alonso 0.0.7__tar.gz → 0.0.9__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alonso
3
- Version: 0.0.7
3
+ Version: 0.0.9
4
4
  Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
5
5
  Home-page: https://github.com/frankvegadelgado/alonso
6
6
  Author: Frank Vega
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
69
69
 
70
70
  # Overview of the Algorithm and Its Running Time
71
71
 
72
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $O(n^3)$, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
72
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
73
73
 
74
74
  ---
75
75
 
@@ -31,7 +31,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
31
31
 
32
32
  # Overview of the Algorithm and Its Running Time
33
33
 
34
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $O(n^3)$, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
34
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
35
35
 
36
36
  ---
37
37
 
@@ -82,7 +82,7 @@ def main():
82
82
  helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
83
83
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
84
84
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
85
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.7')
85
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
86
86
 
87
87
  # Initialize the parameters
88
88
  args = helper.parse_args()
@@ -36,7 +36,7 @@ def main():
36
36
  helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
37
37
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
38
38
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
39
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.7')
39
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
40
40
 
41
41
 
42
42
  # Initialize the parameters
@@ -1,7 +1,8 @@
1
1
  from collections import defaultdict
2
2
  import networkx as nx
3
3
  from typing import Set, Tuple, List
4
- import mendive.algorithm as algo
4
+ import mendive.algorithm as claws
5
+ import aegypti.algorithm as triangles
5
6
  class ClawFreePartitioner:
6
7
  """
7
8
  Implements a polynomial-time algorithm to partition graph edges into two sets
@@ -57,32 +58,23 @@ class ClawFreePartitioner:
57
58
  True if adding the edge would create a claw, False otherwise
58
59
  """
59
60
  # Build adjacency list for current partition
60
- adj = defaultdict(set)
61
+ G = nx.Graph()
61
62
  for u, v in edges_in_partition:
62
- adj[u].add(v)
63
- adj[v].add(u)
63
+ G.add_edge(u, v)
64
64
 
65
65
  # Add the new edge temporarily
66
66
  u, v = new_edge
67
- adj[u].add(v)
68
- adj[v].add(u)
69
-
67
+ G.add_edge(u, v)
68
+ H = nx.complement(G)
70
69
  # Check if any vertex now forms a claw
71
70
  for vertex in [u, v]:
72
- neighbors = list(adj[vertex])
71
+ neighbors = list(G.neighbors(vertex))
73
72
  if len(neighbors) >= 3:
74
73
  # Check all combinations of 3 neighbors
75
-
76
- for i in range(len(neighbors)):
77
- for j in range(i + 1, len(neighbors)):
78
- for k in range(j + 1, len(neighbors)):
79
- n1, n2, n3 = neighbors[i], neighbors[j], neighbors[k]
80
- # Check if these 3 neighbors are not connected to each other
81
- # (which would make vertex the center of a claw)
82
- if (n1 not in adj[n2] and n2 not in adj[n1] and
83
- n1 not in adj[n3] and n3 not in adj[n1] and
84
- n2 not in adj[n3] and n3 not in adj[n2]):
85
- return True
74
+ subgraph = H.subgraph(neighbors)
75
+ triangle = triangles.find_triangle_coordinates(subgraph, first_triangle=True)
76
+ if triangle is not None:
77
+ return True
86
78
 
87
79
  return False
88
80
 
@@ -162,7 +154,7 @@ class ClawFreePartitioner:
162
154
  # Build adjacency list
163
155
  G = nx.Graph()
164
156
  G.add_edges_from(edge_set)
165
- claw = algo.find_claw_coordinates(G, first_claw=True)
157
+ claw = claws.find_claw_coordinates(G, first_claw=True)
166
158
  if claw is None:
167
159
  return True
168
160
  else:
@@ -34,7 +34,7 @@ def main():
34
34
  helper.add_argument('-w', '--write', action='store_true', help='write the generated random matrix to a file in the current directory')
35
35
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
36
36
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
37
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.7')
37
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.9')
38
38
 
39
39
  # Initialize the parameters
40
40
  args = helper.parse_args()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alonso
3
- Version: 0.0.7
3
+ Version: 0.0.9
4
4
  Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
5
5
  Home-page: https://github.com/frankvegadelgado/alonso
6
6
  Author: Frank Vega
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
69
69
 
70
70
  # Overview of the Algorithm and Its Running Time
71
71
 
72
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $O(n^3)$, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
72
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), checking for claw-free in $\mathcal{O}(m \cdot \Delta)$ where $\Delta$ is the maximum degree, partitions edges in $\mathcal{O}(n^3)$, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n \cdot \log n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursion depth never exceeds a small constant, most commonly 2. This yields a total runtime of $\mathcal{O}(n^3)$, per a constant time of recursion levels.
73
73
 
74
74
  ---
75
75
 
@@ -2,7 +2,7 @@ from pathlib import Path
2
2
 
3
3
  import setuptools
4
4
 
5
- VERSION = "0.0.7"
5
+ VERSION = "0.0.9"
6
6
 
7
7
  NAME = "alonso"
8
8
 
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes