arbok-inspector 0.0.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of arbok-inspector might be problematic. Click here for more details.

Files changed (32) hide show
  1. arbok_inspector-0.0.0/LICENSE +21 -0
  2. arbok_inspector-0.0.0/PKG-INFO +86 -0
  3. arbok_inspector-0.0.0/README.md +69 -0
  4. arbok_inspector-0.0.0/arbok_inspector/__init__.py +1 -0
  5. arbok_inspector-0.0.0/arbok_inspector/analysis/analysis_base.py +29 -0
  6. arbok_inspector-0.0.0/arbok_inspector/analysis/prepare_data.py +118 -0
  7. arbok_inspector-0.0.0/arbok_inspector/classes/dim.py +26 -0
  8. arbok_inspector-0.0.0/arbok_inspector/classes/run.py +238 -0
  9. arbok_inspector-0.0.0/arbok_inspector/cli.py +4 -0
  10. arbok_inspector-0.0.0/arbok_inspector/dev.py +19 -0
  11. arbok_inspector-0.0.0/arbok_inspector/helpers/string_formaters.py +33 -0
  12. arbok_inspector-0.0.0/arbok_inspector/helpers/unit_formater.py +29 -0
  13. arbok_inspector-0.0.0/arbok_inspector/main.py +15 -0
  14. arbok_inspector-0.0.0/arbok_inspector/pages/__init__.py +2 -0
  15. arbok_inspector-0.0.0/arbok_inspector/pages/database_browser.py +159 -0
  16. arbok_inspector-0.0.0/arbok_inspector/pages/greeter.py +35 -0
  17. arbok_inspector-0.0.0/arbok_inspector/pages/run_view.py +280 -0
  18. arbok_inspector-0.0.0/arbok_inspector/state.py +56 -0
  19. arbok_inspector-0.0.0/arbok_inspector/test_main.py +65 -0
  20. arbok_inspector-0.0.0/arbok_inspector/widgets/build_xarray_grid.py +141 -0
  21. arbok_inspector-0.0.0/arbok_inspector/widgets/build_xarray_html.py +57 -0
  22. arbok_inspector-0.0.0/arbok_inspector/widgets/json_plot_settings_dialog.py +77 -0
  23. arbok_inspector-0.0.0/arbok_inspector/widgets/update_day_selecter.py +36 -0
  24. arbok_inspector-0.0.0/arbok_inspector/widgets/update_run_selecter.py +51 -0
  25. arbok_inspector-0.0.0/arbok_inspector.egg-info/PKG-INFO +86 -0
  26. arbok_inspector-0.0.0/arbok_inspector.egg-info/SOURCES.txt +30 -0
  27. arbok_inspector-0.0.0/arbok_inspector.egg-info/dependency_links.txt +1 -0
  28. arbok_inspector-0.0.0/arbok_inspector.egg-info/entry_points.txt +2 -0
  29. arbok_inspector-0.0.0/arbok_inspector.egg-info/requires.txt +6 -0
  30. arbok_inspector-0.0.0/arbok_inspector.egg-info/top_level.txt +1 -0
  31. arbok_inspector-0.0.0/pyproject.toml +32 -0
  32. arbok_inspector-0.0.0/setup.cfg +4 -0
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Andreas Nickl
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1,86 @@
1
+ Metadata-Version: 2.4
2
+ Name: arbok-inspector
3
+ Version: 0.0.0
4
+ Summary: Browser based QCoDeS database inspector
5
+ License: MIT
6
+ Classifier: Programming Language :: Python :: 3.12
7
+ Requires-Python: >=3.12
8
+ Description-Content-Type: text/markdown
9
+ License-File: LICENSE
10
+ Requires-Dist: jupyterlab>=4.4.8
11
+ Requires-Dist: nicegui>=2.24.2
12
+ Requires-Dist: nodejs>=0.1.1
13
+ Requires-Dist: plotly>=6.3.0
14
+ Requires-Dist: qcodes>=0.53.0
15
+ Requires-Dist: xarray>=2025.9.0
16
+ Dynamic: license-file
17
+
18
+ # arbok_inspector ๐Ÿ
19
+ arbok_inspector is an browser based inspection and visualization utility for QCoDeS measurement
20
+ databases.
21
+ It provides a lightweight GUI and CLI to browse runs and visualize data.
22
+
23
+ ## Features ๐Ÿ”Ž
24
+ The most commonly used used tool to visualize QCoDeS databases is
25
+ [plottr](https://github.com/toolsforexperiments/plottr).
26
+ Plottr is a great tool to get started, but struggles with increasing abounts of data.
27
+
28
+ This is how arbok_inspector streamlines your data inspection:
29
+ - Fast browsing of measurement runs and their metadata
30
+ - Written with [nicegui](https://nicegui.io/) acting as a [tailwind](https://tailwindcss.com/) wrapper
31
+ - Browser based approach ensures cross system compatibily
32
+ - Selected runs are opened in a new tab and run on a separate thread
33
+ - this avoids blocking the entire application when loading big datasets
34
+ - plotting backend is plotly which natively returns html
35
+ - plotly plot customization is declarative and can therefore be tweaked in a simple json editor without implementing each customization by hand
36
+ - runs are only loaded on demand
37
+ - startup time in plottr can be several minutes for large databases
38
+ - SQL queries load only the given days upon database selection, only loads respective runs once day is selected
39
+
40
+ ## Installation ๐Ÿ“ฒ
41
+
42
+ From pypi install using pip in your environment:
43
+ ```bash
44
+ pip install arbok-inspector
45
+ ```
46
+ Even better if you are using uv, a uv.lock file is included!
47
+ Launch from CLI:
48
+ ```bash
49
+ arbok-inspector
50
+ ```
51
+
52
+ ## Project layout
53
+
54
+ - `main.py` โ€” app entrypoint and startup logic
55
+ - `state.py` โ€” application state & database handling
56
+ - `pages/` โ€” NiceGUI pages (database browser, run view, greeter, ...)
57
+ - `widgets/` โ€” reusable UI widgets (grid builders, selectors, dialogs)
58
+ - `analysis/` โ€” analysis and data-prep utilities
59
+ - `classes/` โ€” small domain objects used across the app
60
+ - `helpers/` โ€” formatting and utility helpers
61
+
62
+ Development & testing ๐Ÿ› ๏ธ
63
+
64
+ Clone this git repository and navigate into it.
65
+ Use an editable install for local development to pick up changes immediately
66
+ ```bash
67
+ pip install -e .
68
+ ```
69
+
70
+ To launch the app in editable mode launch from dev.py file:
71
+ ```bash
72
+ python -m arbok_inspector/dev.py
73
+ ```
74
+ Contributing & help ๐Ÿ™Œ
75
+
76
+ Contributions, bug reports, and small feature requests are welcome. If you want to add a visualization or a new page, use `pages/` and `widgets/` for examples of how UI components are composed. When opening a PR, please keep changes focused and include a short description of how to exercise the change locally.
77
+
78
+ License
79
+
80
+ See the `LICENSE` file in the project root for license details.
81
+
82
+ Notes & tips
83
+
84
+ - For exact runtime dependencies check `pyproject.toml` โ€” prefer using that manifest (and a virtual environment) for reproducible installs.
85
+ - If you want me to add a short walkthrough for common tasks (open a run, plot data, export CSV), tell me which task you'd like first and I can add a step-by-step example here. ๐Ÿ“˜
86
+
@@ -0,0 +1,69 @@
1
+ # arbok_inspector ๐Ÿ
2
+ arbok_inspector is an browser based inspection and visualization utility for QCoDeS measurement
3
+ databases.
4
+ It provides a lightweight GUI and CLI to browse runs and visualize data.
5
+
6
+ ## Features ๐Ÿ”Ž
7
+ The most commonly used used tool to visualize QCoDeS databases is
8
+ [plottr](https://github.com/toolsforexperiments/plottr).
9
+ Plottr is a great tool to get started, but struggles with increasing abounts of data.
10
+
11
+ This is how arbok_inspector streamlines your data inspection:
12
+ - Fast browsing of measurement runs and their metadata
13
+ - Written with [nicegui](https://nicegui.io/) acting as a [tailwind](https://tailwindcss.com/) wrapper
14
+ - Browser based approach ensures cross system compatibily
15
+ - Selected runs are opened in a new tab and run on a separate thread
16
+ - this avoids blocking the entire application when loading big datasets
17
+ - plotting backend is plotly which natively returns html
18
+ - plotly plot customization is declarative and can therefore be tweaked in a simple json editor without implementing each customization by hand
19
+ - runs are only loaded on demand
20
+ - startup time in plottr can be several minutes for large databases
21
+ - SQL queries load only the given days upon database selection, only loads respective runs once day is selected
22
+
23
+ ## Installation ๐Ÿ“ฒ
24
+
25
+ From pypi install using pip in your environment:
26
+ ```bash
27
+ pip install arbok-inspector
28
+ ```
29
+ Even better if you are using uv, a uv.lock file is included!
30
+ Launch from CLI:
31
+ ```bash
32
+ arbok-inspector
33
+ ```
34
+
35
+ ## Project layout
36
+
37
+ - `main.py` โ€” app entrypoint and startup logic
38
+ - `state.py` โ€” application state & database handling
39
+ - `pages/` โ€” NiceGUI pages (database browser, run view, greeter, ...)
40
+ - `widgets/` โ€” reusable UI widgets (grid builders, selectors, dialogs)
41
+ - `analysis/` โ€” analysis and data-prep utilities
42
+ - `classes/` โ€” small domain objects used across the app
43
+ - `helpers/` โ€” formatting and utility helpers
44
+
45
+ Development & testing ๐Ÿ› ๏ธ
46
+
47
+ Clone this git repository and navigate into it.
48
+ Use an editable install for local development to pick up changes immediately
49
+ ```bash
50
+ pip install -e .
51
+ ```
52
+
53
+ To launch the app in editable mode launch from dev.py file:
54
+ ```bash
55
+ python -m arbok_inspector/dev.py
56
+ ```
57
+ Contributing & help ๐Ÿ™Œ
58
+
59
+ Contributions, bug reports, and small feature requests are welcome. If you want to add a visualization or a new page, use `pages/` and `widgets/` for examples of how UI components are composed. When opening a PR, please keep changes focused and include a short description of how to exercise the change locally.
60
+
61
+ License
62
+
63
+ See the `LICENSE` file in the project root for license details.
64
+
65
+ Notes & tips
66
+
67
+ - For exact runtime dependencies check `pyproject.toml` โ€” prefer using that manifest (and a virtual environment) for reproducible installs.
68
+ - If you want me to add a short walkthrough for common tasks (open a run, plot data, export CSV), tell me which task you'd like first and I can add a step-by-step example here. ๐Ÿ“˜
69
+
@@ -0,0 +1 @@
1
+ # from .database_browser import database_browser_page
@@ -0,0 +1,29 @@
1
+ """Module containing AnalysisBase class"""
2
+
3
+ class AnalysisBase:
4
+ """Base class for analysis classes"""
5
+ run_id = None
6
+ xr_data = None
7
+
8
+ def find_axis_from_keyword(self, keyword: str) -> str:
9
+ """
10
+ Find the axis corresponding to a keyword in the analysis
11
+ Args:
12
+ keyword (str): Keyword to search for
13
+ Returns:
14
+ axis (int): Axis corresponding to keyword
15
+ """
16
+ axes = []
17
+ for axis in self.xr_data.dims:
18
+ if keyword in axis:
19
+ axes.append(axis)
20
+ if len(axes) == 0:
21
+ raise ValueError(
22
+ f"Axis not found for keyword {keyword}. "
23
+ f"Dims are {self.xr_data.dims}"
24
+ )
25
+ elif len(axes) > 1:
26
+ raise ValueError(
27
+ f"More than one axis found for keyword {keyword}: {axes}")
28
+ else:
29
+ return axes[0]
@@ -0,0 +1,118 @@
1
+ """Module containing prepare_data function for analysis tools"""
2
+
3
+ from matplotlib.pylab import f
4
+ from qcodes.dataset.data_set import load_by_id, DataSet
5
+ import xarray as xr
6
+ import numpy as np
7
+ import matplotlib.pyplot as plt
8
+
9
+ def prepare_and_avg_data(
10
+ run: int | DataSet | xr.Dataset | xr.DataArray,
11
+ readout_name: str,
12
+ avg_axes: str | list = 'auto'
13
+ ) -> tuple[int | None, xr.DataArray, np.ndarray]:
14
+ """
15
+ Prepares the data for plotting. Takes either a run id, a qcodes dataset,
16
+ an xarray dataset or an xarray data-array and returns the run id, the xarray
17
+ data-array and the numpy data-array.
18
+ This is done to allow different input types for the data while keeping the
19
+ same output format.
20
+
21
+ Args:
22
+ run (int | DataSet | xr.Dataset | xr.DataArray): Run id, qcodes dataset'
23
+ xarray dataset or xarray data-array
24
+ readout_name (str): Name of the readout observable
25
+ """
26
+ xdata_array = None
27
+ if avg_axes is None:
28
+ avg_axes = []
29
+ if isinstance(run, int):
30
+ data = load_by_id(run)
31
+ xdataset = data.to_xarray_dataset()
32
+ run_id = run
33
+ elif isinstance(run, DataSet):
34
+ data = run
35
+ run_id = data.run_id
36
+ xdataset = data.to_xarray_dataset()
37
+ elif isinstance(run, xr.Dataset):
38
+ xdataset = run
39
+ run_id = xdataset.attrs['run_id']
40
+ elif isinstance(run, xr.DataArray):
41
+ xdataset = None
42
+ xdata_array = run
43
+ run_id = None
44
+ else:
45
+ raise ValueError(
46
+ "Invalid input type for run. "
47
+ "Must be run-ID, DataSet or xr.Dataset or xr.DataArray. "
48
+ f"Is {type(run)}"
49
+ )
50
+ if xdataset is not None:
51
+ if readout_name not in xdataset.data_vars:
52
+ readout_name = find_data_variable_from_keyword(xdataset, readout_name)
53
+ xdata_array = xdataset[readout_name]
54
+ ### Average over specified axes
55
+ xdata_array = avg_dataarray(xdata_array, avg_axes)
56
+ np_data = xdata_array.to_numpy()
57
+ return run_id, xdata_array, np_data
58
+
59
+ def find_data_variable_from_keyword(
60
+ xdata_array: xr.DataArray, keyword: str | tuple) -> str:
61
+ """
62
+ Find the data variable corresponding to a keyword in the data-array.
63
+
64
+ Args:
65
+ xdata_array (xr.DataArray): xarray data-array to search in
66
+ keyword (str): Keyword to search for
67
+ Returns:
68
+ data_variable (str): Data variable corresponding to keyword
69
+ """
70
+ if isinstance(keyword, str):
71
+ keyword = (keyword,)
72
+ if not isinstance(keyword, tuple):
73
+ raise ValueError(
74
+ f"Keyword must be a string or a tuple. Is {type(keyword)}")
75
+ data_variables = []
76
+ for data_variable in xdata_array.data_vars:
77
+ if all([subkey in str(data_variable) for subkey in keyword]):
78
+ data_variables.append(data_variable)
79
+ if len(data_variables) == 0:
80
+ raise ValueError(
81
+ f"Data variable not found for keyword {keyword}. "
82
+ f"Data variables are {xdata_array.data_vars}"
83
+ )
84
+ elif len(data_variables) > 1:
85
+ raise ValueError(
86
+ f"More than one data variable found for keyword {keyword}: "
87
+ f"{[str(var) for var in data_variables]}")
88
+ else:
89
+ return data_variables[0]
90
+
91
+ def avg_dataarray(xdata_array: xr.DataArray, avg_axes: str | list = 'auto'):
92
+ """
93
+ Averages the data-array over the specified axes. If no axes are specified
94
+ the data-array is averaged over all axes.
95
+
96
+ Args:
97
+ xdata_array (xr.DataArray): xarray data-array to be averaged
98
+ avg_axes (str | list): Axes to average over
99
+ """
100
+ if avg_axes is None:
101
+ avg_axes = []
102
+ if isinstance(avg_axes, str):
103
+ ### If 'auto' is given, find all axes with 'iteration' in the name
104
+ if avg_axes == 'auto':
105
+ avg_axes = []
106
+ for dim in xdata_array.dims:
107
+ if 'iteration' in dim:
108
+ avg_axes.append(dim)
109
+ else:
110
+ avg_axes = [avg_axes]
111
+ ### Average over specified axes
112
+ for axis in avg_axes:
113
+ if hasattr(xdata_array, axis):
114
+ xdata_array = xdata_array.mean(axis)
115
+ else:
116
+ raise KeyError(
117
+ f"Avg. axis {axis} not found in xarray data-array")
118
+ return xdata_array
@@ -0,0 +1,26 @@
1
+ """Module for the Dim class."""
2
+
3
+ class Dim:
4
+ """
5
+ Class representing a dimension of the data
6
+ """
7
+ def __init__(self, name):
8
+ """
9
+ Constructor for Dim class
10
+
11
+ Args:
12
+ name (str): Name of the dimension
13
+
14
+ Attributes:
15
+ name (str): Name of the dimension
16
+ option (str): Option for the dimension (average, select_value, x-axis, y-axis)
17
+ select_index (int): Index of the selected value for select_value option
18
+ ui_selector: Reference to the UI element for the dimension
19
+ """
20
+ self.name = name
21
+ self.option = None
22
+ self.select_index = 0
23
+ self.ui_selector = None
24
+
25
+ def __str__(self):
26
+ return self.name
@@ -0,0 +1,238 @@
1
+ """
2
+ Run class representing a single run of the experiment.
3
+ """
4
+ from __future__ import annotations
5
+ from typing import TYPE_CHECKING
6
+
7
+ import ast
8
+ import re
9
+ import json
10
+ from qcodes.dataset import load_by_id
11
+ from nicegui import ui, app
12
+
13
+ from arbok_inspector.classes.dim import Dim
14
+ from arbok_inspector.widgets.build_xarray_grid import build_xarray_grid
15
+ # from arbok_inspector.pages.database_browser import shared_data
16
+
17
+ if TYPE_CHECKING:
18
+ from qcodes.dataset.data_set import DataSet
19
+ from xarray import Dataset
20
+ AXIS_OPTIONS = ['average', 'select_value', 'y-axis', 'x-axis']
21
+
22
+
23
+ class Run:
24
+ """
25
+ Class representing a run with its data and methods
26
+ """
27
+ def __init__(self, run_id: int):
28
+ """
29
+ Constructor for Run class
30
+
31
+ Args:
32
+ run_id (int): ID of the run
33
+ """
34
+ self.run_id: int = run_id
35
+ self.title: str = f'Run ID: {run_id} (-> add experiment)'
36
+ self.dataset: DataSet = load_by_id(run_id)
37
+ self.full_data_set: Dataset = self.dataset.to_xarray_dataset()
38
+ self.last_subset: Dataset = self.full_data_set
39
+
40
+ self.together_sweeps: bool = False
41
+ self.parallel_sweep_axes: dict = {}
42
+ self.sweep_dict: dict[int, Dim] = {}
43
+ self.load_sweep_dict()
44
+ self.dims: list[Dim] = list(self.sweep_dict.values())
45
+ self.dim_axis_option: dict[str, str|list[Dim]] = self.set_dim_axis_option()
46
+ print(self.dims)
47
+
48
+ self.plot_selection: list[str] = self.select_results_by_keywords(
49
+ app.storage.general["result_keywords"]
50
+ )
51
+ print(f"Initial plot selection: {self.plot_selection}")
52
+ self.plots_per_column: int = 2
53
+
54
+ def load_sweep_dict(self):
55
+ """
56
+ Load the sweep dictionary from the dataset
57
+ TODO: check metadata for sweep information!
58
+ Returns:
59
+ sweep_dict (dict): Dictionary with sweep information
60
+ is_together (bool): True if all sweeps are together, False otherwise
61
+ """
62
+ if "parallel_sweep_axes" in self.dataset.metadata:
63
+ conf = self.dataset.metadata["parallel_sweep_axes"]
64
+ conf = conf.replace("'", '"') # Ensure JSON compatibility
65
+ print( conf)
66
+ conf = json.loads(conf)
67
+ self.parallel_sweep_axes = {int(i): sweeps for i, sweeps in conf.items()}
68
+ self.together_sweeps = True
69
+ else:
70
+ dims = self.full_data_set.dims
71
+ self.parallel_sweep_axes = {i: [dim] for i, dim in enumerate(dims)}
72
+ self.together_sweeps = False
73
+ self.sweep_dict = {
74
+ i: Dim(names[0]) for i, names in self.parallel_sweep_axes.items()
75
+ }
76
+ print(self.sweep_dict)
77
+ return self.sweep_dict
78
+
79
+ def set_dim_axis_option(self):
80
+ """
81
+ Set the default dimension options for the run in 4 steps:
82
+ 1. Set all iteration dims to 'average'
83
+ 2. Set the innermost dim to 'x-axis' (the last one that is not averaged)
84
+ 3. Set the next innermost dim to 'y-axis'
85
+ 4. Set all remaining dims to 'select_value'
86
+
87
+ Returns:
88
+ options (dict): Dictionary with keys 'average', 'select_value', 'y-axis',
89
+ """
90
+ options = {x: [] for x in AXIS_OPTIONS}
91
+ print(f"Setting average to {app.storage.general['avg_axis']}")
92
+ for dim in self.dims:
93
+ if app.storage.general["avg_axis"] in dim.name:
94
+ dim.option = 'average'
95
+ options['average'].append(dim)
96
+ for dim in reversed(self.dims):
97
+ if dim not in options['average'] and dim != options['x-axis']:
98
+ dim.option = "x-axis"
99
+ options['x-axis'] = dim
100
+ print(f"Setting x-axis to {dim.name}")
101
+ break
102
+ for dim in reversed(self.dims):
103
+ if dim not in options['average'] and dim != options['x-axis']:
104
+ dim.option = 'y-axis'
105
+ options['y-axis'] = dim
106
+ print(f"Setting y-axis to {dim.name}")
107
+ break
108
+ for dim in self.dims:
109
+ if dim not in options['average'] and dim != options['x-axis'] and dim != options['y-axis']:
110
+ dim.option = 'select_value'
111
+ options['select_value'].append(dim)
112
+ dim.select_index = 0
113
+ print(f"Setting select_value to {dim.name}")
114
+ return options
115
+
116
+ def select_results_by_keywords(self, keywords: list[str|tuple]) -> list[str]:
117
+ """
118
+ Select results by keywords in their name.
119
+ Args:
120
+ keywords (list): List of keywords to search for
121
+ Returns:
122
+ selected_results (list): List of selected result names
123
+ """
124
+ print(f"using keywords: {keywords}")
125
+ if keywords is None or len(keywords) == 0 or keywords == '':
126
+ return [next(iter(self.full_data_set.data_vars))]
127
+ s_quoted = re.sub(r'\b([a-zA-Z_][a-zA-Z0-9_]*)\b', r'"\1"', keywords)
128
+ try:
129
+ keywords = ast.literal_eval(s_quoted)
130
+ except (SyntaxError, ValueError):
131
+ print(f"Error parsing keywords: {s_quoted}")
132
+ keywords = []
133
+ ui.notify(
134
+ f"Error parsing result keywords: {s_quoted}. Please use a valid Python list.",
135
+ color='red',
136
+ position='top-right'
137
+ )
138
+ if not isinstance(keywords, list):
139
+ keywords = [keywords]
140
+ selected_results = []
141
+ print(f"using keywords: {keywords}")
142
+ for result in self.full_data_set.data_vars:
143
+ for keyword in keywords:
144
+ if isinstance(keyword, str) and keyword in str(result):
145
+ selected_results.append(result)
146
+ elif isinstance(keyword, tuple) and all(
147
+ subkey in str(result) for subkey in keyword):
148
+ selected_results.append(result)
149
+ selected_results = list(set(selected_results)) # Remove duplicates
150
+ if len(selected_results) == 0:
151
+ selected_results = [next(iter(self.full_data_set.data_vars))]
152
+ print(f"Selected results: {selected_results}")
153
+ return selected_results
154
+
155
+ def update_subset_dims(self, dim: Dim, selection: str, index = None):
156
+ """
157
+ Update the subset dimensions based on user selection.
158
+
159
+ Args:
160
+ dim (Dim): The dimension object to update
161
+ selection (str): The new selection option
162
+ ('average', 'select_value', 'x-axis', 'y-axis')
163
+ index (int, optional): The index for 'select_value' option. Defaults to None.
164
+ """
165
+ text = f'Updating subset dims: {dim.name} to {selection}'
166
+ print(text)
167
+ ui.notify(text, position='top-right')
168
+
169
+ ### First, remove old option this dim was on
170
+ for option in ['average', 'select_value']:
171
+ if dim in self.dim_axis_option[option]:
172
+ print(f"Removing {dim.name} from {option}")
173
+ self.dim_axis_option[option].remove(dim)
174
+ dim.option = None
175
+ if dim.option in ['x-axis', 'y-axis']:
176
+ print(f"Removing {dim.name} from {dim.option}")
177
+ self.dim_axis_option[dim.option] = None
178
+
179
+ ### Now, set new option
180
+ if selection in ['average', 'select_value']:
181
+ # dim.ui_selector.value = selection
182
+ dim.select_index = index
183
+ self.dim_axis_option[selection].append(dim)
184
+ return
185
+ if selection in ['x-axis', 'y-axis']:
186
+ old_dim = self.dim_axis_option[selection]
187
+ self.dim_axis_option[selection] = dim
188
+ if old_dim is not None:
189
+ # Set previous dim (having this option) to 'select_value'
190
+ # Required since x and y axis ahve to be unique
191
+ print(f"Updating {old_dim.name} to {dim.name} on {selection}")
192
+ if old_dim.option in ['x-axis', 'y-axis']:
193
+ self.dim_axis_option['select_value'].append(old_dim)
194
+ old_dim.option = 'select_value'
195
+ old_dim.ui_selector.value = 'select_value'
196
+ self.update_subset_dims(old_dim, 'select_value', old_dim.select_index)
197
+ dim.ui_selector.update()
198
+
199
+ def generate_subset(self):
200
+ """
201
+ Generate the subset of the full dataset based on the current dimension options.
202
+ Returns:
203
+ sub_set (xarray.Dataset): The subset of the full dataset
204
+ """
205
+ # TODO: take the averaging out of this! We only want to average if necessary
206
+ # averaging can be computationally intensive!
207
+ sub_set = self.full_data_set
208
+ for avg_axis in self.dim_axis_option['average']:
209
+ sub_set = sub_set.mean(dim=avg_axis.name)
210
+ sel_dict = {d.name: d.select_index for d in self.dim_axis_option['select_value']}
211
+ sub_set = sub_set.isel(**sel_dict).squeeze()
212
+ self.last_subset = sub_set
213
+ return sub_set
214
+
215
+ def update_plot_selection(self, value: bool, readout_name: str):
216
+ """
217
+ Update the plot selection based on user interaction.
218
+
219
+ Args:
220
+ value (bool): True if the result is selected, False otherwise
221
+ readout_name (str): Name of the result to update
222
+ """
223
+ print(f"{readout_name= } {value= }")
224
+ pretty_readout_name = readout_name.replace("__", ".")
225
+ if readout_name not in self.plot_selection:
226
+ self.plot_selection.append(readout_name)
227
+ ui.notify(
228
+ message=f'Result {pretty_readout_name} added to plot selection',
229
+ position='top-right'
230
+ )
231
+ else:
232
+ self.plot_selection.remove(readout_name)
233
+ ui.notify(
234
+ f'Result {pretty_readout_name} removed from plot selection',
235
+ position='top-right'
236
+ )
237
+ print(f"{self.plot_selection= }")
238
+ build_xarray_grid()
@@ -0,0 +1,4 @@
1
+ import runpy
2
+
3
+ def main():
4
+ runpy.run_module('arbok_inspector.main', run_name='__main__')
@@ -0,0 +1,19 @@
1
+ from nicegui import ui
2
+ from pathlib import Path
3
+ import asyncio
4
+ from typing import Optional
5
+
6
+ from arbok_inspector.state import inspector
7
+ from arbok_inspector.pages import greeter, database_browser
8
+
9
+ def main():
10
+ ui.run(
11
+ title='Arbok Inspector',
12
+ favicon='๐Ÿ',
13
+ dark=True,
14
+ show=True,
15
+ port=8090
16
+ )
17
+
18
+ if __name__ in {"__main__", "__mp_main__"}:
19
+ main()
@@ -0,0 +1,33 @@
1
+
2
+ import xarray as xr
3
+ from arbok_inspector.helpers.unit_formater import unit_formatter
4
+
5
+ def title_formater(run):
6
+ """
7
+ Format title string for plots based on selected dimensions.
8
+
9
+ Args:
10
+ run: The Run object containing the data.
11
+ Returns:
12
+ A formatted title string.
13
+ """
14
+ title = ""
15
+ for dim in run.dim_axis_option["select_value"]:
16
+ title += f"{dim.name } = {unit_formatter(run, dim, dim.select_index)}<br>"
17
+ return title
18
+
19
+ def axis_label_formater(ds: xr.DataArray, dim_name: str) -> str:
20
+ """
21
+ Format axis label by replacing '__' with '.' and bolding the last part.
22
+
23
+ Args:
24
+ dim_name: The dimension name string.
25
+ Returns:
26
+ A formatted axis label string.
27
+ """
28
+ dim_list = dim_name.split('__')
29
+ print(f"{dim_list=}")
30
+ if len(dim_list) > 1:
31
+ return f"{'.'.join(dim_list[:-1])}.<b>{dim_list[-1]}</b> ({ds.coords[dim_name].unit})"
32
+ else:
33
+ return f"<b>{dim_list[0]}</b> ({ds.coords[dim_name].unit})"
@@ -0,0 +1,29 @@
1
+ """Helper functions for formatting units with SI prefixes."""
2
+
3
+ def unit_formatter(run, dim, index: int) -> str:
4
+ """
5
+ If value is larger than 1e3, format with SI prefix.
6
+ Same if smaller than 1e-3.
7
+
8
+ Args:
9
+ run (Run): Run object containing the data
10
+ dim (Dim): Dimension object
11
+ index (int): Index of the value to format
12
+ """
13
+ unit_tuples = [
14
+ ('G', 1e9), ('M', 1e6), ('k', 1e3), ('m', 1e-3), ('ยต', 1e-6), ('n', 1e-9)]
15
+ try:
16
+ value = run.full_data_set[dim.name].values[index]
17
+ unit = run.full_data_set[dim.name].unit
18
+ if abs(value) >= 1e3 or (abs(value) < 1e-3 and value != 0):
19
+ for prefix, factor in unit_tuples:
20
+ if abs(value) >= factor or (abs(value) < 1e-3 and value != 0 and factor < 1):
21
+ scaled_value = value / factor
22
+ return f'{scaled_value:.3f} {prefix}<b>{unit}</b>'
23
+ if unit is None or unit == '':
24
+ return f'{value:.3f}'
25
+ else:
26
+ return f'{value:.3f} ({unit})'
27
+ except Exception as e:
28
+ print(f"Error in unit_formatter: {e}")
29
+ return 'N/A'