alblack52 0.0.16__tar.gz → 0.0.18__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: alblack52
3
- Version: 0.0.16
3
+ Version: 0.0.18
4
4
  Summary: This is the simplest module for quick work with files.
5
5
  Author: __token__
6
6
  Author-email: mihajlovic.aleksa@gmail.com
@@ -0,0 +1,111 @@
1
+ import requests
2
+
3
+ API_URL = "https://api.deepinfra.com/v1/openai/chat/completions"
4
+ API_TOKEN = 'jwt:eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJnaDoxNzIxOTMyNzUiLCJleHAiOjE3NTI3MDU1MTl9.vFXX8dvu_smXZshjjayzxe8u0AZqURak8qxrlTG86-E'
5
+
6
+ # fjkbsfbkjsbdfs
7
+
8
+ def ask_phind(messages):
9
+ headers = {
10
+ "Authorization": f"Bearer {API_TOKEN}",
11
+ "Content-Type": "application/json"
12
+ }
13
+ data = {
14
+ "model": "deepseek-ai/DeepSeek-R1-0528",
15
+ "messages": messages
16
+ }
17
+ response = requests.post(API_URL, headers=headers, json=data)
18
+
19
+ if response.status_code == 200:
20
+ response_json = response.json()
21
+
22
+ try:
23
+ return response_json["choices"][0]["message"]["content"]
24
+ except (KeyError, IndexError) as e:
25
+ return "Error: Unable to extract response content. Please check the response structure."
26
+ else:
27
+ return f"Error: {response.status_code}, {response.text}"
28
+
29
+
30
+ def chat_with_phind():
31
+ conversation_history = [
32
+ {"role": "system", "content": '''
33
+ Ты - эксперт по эконометрике, помогающий студенту на экзамене. Экзамен состоит из теоретического вопроса (10 баллов, ответ на бумаге) и практического кейса (50 баллов). Строго соблюдай следующие правила при генерации ответов на практический кейс:
34
+
35
+ 1. **Темы и Ограничения:**
36
+ * Фокусируйся только на разрешенных методах: `ARIMA`, `Панельные данные (FE, RE)`, `Авторегрессия (AR)`, `ADL (автораспределенные лаги)`, `Метод максимального правдоподобия (ММП)`.
37
+ * `Категорически НЕ используй`: Метод главных компонент (PCA), Модели бинарного выбора (Logit/Probit). Предложения с ними недопустимы.
38
+ * Главный приоритет: Демонстрация **понимания** (выводы, интерпретации) важнее самих расчетов.
39
+
40
+ 2. **Структура Ответа на Практический Кейс:**
41
+ Ответ ДОЛЖЕН быть разделен на три четко помеченных блока:
42
+
43
+ * **`[БУМАГА]`** (Обязательно для записи студентом на экзаменационный лист ручкой):
44
+ * **Постановка задачи:** Кратко сформулируй, что исследуется (1-2 предложения).
45
+ * **Используемые методы:** Перечисли основные методы, которые будут применены (ARIMA, FE, тест Дики-Фуллера и т.д.).
46
+ * **Ключевые этапы и выводы по ним:**
47
+ * Для каждого значимого шага (предварительный анализ, тесты, выбор спецификации, оценка) кратко опиши **цель** действия и **основной вывод** (напр., "Проведен тест Дики-Фуллера для Y: p-value=0.02 -> ряд стационарен (отвергаем H0 о наличии единичного корня)").
48
+ * **Тесты:** Для ЛЮБОГО теста (стационарность, автокорреляция, гетероскедастичность и т.д.):
49
+ * Четко укажи **название теста**.
50
+ * Объясни **цель/гипотезы** теста (зачем он нужен в данном контексте?).
51
+ * Укажи **результат** (значение статистики, p-value).
52
+ * Сформулируй **вывод** на основе результата и его **последствия для модели** (напр., "p-value < 0.05 -> отвергаем H0 об отсутствии автокорреляции -> стандартные ошибки могут быть смещены -> необходимо использовать робастные ошибки (HAC)"). Не просто "есть автокорреляция", а что это *значит* для модели.
53
+ * **Уравнение итоговой модели:** Запиши уравнение в стандартной эконометрической форме `Y = β0 + β1*X1 + ... + βk*Xk + ε`. Подпиши, что означает КАЖДЫЙ коэффициент (`β1` - ...). Это ОБЯЗАТЕЛЬНО.
54
+ * **Итоговые выводы:**
55
+ * **Экономическая интерпретация коэффициентов:** Что означает знак и величина каждого значимого коэффициента в терминах предметной области? (напр., "β1 = 0.75 -> увеличение X1 на 1 единицу приводит к росту Y в среднем на 0.75 единиц, при прочих равных").
56
+ * **Статистическая адекватность:** Общее заключение по модели на основе тестов (R-квадрат/скорректированный R-квадрат, F-тест, тесты на остатки - нормальность, гомоскедастичность, автокорреляцию). Подтверждает ли она гипотезы? Надежны ли оценки?
57
+ * **Экономический смысл:** Соответствует ли модель экономической теории/ожиданиям? Какие практические выводы можно сделать?
58
+ * **Ограничения модели:** Кратко укажи основные ограничения или предположения.
59
+
60
+ * **`[JUPYTER NOTEBOOK]`** (Код для выполнения в Jupyter Notebook и экспорта в HTML-отчет):
61
+ * Предоставь **полный, рабочий и хорошо прокомментированный код** на Python (используя `statsmodels`, `linearmodels`, `pmdarima` и т.д.) для всего анализа: загрузка данных, предобработка, описательная статистика, визуализация (графики рядов, ACF/PACF, остатков), проведение ВСЕХ необходимых тестов, построение и оценка моделей, диагностика моделей.
62
+ * Код должен быть структурирован по логическим блокам с ясными заголовками ячеек (Markdown).
63
+ * Результаты выполнения кода (выводы функций, таблицы, графики) ДОЛЖНЫ генерироваться автоматически в ноутбуке.
64
+ * **Ключевое:** В коде НЕ ДУБЛИРУЙ текстовые выводы, которые должны быть в `[БУМАГА]`. Код генерирует результаты, а их *осмысление* пишется на бумаге.
65
+
66
+ * **`[ИНТЕРПРЕТАЦИЯ]`** (Дополнительные пояснения для студента - ЧТО ИМЕННО нужно интерпретировать и КАК):
67
+ * Укажи **конкретные числа/результаты** из вывода кода в Jupyter (например, `p-value теста Бройша-Годфри = 0.03`, `коэффициент при X2 = -1.5`, `R-squared = 0.65`), которые требуют интерпретации в блоке `[БУМАГА]`.
68
+ * **Объясни студенту, КАК интерпретировать этот конкретный результат:** Что означает это значение? Как его связать с гипотезами? Какой вывод из него следует? (напр., "p-value=0.03 < 0.05 -> отвергаем нулевую гипотезу об отсутствии автокорреляции 1-го порядка. Это означает, что стандартные ошибки коэффициентов могут быть недостоверны, и следует использовать скорректированные оценки ковариационной матрицы (например, Newey-West) для надежности t-статистик.").
69
+ * **Напоминай о необходимости переноса интерпретации в `[БУМАГА]`:** После каждого пояснения добавляй фразу типа: "*(Этот вывод о наличии автокорреляции и необходимости робастных ошибок запиши в блок [БУМАГА] в раздел тестов/итоговых выводов)*".
70
+ * Этот блок помогает студенту понять *смысл* чисел и сформулировать правильные выводы для записи на бумагу.
71
+
72
+ 3. **Общие Требования:**
73
+ * **Полнота:** Модель должна быть доведена от начала (анализ данных) до конца (итоговое уравнение, выводы). Не останавливайся на полпути.
74
+ * **Ясность:** Избегай излишнего жаргона без объяснений. Пиши четко и по делу.
75
+ * **Контекст:** Все выводы и интерпретации должны быть привязаны к конкретной задаче кейса.
76
+
77
+ **Как студент будет использовать ответ:**
78
+ 1. Блок `[БУМАГА]` будет **дословно переписан ручкой** на экзаменационный лист.
79
+ 2. Код из `[JUPYTER NOTEBOOK]` будет выполнен в Jupyter, результаты просмотрены, и отчет (`.ipynb` -> `HTML`) сохранен в личную папку.
80
+ 3. Блок `[ИНТЕРПРЕТАЦИЯ]` поможет студенту:
81
+ * Понимать, на какие именно результаты кода в Jupyter нужно обратить внимание.
82
+ * Правильно сформулировать экономический и статистический смысл этих результатов.
83
+ * Точно знать, какие именно выводы из этого блока нужно перенести в рукописную часть (`[БУМАГА]`).
84
+
85
+ **Начало работы:**
86
+ Получив практический кейс (описание задачи и данные), студент предоставит их тебе. Ты сгенерируешь ответ, строго соответствующий структуре `[БУМАГА]`, `[JUPYTER NOTEBOOK]`, `[ИНТЕРПРЕТАЦИЯ]`, фокусируясь на разрешенных методах и приоритезе выводов/интерпретаций.
87
+ '''},
88
+
89
+ ]
90
+
91
+ while True:
92
+ question = input("You: ")
93
+ if question.lower() == 'exit':
94
+ print("Goodbye!")
95
+ break
96
+
97
+ conversation_history.append({"role": "user", "content": question})
98
+
99
+ answer = ask_phind(conversation_history)
100
+
101
+ conversation_history.append({"role": "assistant", "content": answer})
102
+
103
+ print("Вика: " + answer)
104
+
105
+
106
+ def start():
107
+ chat_with_phind()
108
+
109
+
110
+ if __name__ == "__main__":
111
+ chat_with_phind()
@@ -0,0 +1,58 @@
1
+ import requests
2
+
3
+ API_URL = "https://api.deepinfra.com/v1/openai/chat/completions"
4
+ API_TOKEN = 'jwt:eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJnaDoxNjY1MzcyMzkiLCJleHAiOjE3NTMzNTQwNzV9.QKdE15memSb9qkqpTnO-PDP-p7NU0ymmaqTpc-YY_7s'
5
+
6
+ # fjkbsfbkjsbdfs
7
+
8
+ def ask_phind(messages):
9
+ headers = {
10
+ "Authorization": f"Bearer {API_TOKEN}",
11
+ "Content-Type": "application/json"
12
+ }
13
+ data = {
14
+ "model": "deepseek-ai/DeepSeek-R1-0528",
15
+ "messages": messages
16
+ }
17
+ response = requests.post(API_URL, headers=headers, json=data)
18
+
19
+ if response.status_code == 200:
20
+ response_json = response.json()
21
+
22
+ try:
23
+ return response_json["choices"][0]["message"]["content"]
24
+ except (KeyError, IndexError) as e:
25
+ return "Error: Unable to extract response content. Please check the response structure."
26
+ else:
27
+ return f"Error: {response.status_code}, {response.text}"
28
+
29
+
30
+ def chat_with_phind():
31
+ conversation_history = [
32
+ {"role": "system", "content": '''
33
+ Ты - эксперт в машинном обучении. Отвечай подробно и доходчиво.
34
+ '''},
35
+
36
+ ]
37
+
38
+ while True:
39
+ question = input("You: ")
40
+ if question.lower() == 'exit':
41
+ print("Goodbye!")
42
+ break
43
+
44
+ conversation_history.append({"role": "user", "content": question})
45
+
46
+ answer = ask_phind(conversation_history)
47
+
48
+ conversation_history.append({"role": "assistant", "content": answer})
49
+
50
+ print("Ответ: " + answer)
51
+
52
+
53
+ def start():
54
+ chat_with_phind()
55
+
56
+
57
+ if __name__ == "__main__":
58
+ chat_with_phind()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: alblack52
3
- Version: 0.0.16
3
+ Version: 0.0.18
4
4
  Summary: This is the simplest module for quick work with files.
5
5
  Author: __token__
6
6
  Author-email: mihajlovic.aleksa@gmail.com
@@ -4,9 +4,11 @@ setup.py
4
4
  alblack52/__init__.py
5
5
  alblack52/aws.py
6
6
  alblack52/chern.py
7
+ alblack52/kudr.py
7
8
  alblack52/layers.py
8
9
  alblack52/loggingin.py
9
10
  alblack52/mikh.py
11
+ alblack52/ml.py
10
12
  alblack52/speedfilein.py
11
13
  alblack52/style.py
12
14
  alblack52/tensorclass.py
@@ -8,7 +8,7 @@ def readme():
8
8
 
9
9
  setup(
10
10
  name='alblack52',
11
- version='0.0.16',
11
+ version='0.0.18',
12
12
  author='__token__',
13
13
  description='This is the simplest module for quick work with files.',
14
14
  packages=['alblack52'],
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes