analysis3054 0.1.0__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- analysis3054-0.1.0/PKG-INFO +121 -0
- analysis3054-0.1.0/README.md +77 -0
- analysis3054-0.1.0/analysis3054/__init__.py +295 -0
- analysis3054-0.1.0/analysis3054/advanced.py +1310 -0
- analysis3054-0.1.0/analysis3054/estimators.py +359 -0
- analysis3054-0.1.0/analysis3054/finance.py +259 -0
- analysis3054-0.1.0/analysis3054/forecasting.py +3668 -0
- analysis3054-0.1.0/analysis3054/ml.py +263 -0
- analysis3054-0.1.0/analysis3054/plot.py +483 -0
- analysis3054-0.1.0/analysis3054/predict.py +275 -0
- analysis3054-0.1.0/analysis3054/regression.py +296 -0
- analysis3054-0.1.0/analysis3054/statistics.py +1209 -0
- analysis3054-0.1.0/analysis3054/stats.py +398 -0
- analysis3054-0.1.0/analysis3054/utils.py +324 -0
- analysis3054-0.1.0/analysis3054/visualization.py +420 -0
- analysis3054-0.1.0/analysis3054.egg-info/PKG-INFO +121 -0
- analysis3054-0.1.0/analysis3054.egg-info/SOURCES.txt +20 -0
- analysis3054-0.1.0/analysis3054.egg-info/dependency_links.txt +1 -0
- analysis3054-0.1.0/analysis3054.egg-info/requires.txt +31 -0
- analysis3054-0.1.0/analysis3054.egg-info/top_level.txt +1 -0
- analysis3054-0.1.0/pyproject.toml +91 -0
- analysis3054-0.1.0/setup.cfg +4 -0
|
@@ -0,0 +1,121 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: analysis3054
|
|
3
|
+
Version: 0.1.0
|
|
4
|
+
Summary: Advanced time-series analytics and forecasting toolkit for commodity / power trading (5-year bands, ML, regime switching, hierarchical utilities).
|
|
5
|
+
Author-email: secret <john23114693@gmial.com>
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://pypi.org/project/analysis3054/
|
|
8
|
+
Project-URL: Repository, https://github.com/yourname/analysis3054
|
|
9
|
+
Keywords: time-series,forecasting,power-trading,commodity,energy,analytics
|
|
10
|
+
Classifier: Programming Language :: Python :: 3
|
|
11
|
+
Classifier: Programming Language :: Python :: 3 :: Only
|
|
12
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
13
|
+
Classifier: Operating System :: OS Independent
|
|
14
|
+
Classifier: Intended Audience :: Financial and Insurance Industry
|
|
15
|
+
Classifier: Intended Audience :: Science/Research
|
|
16
|
+
Classifier: Topic :: Scientific/Engineering
|
|
17
|
+
Classifier: Topic :: Office/Business :: Financial
|
|
18
|
+
Requires-Python: >=3.9
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
Requires-Dist: pandas>=1.5
|
|
21
|
+
Requires-Dist: numpy>=1.24
|
|
22
|
+
Requires-Dist: plotly>=5.20
|
|
23
|
+
Requires-Dist: statsmodels>=0.13
|
|
24
|
+
Requires-Dist: scipy>=1.10
|
|
25
|
+
Provides-Extra: stats
|
|
26
|
+
Requires-Dist: pmdarima>=2.0; extra == "stats"
|
|
27
|
+
Requires-Dist: arch>=6.0; extra == "stats"
|
|
28
|
+
Provides-Extra: ml
|
|
29
|
+
Requires-Dist: scikit-learn>=1.2; extra == "ml"
|
|
30
|
+
Requires-Dist: xgboost>=2.0; extra == "ml"
|
|
31
|
+
Requires-Dist: lightgbm>=4.0; extra == "ml"
|
|
32
|
+
Requires-Dist: catboost>=1.2; extra == "ml"
|
|
33
|
+
Provides-Extra: dl
|
|
34
|
+
Requires-Dist: tensorflow>=2.12; extra == "dl"
|
|
35
|
+
Provides-Extra: prophet
|
|
36
|
+
Requires-Dist: prophet>=1.1; extra == "prophet"
|
|
37
|
+
Requires-Dist: neuralprophet>=0.6.0; extra == "prophet"
|
|
38
|
+
Provides-Extra: tbats
|
|
39
|
+
Requires-Dist: tbats>=1.1.3; extra == "tbats"
|
|
40
|
+
Provides-Extra: plot
|
|
41
|
+
Requires-Dist: plotly>=5.20; extra == "plot"
|
|
42
|
+
Provides-Extra: all
|
|
43
|
+
Requires-Dist: analysis3054[dl,ml,plot,prophet,stats,tbats]; extra == "all"
|
|
44
|
+
|
|
45
|
+
# EIA Band Plot & Time Series Forecasting
|
|
46
|
+
|
|
47
|
+
This package provides two primary utilities:
|
|
48
|
+
|
|
49
|
+
* **`five_year_plot`** – Generate interactive 5‑year band plots using
|
|
50
|
+
Plotly. These plots mirror the charts used by the U.S. Energy
|
|
51
|
+
Information Administration (EIA) to contextualize recent values
|
|
52
|
+
against the range, minimum, maximum and average of the last five
|
|
53
|
+
years. Multiple numeric columns within a DataFrame can be plotted
|
|
54
|
+
simultaneously as separate subplots.
|
|
55
|
+
|
|
56
|
+
* **`ml_forecast`** – Train individual AutoGluon time series models
|
|
57
|
+
for each numeric column in a DataFrame and forecast future values.
|
|
58
|
+
The function returns a DataFrame with point forecasts and, if
|
|
59
|
+
requested, prediction intervals. Each series is trained
|
|
60
|
+
independently using the specified presets (default: `best_quality`).
|
|
61
|
+
|
|
62
|
+
## Installation
|
|
63
|
+
|
|
64
|
+
Install the package with:
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
```bash
|
|
68
|
+
pip install analysis3054
|
|
69
|
+
```
|
|
70
|
+
|
|
71
|
+
To enable the optional machine‑learning forecasting features, also
|
|
72
|
+
install the AutoGluon time series dependency:
|
|
73
|
+
|
|
74
|
+
```bash
|
|
75
|
+
pip install analysis3054[ml]
|
|
76
|
+
```
|
|
77
|
+
|
|
78
|
+
## Usage
|
|
79
|
+
|
|
80
|
+
### Five‑Year Band Plot
|
|
81
|
+
|
|
82
|
+
```python
|
|
83
|
+
import pandas as pd
|
|
84
|
+
from analysis3054 import five_year_plot
|
|
85
|
+
|
|
86
|
+
# Example DataFrame with a 'date' column and one or more numeric columns
|
|
87
|
+
df = pd.read_csv("my_timeseries_data.csv")
|
|
88
|
+
|
|
89
|
+
# Create the plot
|
|
90
|
+
fig = five_year_plot(date='date', df=df, prior_year_lines=1)
|
|
91
|
+
fig.show()
|
|
92
|
+
```
|
|
93
|
+
|
|
94
|
+
### Machine Learning Forecasting
|
|
95
|
+
|
|
96
|
+
```python
|
|
97
|
+
import pandas as pd
|
|
98
|
+
from analysis3054 import ml_forecast
|
|
99
|
+
|
|
100
|
+
df = pd.read_csv("my_timeseries_data.csv")
|
|
101
|
+
|
|
102
|
+
# Forecast the next 12 periods for each numeric column
|
|
103
|
+
result = ml_forecast(date='date', df=df, periods=12)
|
|
104
|
+
|
|
105
|
+
# Access point forecasts
|
|
106
|
+
forecasts = result.forecasts
|
|
107
|
+
|
|
108
|
+
# Access confidence intervals (if requested)
|
|
109
|
+
conf_ints = result.conf_intervals
|
|
110
|
+
```
|
|
111
|
+
|
|
112
|
+
See the docstrings of each function for detailed parameter descriptions.
|
|
113
|
+
|
|
114
|
+
## User Guide
|
|
115
|
+
|
|
116
|
+
For a complete overview of all available functions, advanced
|
|
117
|
+
forecasting methods, statistical analyses and plotting utilities,
|
|
118
|
+
consult the **USER_GUIDE.md** file included with the package. It
|
|
119
|
+
provides step‑by‑step examples, explains optional parameters such as
|
|
120
|
+
confidence interval computation and plotting, and offers best
|
|
121
|
+
practices for combining models and interpreting results.
|
|
@@ -0,0 +1,77 @@
|
|
|
1
|
+
# EIA Band Plot & Time Series Forecasting
|
|
2
|
+
|
|
3
|
+
This package provides two primary utilities:
|
|
4
|
+
|
|
5
|
+
* **`five_year_plot`** – Generate interactive 5‑year band plots using
|
|
6
|
+
Plotly. These plots mirror the charts used by the U.S. Energy
|
|
7
|
+
Information Administration (EIA) to contextualize recent values
|
|
8
|
+
against the range, minimum, maximum and average of the last five
|
|
9
|
+
years. Multiple numeric columns within a DataFrame can be plotted
|
|
10
|
+
simultaneously as separate subplots.
|
|
11
|
+
|
|
12
|
+
* **`ml_forecast`** – Train individual AutoGluon time series models
|
|
13
|
+
for each numeric column in a DataFrame and forecast future values.
|
|
14
|
+
The function returns a DataFrame with point forecasts and, if
|
|
15
|
+
requested, prediction intervals. Each series is trained
|
|
16
|
+
independently using the specified presets (default: `best_quality`).
|
|
17
|
+
|
|
18
|
+
## Installation
|
|
19
|
+
|
|
20
|
+
Install the package with:
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
```bash
|
|
24
|
+
pip install analysis3054
|
|
25
|
+
```
|
|
26
|
+
|
|
27
|
+
To enable the optional machine‑learning forecasting features, also
|
|
28
|
+
install the AutoGluon time series dependency:
|
|
29
|
+
|
|
30
|
+
```bash
|
|
31
|
+
pip install analysis3054[ml]
|
|
32
|
+
```
|
|
33
|
+
|
|
34
|
+
## Usage
|
|
35
|
+
|
|
36
|
+
### Five‑Year Band Plot
|
|
37
|
+
|
|
38
|
+
```python
|
|
39
|
+
import pandas as pd
|
|
40
|
+
from analysis3054 import five_year_plot
|
|
41
|
+
|
|
42
|
+
# Example DataFrame with a 'date' column and one or more numeric columns
|
|
43
|
+
df = pd.read_csv("my_timeseries_data.csv")
|
|
44
|
+
|
|
45
|
+
# Create the plot
|
|
46
|
+
fig = five_year_plot(date='date', df=df, prior_year_lines=1)
|
|
47
|
+
fig.show()
|
|
48
|
+
```
|
|
49
|
+
|
|
50
|
+
### Machine Learning Forecasting
|
|
51
|
+
|
|
52
|
+
```python
|
|
53
|
+
import pandas as pd
|
|
54
|
+
from analysis3054 import ml_forecast
|
|
55
|
+
|
|
56
|
+
df = pd.read_csv("my_timeseries_data.csv")
|
|
57
|
+
|
|
58
|
+
# Forecast the next 12 periods for each numeric column
|
|
59
|
+
result = ml_forecast(date='date', df=df, periods=12)
|
|
60
|
+
|
|
61
|
+
# Access point forecasts
|
|
62
|
+
forecasts = result.forecasts
|
|
63
|
+
|
|
64
|
+
# Access confidence intervals (if requested)
|
|
65
|
+
conf_ints = result.conf_intervals
|
|
66
|
+
```
|
|
67
|
+
|
|
68
|
+
See the docstrings of each function for detailed parameter descriptions.
|
|
69
|
+
|
|
70
|
+
## User Guide
|
|
71
|
+
|
|
72
|
+
For a complete overview of all available functions, advanced
|
|
73
|
+
forecasting methods, statistical analyses and plotting utilities,
|
|
74
|
+
consult the **USER_GUIDE.md** file included with the package. It
|
|
75
|
+
provides step‑by‑step examples, explains optional parameters such as
|
|
76
|
+
confidence interval computation and plotting, and offers best
|
|
77
|
+
practices for combining models and interpreting results.
|
|
@@ -0,0 +1,295 @@
|
|
|
1
|
+
"""
|
|
2
|
+
EIA Band Plot Package
|
|
3
|
+
=====================
|
|
4
|
+
|
|
5
|
+
This package provides a convenient function for generating
|
|
6
|
+
`5‑year band` plots similar to those used by the U.S. Energy
|
|
7
|
+
Information Administration (EIA). These plots visualize the
|
|
8
|
+
historical range, average, and current/prior year values for a
|
|
9
|
+
time series, making it easy to see how recent data compare with
|
|
10
|
+
the last five years of history.
|
|
11
|
+
|
|
12
|
+
The primary entry point is :func:`~analysis3054.five_year_plot`.
|
|
13
|
+
|
|
14
|
+
Example
|
|
15
|
+
-------
|
|
16
|
+
.. code-block:: python
|
|
17
|
+
|
|
18
|
+
import pandas as pd
|
|
19
|
+
from analysis3054 import five_year_plot
|
|
20
|
+
|
|
21
|
+
# Suppose `df` has a ``date`` column and one or more value columns
|
|
22
|
+
fig = five_year_plot(date=df['date'], df=df)
|
|
23
|
+
fig.show()
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
from .plot import five_year_plot
|
|
27
|
+
from .ml import ml_forecast, ForecastResult
|
|
28
|
+
from .predict import monthly_predictor, MonthlyPredictionResult
|
|
29
|
+
from .utils import (
|
|
30
|
+
conditional_column_merge,
|
|
31
|
+
conditional_row_merge,
|
|
32
|
+
nearest_key_merge,
|
|
33
|
+
coalesce_merge,
|
|
34
|
+
rolling_fill,
|
|
35
|
+
data_quality_report,
|
|
36
|
+
)
|
|
37
|
+
from .estimators import (
|
|
38
|
+
bayesian_linear_estimator,
|
|
39
|
+
BayesianLinearResult,
|
|
40
|
+
gaussian_process_estimator,
|
|
41
|
+
GaussianProcessResult,
|
|
42
|
+
load_based_forecast,
|
|
43
|
+
LoadForecastResult,
|
|
44
|
+
)
|
|
45
|
+
from .finance import (
|
|
46
|
+
liquidity_adjusted_volatility,
|
|
47
|
+
LiquidityAdjustedVolatilityResult,
|
|
48
|
+
rolling_beta,
|
|
49
|
+
RollingBetaResult,
|
|
50
|
+
)
|
|
51
|
+
from .visualization import (
|
|
52
|
+
cumulative_return_plot,
|
|
53
|
+
DrawdownResult,
|
|
54
|
+
max_drawdown,
|
|
55
|
+
forecast_plot,
|
|
56
|
+
acf_pacf_plot,
|
|
57
|
+
)
|
|
58
|
+
from .stats import (
|
|
59
|
+
cross_correlation_plot,
|
|
60
|
+
partial_autocorrelation_plot,
|
|
61
|
+
PCAResult,
|
|
62
|
+
pca_decomposition,
|
|
63
|
+
granger_causality_matrix,
|
|
64
|
+
)
|
|
65
|
+
from .forecasting import (
|
|
66
|
+
arima_forecast,
|
|
67
|
+
ArimaForecastResult,
|
|
68
|
+
ets_forecast,
|
|
69
|
+
EtsForecastResult,
|
|
70
|
+
var_forecast,
|
|
71
|
+
VarForecastResult,
|
|
72
|
+
auto_arima_forecast,
|
|
73
|
+
AutoArimaForecastResult,
|
|
74
|
+
prophet_forecast,
|
|
75
|
+
ProphetForecastResult,
|
|
76
|
+
markov_switching_forecast,
|
|
77
|
+
MarkovSwitchingForecastResult,
|
|
78
|
+
unobserved_components_forecast,
|
|
79
|
+
UnobservedComponentsForecastResult,
|
|
80
|
+
dynamic_factor_forecast,
|
|
81
|
+
DynamicFactorForecastResult,
|
|
82
|
+
# Newly added advanced forecasting functions
|
|
83
|
+
sarimax_forecast,
|
|
84
|
+
SarimaxForecastResult,
|
|
85
|
+
lstm_forecast,
|
|
86
|
+
LstmForecastResult,
|
|
87
|
+
garch_forecast,
|
|
88
|
+
GarchForecastResult,
|
|
89
|
+
vecm_forecast,
|
|
90
|
+
VecmForecastResult,
|
|
91
|
+
xgboost_forecast,
|
|
92
|
+
XGBoostForecastResult,
|
|
93
|
+
lightgbm_forecast,
|
|
94
|
+
LightGBMForecastResult,
|
|
95
|
+
theta_forecast,
|
|
96
|
+
ThetaForecastResult,
|
|
97
|
+
# Additional advanced forecasting methods
|
|
98
|
+
elastic_net_forecast,
|
|
99
|
+
ElasticNetForecastResult,
|
|
100
|
+
svr_forecast,
|
|
101
|
+
SvrForecastResult,
|
|
102
|
+
tcn_forecast,
|
|
103
|
+
TcnForecastResult,
|
|
104
|
+
bats_forecast,
|
|
105
|
+
BatsForecastResult,
|
|
106
|
+
neuralprophet_forecast,
|
|
107
|
+
NeuralProphetForecastResult,
|
|
108
|
+
catboost_forecast,
|
|
109
|
+
CatBoostForecastResult,
|
|
110
|
+
knn_forecast,
|
|
111
|
+
KnnForecastResult,
|
|
112
|
+
transformer_forecast,
|
|
113
|
+
TransformerForecastResult,
|
|
114
|
+
)
|
|
115
|
+
from .advanced import (
|
|
116
|
+
harmonic_forecast,
|
|
117
|
+
HarmonicForecastResult,
|
|
118
|
+
ewma_volatility,
|
|
119
|
+
EwmaVolatilityResult,
|
|
120
|
+
monte_carlo_simulation,
|
|
121
|
+
MonteCarloSimulationResult,
|
|
122
|
+
value_at_risk,
|
|
123
|
+
VaRResult,
|
|
124
|
+
cointegration_test,
|
|
125
|
+
CointegrationTestResult,
|
|
126
|
+
spectral_density_plot,
|
|
127
|
+
wavelet_spectrogram,
|
|
128
|
+
kalman_smoother,
|
|
129
|
+
resample_time_series,
|
|
130
|
+
stl_decompose_plot,
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
# Statistical functions
|
|
134
|
+
from .statistics import (
|
|
135
|
+
hurst_exponent,
|
|
136
|
+
dfa_exponent,
|
|
137
|
+
rolling_sharpe_ratio,
|
|
138
|
+
sample_entropy,
|
|
139
|
+
higuchi_fractal_dimension,
|
|
140
|
+
RollingSharpeResult,
|
|
141
|
+
rolling_zscore,
|
|
142
|
+
RollingZScoreResult,
|
|
143
|
+
mann_kendall_test,
|
|
144
|
+
MannKendallResult,
|
|
145
|
+
bollinger_bands,
|
|
146
|
+
BollingerBandsResult,
|
|
147
|
+
stationarity_tests,
|
|
148
|
+
StationarityTestResult,
|
|
149
|
+
trend_seasonality_strength,
|
|
150
|
+
TrendSeasonalityStrengthResult,
|
|
151
|
+
box_cox_transform,
|
|
152
|
+
BoxCoxTransformResult,
|
|
153
|
+
seasonal_adjust,
|
|
154
|
+
SeasonalAdjustmentResult,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
# Regression and correlation utilities
|
|
158
|
+
from .regression import (
|
|
159
|
+
ols_regression,
|
|
160
|
+
RegressionResult,
|
|
161
|
+
rolling_correlation,
|
|
162
|
+
RollingCorrelationResult,
|
|
163
|
+
cusum_olsresid_test,
|
|
164
|
+
CusumTestResult,
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
__all__ = [
|
|
168
|
+
"five_year_plot",
|
|
169
|
+
"ml_forecast",
|
|
170
|
+
"ForecastResult",
|
|
171
|
+
"monthly_predictor",
|
|
172
|
+
"MonthlyPredictionResult",
|
|
173
|
+
"harmonic_forecast",
|
|
174
|
+
"HarmonicForecastResult",
|
|
175
|
+
"ewma_volatility",
|
|
176
|
+
"EwmaVolatilityResult",
|
|
177
|
+
"monte_carlo_simulation",
|
|
178
|
+
"MonteCarloSimulationResult",
|
|
179
|
+
"value_at_risk",
|
|
180
|
+
"VaRResult",
|
|
181
|
+
"cointegration_test",
|
|
182
|
+
"CointegrationTestResult",
|
|
183
|
+
"spectral_density_plot",
|
|
184
|
+
"wavelet_spectrogram",
|
|
185
|
+
"kalman_smoother",
|
|
186
|
+
"resample_time_series",
|
|
187
|
+
"stl_decompose_plot",
|
|
188
|
+
# data utilities
|
|
189
|
+
"conditional_column_merge",
|
|
190
|
+
"conditional_row_merge",
|
|
191
|
+
"nearest_key_merge",
|
|
192
|
+
"coalesce_merge",
|
|
193
|
+
"rolling_fill",
|
|
194
|
+
# advanced estimators
|
|
195
|
+
"bayesian_linear_estimator",
|
|
196
|
+
"BayesianLinearResult",
|
|
197
|
+
"gaussian_process_estimator",
|
|
198
|
+
"GaussianProcessResult",
|
|
199
|
+
"load_based_forecast",
|
|
200
|
+
"LoadForecastResult",
|
|
201
|
+
# financial analytics
|
|
202
|
+
"liquidity_adjusted_volatility",
|
|
203
|
+
"LiquidityAdjustedVolatilityResult",
|
|
204
|
+
"rolling_beta",
|
|
205
|
+
"RollingBetaResult",
|
|
206
|
+
# additional utilities and plotting
|
|
207
|
+
"data_quality_report",
|
|
208
|
+
"cumulative_return_plot",
|
|
209
|
+
"DrawdownResult",
|
|
210
|
+
"max_drawdown",
|
|
211
|
+
"forecast_plot",
|
|
212
|
+
"acf_pacf_plot",
|
|
213
|
+
# statistical analysis
|
|
214
|
+
"cross_correlation_plot",
|
|
215
|
+
"partial_autocorrelation_plot",
|
|
216
|
+
"PCAResult",
|
|
217
|
+
"pca_decomposition",
|
|
218
|
+
"granger_causality_matrix",
|
|
219
|
+
# forecasting
|
|
220
|
+
"arima_forecast",
|
|
221
|
+
"ArimaForecastResult",
|
|
222
|
+
"ets_forecast",
|
|
223
|
+
"EtsForecastResult",
|
|
224
|
+
"var_forecast",
|
|
225
|
+
"VarForecastResult",
|
|
226
|
+
"auto_arima_forecast",
|
|
227
|
+
"AutoArimaForecastResult",
|
|
228
|
+
"prophet_forecast",
|
|
229
|
+
"ProphetForecastResult",
|
|
230
|
+
"markov_switching_forecast",
|
|
231
|
+
"MarkovSwitchingForecastResult",
|
|
232
|
+
"unobserved_components_forecast",
|
|
233
|
+
"UnobservedComponentsForecastResult",
|
|
234
|
+
"dynamic_factor_forecast",
|
|
235
|
+
"DynamicFactorForecastResult",
|
|
236
|
+
# Newly added advanced forecasting functions
|
|
237
|
+
"sarimax_forecast",
|
|
238
|
+
"SarimaxForecastResult",
|
|
239
|
+
"lstm_forecast",
|
|
240
|
+
"LstmForecastResult",
|
|
241
|
+
"garch_forecast",
|
|
242
|
+
"GarchForecastResult",
|
|
243
|
+
"vecm_forecast",
|
|
244
|
+
"VecmForecastResult",
|
|
245
|
+
"xgboost_forecast",
|
|
246
|
+
"XGBoostForecastResult",
|
|
247
|
+
"lightgbm_forecast",
|
|
248
|
+
"LightGBMForecastResult",
|
|
249
|
+
"theta_forecast",
|
|
250
|
+
"ThetaForecastResult",
|
|
251
|
+
# newly added advanced forecasting methods
|
|
252
|
+
"elastic_net_forecast",
|
|
253
|
+
"ElasticNetForecastResult",
|
|
254
|
+
"svr_forecast",
|
|
255
|
+
"SvrForecastResult",
|
|
256
|
+
"tcn_forecast",
|
|
257
|
+
"TcnForecastResult",
|
|
258
|
+
"bats_forecast",
|
|
259
|
+
"BatsForecastResult",
|
|
260
|
+
"neuralprophet_forecast",
|
|
261
|
+
"NeuralProphetForecastResult",
|
|
262
|
+
"catboost_forecast",
|
|
263
|
+
"CatBoostForecastResult",
|
|
264
|
+
"knn_forecast",
|
|
265
|
+
"KnnForecastResult",
|
|
266
|
+
"transformer_forecast",
|
|
267
|
+
"TransformerForecastResult",
|
|
268
|
+
"hurst_exponent",
|
|
269
|
+
"dfa_exponent",
|
|
270
|
+
"rolling_sharpe_ratio",
|
|
271
|
+
"RollingSharpeResult",
|
|
272
|
+
"sample_entropy",
|
|
273
|
+
"higuchi_fractal_dimension",
|
|
274
|
+
"rolling_zscore",
|
|
275
|
+
"RollingZScoreResult",
|
|
276
|
+
"mann_kendall_test",
|
|
277
|
+
"MannKendallResult",
|
|
278
|
+
"bollinger_bands",
|
|
279
|
+
"BollingerBandsResult",
|
|
280
|
+
"stationarity_tests",
|
|
281
|
+
"StationarityTestResult",
|
|
282
|
+
"trend_seasonality_strength",
|
|
283
|
+
"TrendSeasonalityStrengthResult",
|
|
284
|
+
"box_cox_transform",
|
|
285
|
+
"BoxCoxTransformResult",
|
|
286
|
+
"seasonal_adjust",
|
|
287
|
+
"SeasonalAdjustmentResult",
|
|
288
|
+
# regression and correlation
|
|
289
|
+
"ols_regression",
|
|
290
|
+
"RegressionResult",
|
|
291
|
+
"rolling_correlation",
|
|
292
|
+
"RollingCorrelationResult",
|
|
293
|
+
"cusum_olsresid_test",
|
|
294
|
+
"CusumTestResult",
|
|
295
|
+
]
|