alonso 0.0.7__tar.gz → 0.0.9__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {alonso-0.0.7 → alonso-0.0.9}/PKG-INFO +2 -2
- {alonso-0.0.7 → alonso-0.0.9}/README.md +1 -1
- {alonso-0.0.7 → alonso-0.0.9}/alonso/app.py +1 -1
- {alonso-0.0.7 → alonso-0.0.9}/alonso/batch.py +1 -1
- {alonso-0.0.7 → alonso-0.0.9}/alonso/partition.py +12 -20
- {alonso-0.0.7 → alonso-0.0.9}/alonso/test.py +1 -1
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/PKG-INFO +2 -2
- {alonso-0.0.7 → alonso-0.0.9}/setup.py +1 -1
- {alonso-0.0.7 → alonso-0.0.9}/LICENSE +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/__init__.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/algorithm.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/applogger.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/merge.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/parser.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/stable.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso/utils.py +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/SOURCES.txt +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/dependency_links.txt +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/entry_points.txt +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/requires.txt +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/alonso.egg-info/top_level.txt +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/pyproject.toml +0 -0
- {alonso-0.0.7 → alonso-0.0.9}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: alonso
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.9
|
4
4
|
Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
|
5
5
|
Home-page: https://github.com/frankvegadelgado/alonso
|
6
6
|
Author: Frank Vega
|
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
|
|
69
69
|
|
70
70
|
# Overview of the Algorithm and Its Running Time
|
71
71
|
|
72
|
-
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in
|
72
|
+
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
|
73
73
|
|
74
74
|
---
|
75
75
|
|
@@ -31,7 +31,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
|
|
31
31
|
|
32
32
|
# Overview of the Algorithm and Its Running Time
|
33
33
|
|
34
|
-
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in
|
34
|
+
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
|
35
35
|
|
36
36
|
---
|
37
37
|
|
@@ -82,7 +82,7 @@ def main():
|
|
82
82
|
helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
|
83
83
|
helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
|
84
84
|
helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
|
85
|
-
helper.add_argument('--version', action='version', version='%(prog)s 0.0.
|
85
|
+
helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
|
86
86
|
|
87
87
|
# Initialize the parameters
|
88
88
|
args = helper.parse_args()
|
@@ -36,7 +36,7 @@ def main():
|
|
36
36
|
helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
|
37
37
|
helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
|
38
38
|
helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
|
39
|
-
helper.add_argument('--version', action='version', version='%(prog)s 0.0.
|
39
|
+
helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
|
40
40
|
|
41
41
|
|
42
42
|
# Initialize the parameters
|
@@ -1,7 +1,8 @@
|
|
1
1
|
from collections import defaultdict
|
2
2
|
import networkx as nx
|
3
3
|
from typing import Set, Tuple, List
|
4
|
-
import mendive.algorithm as
|
4
|
+
import mendive.algorithm as claws
|
5
|
+
import aegypti.algorithm as triangles
|
5
6
|
class ClawFreePartitioner:
|
6
7
|
"""
|
7
8
|
Implements a polynomial-time algorithm to partition graph edges into two sets
|
@@ -57,32 +58,23 @@ class ClawFreePartitioner:
|
|
57
58
|
True if adding the edge would create a claw, False otherwise
|
58
59
|
"""
|
59
60
|
# Build adjacency list for current partition
|
60
|
-
|
61
|
+
G = nx.Graph()
|
61
62
|
for u, v in edges_in_partition:
|
62
|
-
|
63
|
-
adj[v].add(u)
|
63
|
+
G.add_edge(u, v)
|
64
64
|
|
65
65
|
# Add the new edge temporarily
|
66
66
|
u, v = new_edge
|
67
|
-
|
68
|
-
|
69
|
-
|
67
|
+
G.add_edge(u, v)
|
68
|
+
H = nx.complement(G)
|
70
69
|
# Check if any vertex now forms a claw
|
71
70
|
for vertex in [u, v]:
|
72
|
-
neighbors = list(
|
71
|
+
neighbors = list(G.neighbors(vertex))
|
73
72
|
if len(neighbors) >= 3:
|
74
73
|
# Check all combinations of 3 neighbors
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
n1, n2, n3 = neighbors[i], neighbors[j], neighbors[k]
|
80
|
-
# Check if these 3 neighbors are not connected to each other
|
81
|
-
# (which would make vertex the center of a claw)
|
82
|
-
if (n1 not in adj[n2] and n2 not in adj[n1] and
|
83
|
-
n1 not in adj[n3] and n3 not in adj[n1] and
|
84
|
-
n2 not in adj[n3] and n3 not in adj[n2]):
|
85
|
-
return True
|
74
|
+
subgraph = H.subgraph(neighbors)
|
75
|
+
triangle = triangles.find_triangle_coordinates(subgraph, first_triangle=True)
|
76
|
+
if triangle is not None:
|
77
|
+
return True
|
86
78
|
|
87
79
|
return False
|
88
80
|
|
@@ -162,7 +154,7 @@ class ClawFreePartitioner:
|
|
162
154
|
# Build adjacency list
|
163
155
|
G = nx.Graph()
|
164
156
|
G.add_edges_from(edge_set)
|
165
|
-
claw =
|
157
|
+
claw = claws.find_claw_coordinates(G, first_claw=True)
|
166
158
|
if claw is None:
|
167
159
|
return True
|
168
160
|
else:
|
@@ -34,7 +34,7 @@ def main():
|
|
34
34
|
helper.add_argument('-w', '--write', action='store_true', help='write the generated random matrix to a file in the current directory')
|
35
35
|
helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
|
36
36
|
helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
|
37
|
-
helper.add_argument('--version', action='version', version='%(prog)s 0.0.
|
37
|
+
helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
|
38
38
|
|
39
39
|
# Initialize the parameters
|
40
40
|
args = helper.parse_args()
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: alonso
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.9
|
4
4
|
Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
|
5
5
|
Home-page: https://github.com/frankvegadelgado/alonso
|
6
6
|
Author: Frank Vega
|
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
|
|
69
69
|
|
70
70
|
# Overview of the Algorithm and Its Running Time
|
71
71
|
|
72
|
-
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in
|
72
|
+
The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
|
73
73
|
|
74
74
|
---
|
75
75
|
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|