analyser_hj3415 2.9.18__tar.gz → 2.10.0__tar.gz

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: analyser_hj3415
3
- Version: 2.9.18
3
+ Version: 2.10.0
4
4
  Summary: Stock analyser and database processing programs
5
5
  Requires-Python: >=3.6
6
6
  Description-Content-Type: text/markdown
7
- Requires-Dist: utils-hj3415>=2.9.2
8
- Requires-Dist: db-hj3415>=4.1.4
7
+ Requires-Dist: utils-hj3415>=2.9.4
8
+ Requires-Dist: db-hj3415>=4.2.3
9
9
  Requires-Dist: scikit-learn>=1.5.2
10
10
  Requires-Dist: plotly>=5.24.1
11
11
  Requires-Dist: yfinance>=0.2.44
@@ -346,12 +346,28 @@ class MyLSTM:
346
346
  y.append(data[i + time_step, 0])
347
347
  return np.array(X), np.array(y)
348
348
 
349
+
349
350
  X_train, y_train_1d = create_dataset(train_data_2d)
350
351
  X_test, y_test_1d = create_dataset(test_data_2d)
352
+ tsa_logger.debug(X_train.shape)
353
+ tsa_logger.debug(X_test.shape)
351
354
 
352
- # LSTM 모델 입력을 위해 데이터를 3차원으로 변환
353
- X_train_3d = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
354
- X_test_3d = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
355
+ try:
356
+ # LSTM 모델 입력을 위해 데이터를 3차원으로 변환
357
+ X_train_3d = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)
358
+ X_test_3d = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)
359
+ except IndexError:
360
+ return LSTMData(
361
+ code=self.code,
362
+ data_2d=np.array([]),
363
+ train_size=0,
364
+ train_data_2d=np.array([]),
365
+ test_data_2d=np.array([]),
366
+ X_train_3d=np.array([]),
367
+ X_test_3d=np.array([]),
368
+ y_train_1d=np.array([]),
369
+ y_test_1d=np.array([]),
370
+ )
355
371
 
356
372
  tsa_logger.debug(f'n_dim - X_train_3d : {X_train_3d.ndim}, X_test_3d : {X_test_3d.ndim}, y_train : {y_train_1d.ndim}, y_test : {y_test_1d.ndim}')
357
373
  tsa_logger.debug(f'len - X_train_3d : {len(X_train_3d)}, X_test_3d : {len(X_test_3d)}, y_train : {len(y_train_1d)}, y_test : {len(y_test_1d)}')
@@ -517,8 +533,11 @@ class MyLSTM:
517
533
  :return:
518
534
  """
519
535
  # 앙상블 테스트와 채점
520
- _, _, ensemble_future_predictions_2d = self.ensemble_training(
536
+ try:
537
+ _, _, ensemble_future_predictions_2d = self.ensemble_training(
521
538
  num=num_in)
539
+ except IndexError:
540
+ return [], []
522
541
 
523
542
  """if grading:
524
543
  lstm_grade = self.grading(ensemble_train_predictions_2d, ensemble_test_predictions_2d)
@@ -5,7 +5,7 @@ build-backend = "flit_core.buildapi"
5
5
 
6
6
  [project]
7
7
  name = "analyser_hj3415"
8
- version = "2.9.18"
8
+ version = "2.10.0"
9
9
  description = "Stock analyser and database processing programs"
10
10
  readme = "README.md"
11
11
  requires-python = ">=3.6"
@@ -20,8 +20,8 @@ requires-python = ">=3.6"
20
20
  # "Operating System :: OS Independent"
21
21
  #]
22
22
  dependencies = [
23
- "utils-hj3415>=2.9.2",
24
- "db-hj3415>=4.1.4",
23
+ "utils-hj3415>=2.9.4",
24
+ "db-hj3415>=4.2.3",
25
25
  "scikit-learn>=1.5.2",
26
26
  "plotly>=5.24.1",
27
27
  "yfinance>=0.2.44",