_to_df(
290
+ df = client.ml.export_to_df(
289
291
  space_id=SPACE_ID,
290
292
  model_name=MODEL_NAME,
291
293
  environment=Environments.TRAINING,
@@ -343,7 +345,7 @@ The response is an object of type `DatasetsList200Response`, and you can access
343
345
 
344
346
  ```python
345
347
  # Get the list of datasets from the response
346
- dataset_list = resp.datasets
348
+ dataset_list = resp.datasets
347
349
  # Get the response as a dictionary
348
350
  resp_dict = resp.to_dict()
349
351
  # Get the response in JSON format
@@ -459,7 +461,7 @@ The response is an object of type `ExperimentsList200Response`, and you can acce
459
461
 
460
462
  ```python
461
463
  # Get the list of datasets from the response
462
- experiment_list = resp.experiments
464
+ experiment_list = resp.experiments
463
465
  # Get the response as a dictionary
464
466
  resp_dict = resp.to_dict()
465
467
  # Get the response in JSON format
@@ -483,7 +485,7 @@ experiment, experiment_df = client.run_experiment(
483
485
  concurrency=..., # The number of concurrent tasks to run. Defaults to 3.
484
486
  set_global_tracer_provider=..., # If True, sets the global tracer provider for the experiment. Defaults to False
485
487
  exit_on_error=..., # If True, the experiment will stop running on first occurrence of an error. Defaults to False
486
- )
488
+ )
487
489
  ```
488
490
 
489
491
  The `Experiment` object also counts with convenience method similar to `List***` objects:
@@ -578,7 +580,7 @@ resp_df = resp.to_df()
578
580
 
579
581
  ### In Code
580
582
 
581
- You can use `configure_logging` to set up the logging behavior of the Arize package to your needs.
583
+ You can use `configure_logging` to set up the logging behavior of the Arize package to your needs.
582
584
 
583
585
  ```python
584
586
  from arize.logging import configure_logging
@@ -586,7 +588,7 @@ from arize.logging import configure_logging
586
588
  configure_logging(
587
589
  level=..., # Defaults to logging.INFO
588
590
  structured=..., # if True, emit JSON logs. Defaults to False
589
- )
591
+ )
590
592
  ```
591
593
 
592
594
  ### Via Environment Variables
@@ -597,11 +599,11 @@ Configure the same options as the section above, via:
597
599
  import os
598
600
 
599
601
  # Whether or not you want to disable logging altogether
600
- os.environ["ARIZE_LOG_ENABLE"] = "true"
602
+ os.environ["ARIZE_LOG_ENABLE"] = "true"
601
603
  # Set up the logging level
602
- os.environ["ARIZE_LOG_LEVEL"] = "debug"
604
+ os.environ["ARIZE_LOG_LEVEL"] = "debug"
603
605
  # Whether or not you want structured JSON logs
604
- os.environ["ARIZE_LOG_STRUCTURED"] = "false"
606
+ os.environ["ARIZE_LOG_STRUCTURED"] = "false"
605
607
  ```
606
608
 
607
609
  The default behavior of Arize's logs is: enabled, `INFO` level, and not structured.
@@ -35,14 +35,23 @@ classifiers = [
35
35
  "Topic :: System :: Monitoring",
36
36
  ]
37
37
  dependencies = [
38
- "numpy>=2.0.0", # For vector embeddings
39
- "lazy-imports",
40
- # "requests_futures==1.0.0",
41
- # "googleapis_common_protos>=1.51.0,<2",
42
- # "protobuf>=4.21.0,<7",
43
- # "pyarrow>=0.15.0",
44
- # "tqdm>=4.60.0,<5",
45
- # "pydantic>=2.0.0,<3",
38
+ "numpy>=2.0.0",
39
+ "openinference-semantic-conventions>=0.1.25, <1",
40
+ "opentelemetry-exporter-otlp-proto-common>=1.38.0",
41
+ "opentelemetry-exporter-otlp-proto-grpc>=1.38.0",
42
+ "opentelemetry-sdk>=1.38.0",
43
+ "opentelemetry-semantic-conventions>=0.43b0, <1",
44
+ "pandas>=2.0.0, <3",
45
+ "protobuf>=4.21.0, <6",
46
+ "pyarrow>=0.15.0",
47
+ "pydantic>=2, <3",
48
+ "python-dateutil>=2.8.2, <3",
49
+ "requests>=2.0.0, <3",
50
+ "requests_futures>=1.0.0, <2",
51
+ "tqdm>4, <5", # For progress bars
52
+ "typing-extensions>=4.7.1, <5",
53
+ "urllib3>=2.1.0, <3",
54
+ "wrapt>=1.0.0, <2.0.0",
46
55
  ]
47
56
  dynamic = ["version"]
48
57
 
@@ -51,45 +60,15 @@ dev = [
51
60
  "pytest==8.4.2",
52
61
  "ruff==0.13.2"
53
62
  ]
54
- spans = [
55
- "openinference-semantic-conventions>=0.1.21, <1",
56
- "opentelemetry-semantic-conventions>=0.43b0, <1",
57
- "pandas>=1.0.0,<3",
58
- "protobuf>=4.21.0,<6",
59
- "pyarrow>=0.15.0",
60
- "requests>=2.0.0, <3", # For posting pyarrow files
61
- "tqdm", # For export progress bars
62
- ]
63
- ml-stream = [
64
- "requests_futures>=1.0.0, <2",
65
- "protobuf>=4.21.0,<6"
66
- ]
67
- ml-batch = [
68
- "pandas>=1.0.0,<3",
69
- "protobuf>=4.21.0,<6",
70
- "pyarrow>=0.15.0",
71
- "requests>=2.0.0, <3", # For posting pyarrow files
72
- "tqdm", # For export progress bars
73
- ]
74
- datasets-experiments = [
75
- "pydantic",
76
- "numpy>=2.0.0",
77
- "wrapt>=1.0.0,<2.0.0",
78
- # "openinference-semantic-conventions>=0.1.21, <1",
79
- # "opentelemetry-exporter-otlp-proto-common>=1.38.0",
80
- # "opentelemetry-exporter-otlp-proto-grpc>=1.38.0",
81
- # "opentelemetry-sdk>=1.38.0",
82
- #
83
- # "opentelemetry-api>=1.38.0",
84
- # "opentelemetry-proto>=1.38.0",
63
+ otel = [
64
+ "arize-otel>=0.11.0, <1",
85
65
  ]
86
- mimic-explainer = [
66
+ mimic = [
87
67
  "interpret-community[mimic]>=0.22.0,<1"
88
68
  ]
89
- auto-embeddings = [
69
+ embeddings = [
90
70
  "Pillow>=8.4.0, <11",
91
71
  "datasets>=2.8, <3, !=2.14.*",
92
- "pandas>=1.0.0,<3",
93
72
  "tokenizers>=0.13, <1",
94
73
  "torch>=1.13, <3",
95
74
  "transformers>=4.25, <5",
@@ -44,18 +44,19 @@ def make_to_df(field_name: str) -> object:
44
44
  - If an item is a mapping (dict-like), use it as-is.
45
45
  - Otherwise, raise a ValueError (unsupported row type).
46
46
 
47
- Parameters:
48
- by_alias: Use field aliases when dumping Pydantic models.
49
- exclude_none:
50
- - False: keep Nones as-is
51
- - "all": drop columns where *all* values are None/NaN
52
- - "any": drop columns where *any* value is None/NaN
53
- - True: alias for "all"
54
- json_normalize: If True, flatten nested dicts via `pandas.json_normalize`.
55
- convert_dtypes: If True, call `DataFrame.convert_dtypes()` at the end.
47
+ Args:
48
+ self (object): The object instance containing the field to convert.
49
+ by_alias (bool): Use field aliases when dumping Pydantic models.
50
+ exclude_none (str | bool): Control None/NaN column dropping.
51
+ - False: keep Nones as-is
52
+ - "all": drop columns where all values are None/NaN
53
+ - "any": drop columns where any value is None/NaN
54
+ - True: alias for "all"
55
+ json_normalize (bool): If True, flatten nested dicts via `pandas.json_normalize`.
56
+ convert_dtypes (bool): If True, call `DataFrame.convert_dtypes()` at the end.
56
57
 
57
58
  Returns:
58
- pandas.DataFrame
59
+ pandas.DataFrame: The converted DataFrame.
59
60
  """
60
61
  import pandas as pd
61
62
 
@@ -17,7 +17,7 @@ from arize._exporter.validation import (
17
17
  )
18
18
  from arize._generated.protocol.flight import flight_pb2
19
19
  from arize.logging import CtxAdapter
20
- from arize.types import Environments, SimilaritySearchParams
20
+ from arize.ml.types import Environments, SimilaritySearchParams
21
21
  from arize.utils.dataframe import reset_dataframe_index
22
22
 
23
23
  logger = logging.getLogger(__name__)
@@ -46,7 +46,6 @@ __all__ = [
46
46
  "ExperimentsList200Response",
47
47
  "ExperimentsRunsList200Response",
48
48
  "PaginationMetadata",
49
- "PrimitiveValue",
50
49
  "Problem",
51
50
  "Project",
52
51
  "ProjectsCreateRequest",
@@ -86,7 +85,6 @@ from arize._generated.api_client.models.experiments_create_request import Experi
86
85
  from arize._generated.api_client.models.experiments_list200_response import ExperimentsList200Response as ExperimentsList200Response
87
86
  from arize._generated.api_client.models.experiments_runs_list200_response import ExperimentsRunsList200Response as ExperimentsRunsList200Response
88
87
  from arize._generated.api_client.models.pagination_metadata import PaginationMetadata as PaginationMetadata
89
- from arize._generated.api_client.models.primitive_value import PrimitiveValue as PrimitiveValue
90
88
  from arize._generated.api_client.models.problem import Problem as Problem
91
89
  from arize._generated.api_client.models.project import Project as Project
92
90
  from arize._generated.api_client.models.projects_create_request import ProjectsCreateRequest as ProjectsCreateRequest
@@ -29,7 +29,6 @@ from arize._generated.api_client.models.experiments_create_request import Experi
29
29
  from arize._generated.api_client.models.experiments_list200_response import ExperimentsList200Response
30
30
  from arize._generated.api_client.models.experiments_runs_list200_response import ExperimentsRunsList200Response
31
31
  from arize._generated.api_client.models.pagination_metadata import PaginationMetadata
32
- from arize._generated.api_client.models.primitive_value import PrimitiveValue
33
32
  from arize._generated.api_client.models.problem import Problem
34
33
  from arize._generated.api_client.models.project import Project
35
34
  from arize._generated.api_client.models.projects_create_request import ProjectsCreateRequest
@@ -19,7 +19,6 @@ import json
19
19
 
20
20
  from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
21
  from typing import Any, ClassVar, Dict, List
22
- from arize._generated.api_client.models.primitive_value import PrimitiveValue
23
22
  from typing import Optional, Set
24
23
  from typing_extensions import Self
25
24
 
@@ -29,7 +28,7 @@ class DatasetsCreateRequest(BaseModel):
29
28
  """ # noqa: E501
30
29
  name: StrictStr = Field(description="Name of the new dataset")
31
30
  space_id: StrictStr = Field(description="ID of the space the dataset will belong to")
32
- examples: List[Dict[str, PrimitiveValue]] = Field(description="Array of examples for the new dataset")
31
+ examples: List[Dict[str, Any]] = Field(description="Array of examples for the new dataset")
33
32
  __properties: ClassVar[List[str]] = ["name", "space_id", "examples"]
34
33
 
35
34
  model_config = ConfigDict(
@@ -71,13 +70,6 @@ class DatasetsCreateRequest(BaseModel):
71
70
  exclude=excluded_fields,
72
71
  exclude_none=True,
73
72
  )
74
- # override the default output from pydantic by calling `to_dict()` of each item in examples (list)
75
- _items = []
76
- if self.examples:
77
- for _item_examples in self.examples:
78
- if _item_examples:
79
- _items.append(_item_examples.to_dict())
80
- _dict['examples'] = _items
81
73
  return _dict
82
74
 
83
75
  @classmethod
@@ -97,7 +89,7 @@ class DatasetsCreateRequest(BaseModel):
97
89
  _obj = cls.model_validate({
98
90
  "name": obj.get("name"),
99
91
  "space_id": obj.get("space_id"),
100
- "examples": [Dict[str, PrimitiveValue].from_dict(_item) for _item in obj["examples"]] if obj.get("examples") is not None else None
92
+ "examples": obj.get("examples")
101
93
  })
102
94
  return _obj
103
95
 
@@ -19,7 +19,6 @@ import json
19
19
 
20
20
  from pydantic import BaseModel, ConfigDict, Field
21
21
  from typing import Any, ClassVar, Dict, List
22
- from arize._generated.api_client.models.primitive_value import PrimitiveValue
23
22
  from typing import Optional, Set
24
23
  from typing_extensions import Self
25
24
 
@@ -27,7 +26,7 @@ class DatasetsExamplesInsertRequest(BaseModel):
27
26
  """
28
27
  DatasetsExamplesInsertRequest
29
28
  """ # noqa: E501
30
- examples: List[Dict[str, PrimitiveValue]] = Field(description="Array of examples to append to the dataset version")
29
+ examples: List[Dict[str, Any]] = Field(description="Array of examples to append to the dataset version")
31
30
  __properties: ClassVar[List[str]] = ["examples"]
32
31
 
33
32
  model_config = ConfigDict(
@@ -69,13 +68,6 @@ class DatasetsExamplesInsertRequest(BaseModel):
69
68
  exclude=excluded_fields,
70
69
  exclude_none=True,
71
70
  )
72
- # override the default output from pydantic by calling `to_dict()` of each item in examples (list)
73
- _items = []
74
- if self.examples:
75
- for _item_examples in self.examples:
76
- if _item_examples:
77
- _items.append(_item_examples.to_dict())
78
- _dict['examples'] = _items
79
71
  return _dict
80
72
 
81
73
  @classmethod
@@ -93,7 +85,7 @@ class DatasetsExamplesInsertRequest(BaseModel):
93
85
  raise ValueError("Error due to additional fields (not defined in DatasetsExamplesInsertRequest) in the input: " + _key)
94
86
 
95
87
  _obj = cls.model_validate({
96
- "examples": [Dict[str, PrimitiveValue].from_dict(_item) for _item in obj["examples"]] if obj.get("examples") is not None else None
88
+ "examples": obj.get("examples")
97
89
  })
98
90
  return _obj
99
91