alonso 0.0.3__tar.gz → 0.0.5__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alonso
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
5
5
  Home-page: https://github.com/frankvegadelgado/alonso
6
6
  Author: Frank Vega
@@ -22,7 +22,7 @@ Classifier: Natural Language :: English
22
22
  Requires-Python: >=3.10
23
23
  Description-Content-Type: text/markdown
24
24
  License-File: LICENSE
25
- Requires-Dist: mendive>=0.0.4
25
+ Requires-Dist: mendive>=0.0.5
26
26
  Dynamic: author
27
27
  Dynamic: author-email
28
28
  Dynamic: classifier
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
69
69
 
70
70
  # Overview of the Algorithm and Its Running Time
71
71
 
72
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), partitions edges in $\mathcal{O}(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursive nature, with a worst-case depth of $\mathcal{O}(m)$ if each step covers one edge, yields a total runtime of $\mathcal{O}(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = \mathcal{O}(n)$), this simplifies to $\mathcal{O}(n^4)$.
72
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$, partitions edges in $O(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
73
73
 
74
74
  ---
75
75
 
@@ -31,7 +31,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
31
31
 
32
32
  # Overview of the Algorithm and Its Running Time
33
33
 
34
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), partitions edges in $\mathcal{O}(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursive nature, with a worst-case depth of $\mathcal{O}(m)$ if each step covers one edge, yields a total runtime of $\mathcal{O}(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = \mathcal{O}(n)$), this simplifies to $\mathcal{O}(n^4)$.
34
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$, partitions edges in $O(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
35
35
 
36
36
  ---
37
37
 
@@ -24,54 +24,52 @@ def find_vertex_cover(graph):
24
24
  # Validate that the input is a valid undirected NetworkX graph
25
25
  if not isinstance(graph, nx.Graph):
26
26
  raise ValueError("Input must be an undirected NetworkX Graph.")
27
-
27
+
28
28
  # Handle trivial cases: return empty set for graphs with no nodes or no edges
29
29
  if graph.number_of_nodes() == 0 or graph.number_of_edges() == 0:
30
30
  return set() # No vertices or edges mean no cover is needed
31
-
31
+
32
32
  # Create a working copy to avoid modifying the original graph
33
33
  working_graph = graph.copy()
34
-
34
+
35
35
  # Remove self-loops as they are irrelevant for vertex cover computation
36
36
  working_graph.remove_edges_from(list(nx.selfloop_edges(working_graph)))
37
-
37
+
38
38
  # Remove isolated nodes (degree 0) since they don't contribute to the vertex cover
39
39
  working_graph.remove_nodes_from(list(nx.isolates(working_graph)))
40
-
40
+
41
41
  # Return empty set if the cleaned graph has no nodes after removals
42
42
  if working_graph.number_of_nodes() == 0:
43
43
  return set()
44
-
45
- # Structural analysis: detect presence of claw subgraphs (K_{1,3})
44
+
45
+ # Structural analysis: detect presence of claw subgraphs
46
46
  # This determines which algorithmic approach to use
47
47
  claw = algo.find_claw_coordinates(working_graph, first_claw=True)
48
-
48
+
49
49
  if claw is None:
50
50
  # CASE 1: Claw-free graph - use polynomial-time exact algorithm
51
51
  # Apply Faenza-Oriolo-Stauffer algorithm for weighted stable set on claw-free graphs
52
52
  # The maximum weighted stable set's complement gives us the minimum vertex cover
53
53
  E = working_graph.edges()
54
54
  approximate_vertex_cover = stable.minimum_vertex_cover_claw_free(E)
55
-
55
+
56
56
  else:
57
57
  # CASE 2: Graph contains claws - use divide-and-conquer approach
58
-
59
- # Step 1: Edge partitioning using enhanced Burr-Erdős-Lovász technique
60
- # Partition edges E = E1 E2 such that both induced subgraphs G[E1] and G[E2] are claw-free
61
- # Complexity: O(m * (m * Δ * C + C^2)), where m is edges, Δ is maximum degree, C is number of claws
58
+
59
+ # Step 1: Edge partitioning using enhanced Burr-Erdos-Lovasz technique
60
+ # Partition edges E = E1 union E2 such that both induced subgraphs G[E1] and G[E2] are claw-free
62
61
  E1, E2 = partition.partition_edges_claw_free(working_graph)
63
-
62
+
64
63
  # Step 2: Solve subproblems optimally on claw-free partitions
65
64
  # Each partition can be solved exactly using polynomial-time algorithms
66
- vertex_cover_1 = stable.minimum_vertex_cover_claw_free(E1) # O(n^3) for subgraph G[E1]
67
- vertex_cover_2 = stable.minimum_vertex_cover_claw_free(E2) # O(n^3) for subgraph G[E2]
68
-
69
- # Step 3: Intelligent merging with 1.42-approximation guarantee
70
- # Time complexity: O(|V| × log |V|)
65
+ vertex_cover_1 = stable.minimum_vertex_cover_claw_free(E1)
66
+ vertex_cover_2 = stable.minimum_vertex_cover_claw_free(E2)
67
+
68
+ # Step 3: Intelligent merging with 1.9-approximation guarantee
71
69
  approximate_vertex_cover = merge.merge_vertex_covers(
72
70
  working_graph, vertex_cover_1, vertex_cover_2
73
71
  )
74
-
72
+
75
73
  # Step 4: Handle residual uncovered edges through recursion
76
74
  # Construct residual graph containing edges missed by current vertex cover
77
75
  residual_graph = nx.Graph()
@@ -79,14 +77,14 @@ def find_vertex_cover(graph):
79
77
  # Edge (u,v) is uncovered if neither endpoint is in our current cover
80
78
  if u not in approximate_vertex_cover and v not in approximate_vertex_cover:
81
79
  residual_graph.add_edge(u, v)
82
-
80
+
83
81
  # Recursive call to handle remaining uncovered structure
84
82
  # This ensures completeness: every edge in the original graph is covered
85
83
  residual_vertex_cover = find_vertex_cover(residual_graph)
86
-
84
+
87
85
  # Combine solutions: union of main cover and residual cover
88
86
  approximate_vertex_cover = approximate_vertex_cover.union(residual_vertex_cover)
89
-
87
+
90
88
  return approximate_vertex_cover
91
89
 
92
90
  def find_vertex_cover_brute_force(graph):
@@ -82,7 +82,7 @@ def main():
82
82
  helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
83
83
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
84
84
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
85
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.3')
85
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.5')
86
86
 
87
87
  # Initialize the parameters
88
88
  args = helper.parse_args()
@@ -36,7 +36,7 @@ def main():
36
36
  helper.add_argument('-c', '--count', action='store_true', help='calculate the size of the vertex cover')
37
37
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
38
38
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
39
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.3')
39
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.5')
40
40
 
41
41
 
42
42
  # Initialize the parameters
@@ -34,7 +34,7 @@ def main():
34
34
  helper.add_argument('-w', '--write', action='store_true', help='write the generated random matrix to a file in the current directory')
35
35
  helper.add_argument('-v', '--verbose', action='store_true', help='anable verbose output')
36
36
  helper.add_argument('-l', '--log', action='store_true', help='enable file logging')
37
- helper.add_argument('--version', action='version', version='%(prog)s 0.0.3')
37
+ helper.add_argument('--version', action='version', version='%(prog)s 0.0.5')
38
38
 
39
39
  # Initialize the parameters
40
40
  args = helper.parse_args()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: alonso
3
- Version: 0.0.3
3
+ Version: 0.0.5
4
4
  Summary: Compute an Approximate Vertex Cover for undirected graph encoded in DIMACS format.
5
5
  Home-page: https://github.com/frankvegadelgado/alonso
6
6
  Author: Frank Vega
@@ -22,7 +22,7 @@ Classifier: Natural Language :: English
22
22
  Requires-Python: >=3.10
23
23
  Description-Content-Type: text/markdown
24
24
  License-File: LICENSE
25
- Requires-Dist: mendive>=0.0.4
25
+ Requires-Dist: mendive>=0.0.5
26
26
  Dynamic: author
27
27
  Dynamic: author-email
28
28
  Dynamic: classifier
@@ -69,7 +69,7 @@ Given an undirected graph $G = (V, E)$, a **vertex cover** is a subset $V' \subs
69
69
 
70
70
  # Overview of the Algorithm and Its Running Time
71
71
 
72
- The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $\mathcal{O}(n + m)$), partitions edges in $\mathcal{O}(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $\mathcal{O}(n^3)$ per subgraph (total $\mathcal{O}(n^3)$), merges covers in $\mathcal{O}(n)$, and constructs the residual graph in $\mathcal{O}(m)$. The recursive nature, with a worst-case depth of $\mathcal{O}(m)$ if each step covers one edge, yields a total runtime of $\mathcal{O}(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = \mathcal{O}(n)$), this simplifies to $\mathcal{O}(n^4)$.
72
+ The `find_vertex_cover` algorithm approximates a minimum vertex cover for an undirected graph $G = (V, E)$ by partitioning its edges into two claw-free subgraphs using the Burr-Erdős-Lovász (1976) method, computing exact vertex covers for these subgraphs with the Faenza, Oriolo, and Stauffer (2011) approach, and recursively refining the solution on residual edges. This process prevents the ratio from reaching 2, leveraging overlap between subgraphs and minimal additions in recursion. The algorithm begins by cleaning the graph (removing self-loops and isolates in $O(n + m)$), checking for claw-free in $O(m \cdot \Delta)$, partitions edges in $O(m \cdot (m \cdot \Delta \cdot C + C^2))$ where $\Delta$ is the maximum degree and $C$ is the number of claws, computes vertex covers in $O(n^3)$ per subgraph (total $O(n^3)$), merges covers in $O(n \cdot \log n)$, and constructs the residual graph in $O(m)$. The recursive nature, with a worst-case depth of $O(m)$ if each step covers one edge, yields a total runtime of $O(n^3 m)$, dominated by the cubic cost across levels. For sparse graphs ($m = O(n)$), this simplifies to $O(n^4)$.
73
73
 
74
74
  ---
75
75
 
@@ -0,0 +1 @@
1
+ mendive>=0.0.5
@@ -2,12 +2,12 @@ from pathlib import Path
2
2
 
3
3
  import setuptools
4
4
 
5
- VERSION = "0.0.3"
5
+ VERSION = "0.0.5"
6
6
 
7
7
  NAME = "alonso"
8
8
 
9
9
  INSTALL_REQUIRES = [
10
- "mendive>=0.0.4",
10
+ "mendive>=0.0.5",
11
11
  ]
12
12
 
13
13
  setuptools.setup(
@@ -1 +0,0 @@
1
- mendive>=0.0.4
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes