akitallm 0.1.0__tar.gz → 0.1.1__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- akitallm-0.1.1/PKG-INFO +143 -0
- akitallm-0.1.1/README.md +111 -0
- akitallm-0.1.1/akita/__init__.py +1 -0
- akitallm-0.1.1/akitallm.egg-info/PKG-INFO +143 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/pyproject.toml +1 -1
- akitallm-0.1.0/PKG-INFO +0 -111
- akitallm-0.1.0/README.md +0 -79
- akitallm-0.1.0/akita/__init__.py +0 -1
- akitallm-0.1.0/akitallm.egg-info/PKG-INFO +0 -111
- {akitallm-0.1.0 → akitallm-0.1.1}/LICENSE +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/cli/main.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/core/config.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/models/base.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/reasoning/engine.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/schemas/review.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/base.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/context.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/diff.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/SOURCES.txt +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/dependency_links.txt +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/entry_points.txt +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/requires.txt +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/top_level.txt +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/setup.cfg +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/tests/test_basic.py +0 -0
- {akitallm-0.1.0 → akitallm-0.1.1}/tests/test_review_mock.py +0 -0
akitallm-0.1.1/PKG-INFO
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: akitallm
|
|
3
|
+
Version: 0.1.1
|
|
4
|
+
Summary: AkitaLLM: An open-source local-first AI system for programming.
|
|
5
|
+
Author: KerubinDev
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
|
|
8
|
+
Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
|
|
9
|
+
Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
|
|
10
|
+
Keywords: ai,cli,programming,local-first,llm
|
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
+
Requires-Python: >=3.10
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
License-File: LICENSE
|
|
21
|
+
Requires-Dist: typer[all]
|
|
22
|
+
Requires-Dist: litellm
|
|
23
|
+
Requires-Dist: pydantic
|
|
24
|
+
Requires-Dist: rich
|
|
25
|
+
Requires-Dist: python-dotenv
|
|
26
|
+
Requires-Dist: pytest
|
|
27
|
+
Requires-Dist: pytest-mock
|
|
28
|
+
Requires-Dist: gitpython
|
|
29
|
+
Requires-Dist: tomli-w
|
|
30
|
+
Requires-Dist: tomli
|
|
31
|
+
Dynamic: license-file
|
|
32
|
+
|
|
33
|
+
```text
|
|
34
|
+
_ _ _ _ _ _ __ __
|
|
35
|
+
/ \ | | _(_) |_ __ _| | | | | \/ |
|
|
36
|
+
/ _ \ | |/ / | __/ _` | | | | | |\/| |
|
|
37
|
+
/ ___ \ | <| | || (_| | |___| |___| | | |
|
|
38
|
+
/_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
|
|
39
|
+
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
# AkitaLLM
|
|
43
|
+
### A deterministic, local-first AI orchestrator for software engineers.
|
|
44
|
+
|
|
45
|
+
---
|
|
46
|
+
|
|
47
|
+
## What is AkitaLLM?
|
|
48
|
+
|
|
49
|
+
AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
|
|
50
|
+
|
|
51
|
+
Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
|
|
52
|
+
|
|
53
|
+
---
|
|
54
|
+
|
|
55
|
+
## Why AkitaLLM exists
|
|
56
|
+
|
|
57
|
+
Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
|
|
58
|
+
- **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
|
|
59
|
+
- **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
|
|
60
|
+
- **Verification**: Automatically ensuring that proposed changes don't break existing logic.
|
|
61
|
+
|
|
62
|
+
AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
|
|
63
|
+
|
|
64
|
+
---
|
|
65
|
+
|
|
66
|
+
## The Engineering Difference
|
|
67
|
+
|
|
68
|
+
| Feature | Generic AI Tools | AkitaLLM |
|
|
69
|
+
| :--- | :--- | :--- |
|
|
70
|
+
| **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
|
|
71
|
+
| **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
|
|
72
|
+
| **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
|
|
73
|
+
| **Validation** | Post-facto manual review | Automated local test execution |
|
|
74
|
+
| **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
|
|
75
|
+
|
|
76
|
+
---
|
|
77
|
+
|
|
78
|
+
## Core Principles
|
|
79
|
+
|
|
80
|
+
1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
|
|
81
|
+
2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
|
|
82
|
+
3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
|
|
83
|
+
4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
|
|
84
|
+
|
|
85
|
+
---
|
|
86
|
+
|
|
87
|
+
## Key Features
|
|
88
|
+
|
|
89
|
+
- **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
|
|
90
|
+
- **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
|
|
91
|
+
- **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
|
|
92
|
+
- **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
|
|
93
|
+
- **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
|
|
94
|
+
|
|
95
|
+
---
|
|
96
|
+
|
|
97
|
+
## Installation
|
|
98
|
+
|
|
99
|
+
AkitaLLM is available on PyPI. You can install it directly using pip:
|
|
100
|
+
|
|
101
|
+
```bash
|
|
102
|
+
pip install akitallm
|
|
103
|
+
```
|
|
104
|
+
|
|
105
|
+
---
|
|
106
|
+
|
|
107
|
+
## Usage
|
|
108
|
+
|
|
109
|
+
### 1. Project Initialization
|
|
110
|
+
Run any command to trigger the initial configuration and onboarding.
|
|
111
|
+
```bash
|
|
112
|
+
akita review .
|
|
113
|
+
```
|
|
114
|
+
|
|
115
|
+
### 2. Strategic Code Review
|
|
116
|
+
Analyze a directory for potential architectural risks and bugs.
|
|
117
|
+
```bash
|
|
118
|
+
akita review src/
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
### 3. Implementation Planning
|
|
122
|
+
Generate a technical plan for a specific goal.
|
|
123
|
+
```bash
|
|
124
|
+
akita plan "Implement JWT authentication with Redis-based session storage"
|
|
125
|
+
```
|
|
126
|
+
|
|
127
|
+
### 4. Code Problem Solving
|
|
128
|
+
Generate a diff to solve a precise issue or refactor a module.
|
|
129
|
+
```bash
|
|
130
|
+
akita solve "Improve error handling in the reasoning engine to prevent silent failures"
|
|
131
|
+
```
|
|
132
|
+
|
|
133
|
+
---
|
|
134
|
+
|
|
135
|
+
## Contributing
|
|
136
|
+
|
|
137
|
+
We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
|
|
138
|
+
|
|
139
|
+
Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
|
|
140
|
+
|
|
141
|
+
---
|
|
142
|
+
|
|
143
|
+
*“Understanding the internals is the first step to excellence.”*
|
akitallm-0.1.1/README.md
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
```text
|
|
2
|
+
_ _ _ _ _ _ __ __
|
|
3
|
+
/ \ | | _(_) |_ __ _| | | | | \/ |
|
|
4
|
+
/ _ \ | |/ / | __/ _` | | | | | |\/| |
|
|
5
|
+
/ ___ \ | <| | || (_| | |___| |___| | | |
|
|
6
|
+
/_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
|
|
7
|
+
|
|
8
|
+
```
|
|
9
|
+
|
|
10
|
+
# AkitaLLM
|
|
11
|
+
### A deterministic, local-first AI orchestrator for software engineers.
|
|
12
|
+
|
|
13
|
+
---
|
|
14
|
+
|
|
15
|
+
## What is AkitaLLM?
|
|
16
|
+
|
|
17
|
+
AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
|
|
18
|
+
|
|
19
|
+
Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
|
|
20
|
+
|
|
21
|
+
---
|
|
22
|
+
|
|
23
|
+
## Why AkitaLLM exists
|
|
24
|
+
|
|
25
|
+
Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
|
|
26
|
+
- **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
|
|
27
|
+
- **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
|
|
28
|
+
- **Verification**: Automatically ensuring that proposed changes don't break existing logic.
|
|
29
|
+
|
|
30
|
+
AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
|
|
31
|
+
|
|
32
|
+
---
|
|
33
|
+
|
|
34
|
+
## The Engineering Difference
|
|
35
|
+
|
|
36
|
+
| Feature | Generic AI Tools | AkitaLLM |
|
|
37
|
+
| :--- | :--- | :--- |
|
|
38
|
+
| **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
|
|
39
|
+
| **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
|
|
40
|
+
| **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
|
|
41
|
+
| **Validation** | Post-facto manual review | Automated local test execution |
|
|
42
|
+
| **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
|
|
43
|
+
|
|
44
|
+
---
|
|
45
|
+
|
|
46
|
+
## Core Principles
|
|
47
|
+
|
|
48
|
+
1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
|
|
49
|
+
2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
|
|
50
|
+
3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
|
|
51
|
+
4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
|
|
52
|
+
|
|
53
|
+
---
|
|
54
|
+
|
|
55
|
+
## Key Features
|
|
56
|
+
|
|
57
|
+
- **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
|
|
58
|
+
- **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
|
|
59
|
+
- **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
|
|
60
|
+
- **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
|
|
61
|
+
- **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
|
|
62
|
+
|
|
63
|
+
---
|
|
64
|
+
|
|
65
|
+
## Installation
|
|
66
|
+
|
|
67
|
+
AkitaLLM is available on PyPI. You can install it directly using pip:
|
|
68
|
+
|
|
69
|
+
```bash
|
|
70
|
+
pip install akitallm
|
|
71
|
+
```
|
|
72
|
+
|
|
73
|
+
---
|
|
74
|
+
|
|
75
|
+
## Usage
|
|
76
|
+
|
|
77
|
+
### 1. Project Initialization
|
|
78
|
+
Run any command to trigger the initial configuration and onboarding.
|
|
79
|
+
```bash
|
|
80
|
+
akita review .
|
|
81
|
+
```
|
|
82
|
+
|
|
83
|
+
### 2. Strategic Code Review
|
|
84
|
+
Analyze a directory for potential architectural risks and bugs.
|
|
85
|
+
```bash
|
|
86
|
+
akita review src/
|
|
87
|
+
```
|
|
88
|
+
|
|
89
|
+
### 3. Implementation Planning
|
|
90
|
+
Generate a technical plan for a specific goal.
|
|
91
|
+
```bash
|
|
92
|
+
akita plan "Implement JWT authentication with Redis-based session storage"
|
|
93
|
+
```
|
|
94
|
+
|
|
95
|
+
### 4. Code Problem Solving
|
|
96
|
+
Generate a diff to solve a precise issue or refactor a module.
|
|
97
|
+
```bash
|
|
98
|
+
akita solve "Improve error handling in the reasoning engine to prevent silent failures"
|
|
99
|
+
```
|
|
100
|
+
|
|
101
|
+
---
|
|
102
|
+
|
|
103
|
+
## Contributing
|
|
104
|
+
|
|
105
|
+
We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
|
|
106
|
+
|
|
107
|
+
Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
|
|
108
|
+
|
|
109
|
+
---
|
|
110
|
+
|
|
111
|
+
*“Understanding the internals is the first step to excellence.”*
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
__version__ = "0.1.1"
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: akitallm
|
|
3
|
+
Version: 0.1.1
|
|
4
|
+
Summary: AkitaLLM: An open-source local-first AI system for programming.
|
|
5
|
+
Author: KerubinDev
|
|
6
|
+
License: MIT
|
|
7
|
+
Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
|
|
8
|
+
Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
|
|
9
|
+
Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
|
|
10
|
+
Keywords: ai,cli,programming,local-first,llm
|
|
11
|
+
Classifier: Development Status :: 4 - Beta
|
|
12
|
+
Classifier: Intended Audience :: Developers
|
|
13
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
+
Classifier: Programming Language :: Python :: 3
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
+
Requires-Python: >=3.10
|
|
19
|
+
Description-Content-Type: text/markdown
|
|
20
|
+
License-File: LICENSE
|
|
21
|
+
Requires-Dist: typer[all]
|
|
22
|
+
Requires-Dist: litellm
|
|
23
|
+
Requires-Dist: pydantic
|
|
24
|
+
Requires-Dist: rich
|
|
25
|
+
Requires-Dist: python-dotenv
|
|
26
|
+
Requires-Dist: pytest
|
|
27
|
+
Requires-Dist: pytest-mock
|
|
28
|
+
Requires-Dist: gitpython
|
|
29
|
+
Requires-Dist: tomli-w
|
|
30
|
+
Requires-Dist: tomli
|
|
31
|
+
Dynamic: license-file
|
|
32
|
+
|
|
33
|
+
```text
|
|
34
|
+
_ _ _ _ _ _ __ __
|
|
35
|
+
/ \ | | _(_) |_ __ _| | | | | \/ |
|
|
36
|
+
/ _ \ | |/ / | __/ _` | | | | | |\/| |
|
|
37
|
+
/ ___ \ | <| | || (_| | |___| |___| | | |
|
|
38
|
+
/_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
|
|
39
|
+
|
|
40
|
+
```
|
|
41
|
+
|
|
42
|
+
# AkitaLLM
|
|
43
|
+
### A deterministic, local-first AI orchestrator for software engineers.
|
|
44
|
+
|
|
45
|
+
---
|
|
46
|
+
|
|
47
|
+
## What is AkitaLLM?
|
|
48
|
+
|
|
49
|
+
AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
|
|
50
|
+
|
|
51
|
+
Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
|
|
52
|
+
|
|
53
|
+
---
|
|
54
|
+
|
|
55
|
+
## Why AkitaLLM exists
|
|
56
|
+
|
|
57
|
+
Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
|
|
58
|
+
- **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
|
|
59
|
+
- **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
|
|
60
|
+
- **Verification**: Automatically ensuring that proposed changes don't break existing logic.
|
|
61
|
+
|
|
62
|
+
AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
|
|
63
|
+
|
|
64
|
+
---
|
|
65
|
+
|
|
66
|
+
## The Engineering Difference
|
|
67
|
+
|
|
68
|
+
| Feature | Generic AI Tools | AkitaLLM |
|
|
69
|
+
| :--- | :--- | :--- |
|
|
70
|
+
| **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
|
|
71
|
+
| **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
|
|
72
|
+
| **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
|
|
73
|
+
| **Validation** | Post-facto manual review | Automated local test execution |
|
|
74
|
+
| **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
|
|
75
|
+
|
|
76
|
+
---
|
|
77
|
+
|
|
78
|
+
## Core Principles
|
|
79
|
+
|
|
80
|
+
1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
|
|
81
|
+
2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
|
|
82
|
+
3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
|
|
83
|
+
4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
|
|
84
|
+
|
|
85
|
+
---
|
|
86
|
+
|
|
87
|
+
## Key Features
|
|
88
|
+
|
|
89
|
+
- **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
|
|
90
|
+
- **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
|
|
91
|
+
- **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
|
|
92
|
+
- **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
|
|
93
|
+
- **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
|
|
94
|
+
|
|
95
|
+
---
|
|
96
|
+
|
|
97
|
+
## Installation
|
|
98
|
+
|
|
99
|
+
AkitaLLM is available on PyPI. You can install it directly using pip:
|
|
100
|
+
|
|
101
|
+
```bash
|
|
102
|
+
pip install akitallm
|
|
103
|
+
```
|
|
104
|
+
|
|
105
|
+
---
|
|
106
|
+
|
|
107
|
+
## Usage
|
|
108
|
+
|
|
109
|
+
### 1. Project Initialization
|
|
110
|
+
Run any command to trigger the initial configuration and onboarding.
|
|
111
|
+
```bash
|
|
112
|
+
akita review .
|
|
113
|
+
```
|
|
114
|
+
|
|
115
|
+
### 2. Strategic Code Review
|
|
116
|
+
Analyze a directory for potential architectural risks and bugs.
|
|
117
|
+
```bash
|
|
118
|
+
akita review src/
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
### 3. Implementation Planning
|
|
122
|
+
Generate a technical plan for a specific goal.
|
|
123
|
+
```bash
|
|
124
|
+
akita plan "Implement JWT authentication with Redis-based session storage"
|
|
125
|
+
```
|
|
126
|
+
|
|
127
|
+
### 4. Code Problem Solving
|
|
128
|
+
Generate a diff to solve a precise issue or refactor a module.
|
|
129
|
+
```bash
|
|
130
|
+
akita solve "Improve error handling in the reasoning engine to prevent silent failures"
|
|
131
|
+
```
|
|
132
|
+
|
|
133
|
+
---
|
|
134
|
+
|
|
135
|
+
## Contributing
|
|
136
|
+
|
|
137
|
+
We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
|
|
138
|
+
|
|
139
|
+
Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
|
|
140
|
+
|
|
141
|
+
---
|
|
142
|
+
|
|
143
|
+
*“Understanding the internals is the first step to excellence.”*
|
akitallm-0.1.0/PKG-INFO
DELETED
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: akitallm
|
|
3
|
-
Version: 0.1.0
|
|
4
|
-
Summary: AkitaLLM: An open-source local-first AI system for programming.
|
|
5
|
-
Author: KerubinDev
|
|
6
|
-
License: MIT
|
|
7
|
-
Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
|
|
8
|
-
Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
|
|
9
|
-
Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
|
|
10
|
-
Keywords: ai,cli,programming,local-first,llm
|
|
11
|
-
Classifier: Development Status :: 4 - Beta
|
|
12
|
-
Classifier: Intended Audience :: Developers
|
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
-
Classifier: Programming Language :: Python :: 3
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
-
Requires-Python: >=3.10
|
|
19
|
-
Description-Content-Type: text/markdown
|
|
20
|
-
License-File: LICENSE
|
|
21
|
-
Requires-Dist: typer[all]
|
|
22
|
-
Requires-Dist: litellm
|
|
23
|
-
Requires-Dist: pydantic
|
|
24
|
-
Requires-Dist: rich
|
|
25
|
-
Requires-Dist: python-dotenv
|
|
26
|
-
Requires-Dist: pytest
|
|
27
|
-
Requires-Dist: pytest-mock
|
|
28
|
-
Requires-Dist: gitpython
|
|
29
|
-
Requires-Dist: tomli-w
|
|
30
|
-
Requires-Dist: tomli
|
|
31
|
-
Dynamic: license-file
|
|
32
|
-
|
|
33
|
-
# AkitaLLM
|
|
34
|
-
|
|
35
|
-
**AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
|
|
36
|
-
|
|
37
|
-
## What is AkitaLLM?
|
|
38
|
-
|
|
39
|
-
AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
|
|
40
|
-
- **Analyzes** your project structure and file content before proposing changes.
|
|
41
|
-
- **Plans** technical steps using a structured reasoning engine.
|
|
42
|
-
- **Solves** problems by generating Unified Diffs that you can review.
|
|
43
|
-
- **Validates** changes using local testing frameworks like `pytest`.
|
|
44
|
-
|
|
45
|
-
## Key Features
|
|
46
|
-
|
|
47
|
-
- **Local-First**: Developed with privacy and security in mind.
|
|
48
|
-
- **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
|
|
49
|
-
- **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
|
|
50
|
-
- **Security by Default**: Diffs are only applied with your explicit confirmation.
|
|
51
|
-
- **Support for .env**: Manage your API keys safely.
|
|
52
|
-
|
|
53
|
-
## Installation
|
|
54
|
-
|
|
55
|
-
```bash
|
|
56
|
-
# Clone the repository
|
|
57
|
-
git clone https://github.com/Your-Name/AkitaLLM.git
|
|
58
|
-
cd AkitaLLM
|
|
59
|
-
|
|
60
|
-
# Install in editable mode
|
|
61
|
-
pip install -e .
|
|
62
|
-
```
|
|
63
|
-
|
|
64
|
-
## Usage
|
|
65
|
-
|
|
66
|
-
### 1. Initial Setup
|
|
67
|
-
The first time you run a command, AkitaLLM will guide you through choosing a model.
|
|
68
|
-
```bash
|
|
69
|
-
akita review .
|
|
70
|
-
```
|
|
71
|
-
|
|
72
|
-
### 2. Code Review
|
|
73
|
-
Analyze files or directories for bugs, style, and security risks.
|
|
74
|
-
```bash
|
|
75
|
-
akita review src/
|
|
76
|
-
```
|
|
77
|
-
|
|
78
|
-
### 3. Solution Planning
|
|
79
|
-
Generate a technical plan for a complex task.
|
|
80
|
-
```bash
|
|
81
|
-
akita plan "Refactor the authentication module to support JWT"
|
|
82
|
-
```
|
|
83
|
-
|
|
84
|
-
### 4. Problem Solving
|
|
85
|
-
Generate a diff to solve a specific issue.
|
|
86
|
-
```bash
|
|
87
|
-
akita solve "Add error handling to the ReasoningEngine class"
|
|
88
|
-
```
|
|
89
|
-
|
|
90
|
-
## Configuration
|
|
91
|
-
|
|
92
|
-
AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
|
|
93
|
-
```bash
|
|
94
|
-
# View and change model settings
|
|
95
|
-
akita config model
|
|
96
|
-
|
|
97
|
-
# Reset all settings
|
|
98
|
-
akita config model --reset
|
|
99
|
-
```
|
|
100
|
-
|
|
101
|
-
## Contributing
|
|
102
|
-
|
|
103
|
-
We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
|
|
104
|
-
|
|
105
|
-
## License
|
|
106
|
-
|
|
107
|
-
This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
|
|
108
|
-
|
|
109
|
-
---
|
|
110
|
-
|
|
111
|
-
*“Understanding the internals is the first step to excellence.”*
|
akitallm-0.1.0/README.md
DELETED
|
@@ -1,79 +0,0 @@
|
|
|
1
|
-
# AkitaLLM
|
|
2
|
-
|
|
3
|
-
**AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
|
|
4
|
-
|
|
5
|
-
## What is AkitaLLM?
|
|
6
|
-
|
|
7
|
-
AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
|
|
8
|
-
- **Analyzes** your project structure and file content before proposing changes.
|
|
9
|
-
- **Plans** technical steps using a structured reasoning engine.
|
|
10
|
-
- **Solves** problems by generating Unified Diffs that you can review.
|
|
11
|
-
- **Validates** changes using local testing frameworks like `pytest`.
|
|
12
|
-
|
|
13
|
-
## Key Features
|
|
14
|
-
|
|
15
|
-
- **Local-First**: Developed with privacy and security in mind.
|
|
16
|
-
- **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
|
|
17
|
-
- **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
|
|
18
|
-
- **Security by Default**: Diffs are only applied with your explicit confirmation.
|
|
19
|
-
- **Support for .env**: Manage your API keys safely.
|
|
20
|
-
|
|
21
|
-
## Installation
|
|
22
|
-
|
|
23
|
-
```bash
|
|
24
|
-
# Clone the repository
|
|
25
|
-
git clone https://github.com/Your-Name/AkitaLLM.git
|
|
26
|
-
cd AkitaLLM
|
|
27
|
-
|
|
28
|
-
# Install in editable mode
|
|
29
|
-
pip install -e .
|
|
30
|
-
```
|
|
31
|
-
|
|
32
|
-
## Usage
|
|
33
|
-
|
|
34
|
-
### 1. Initial Setup
|
|
35
|
-
The first time you run a command, AkitaLLM will guide you through choosing a model.
|
|
36
|
-
```bash
|
|
37
|
-
akita review .
|
|
38
|
-
```
|
|
39
|
-
|
|
40
|
-
### 2. Code Review
|
|
41
|
-
Analyze files or directories for bugs, style, and security risks.
|
|
42
|
-
```bash
|
|
43
|
-
akita review src/
|
|
44
|
-
```
|
|
45
|
-
|
|
46
|
-
### 3. Solution Planning
|
|
47
|
-
Generate a technical plan for a complex task.
|
|
48
|
-
```bash
|
|
49
|
-
akita plan "Refactor the authentication module to support JWT"
|
|
50
|
-
```
|
|
51
|
-
|
|
52
|
-
### 4. Problem Solving
|
|
53
|
-
Generate a diff to solve a specific issue.
|
|
54
|
-
```bash
|
|
55
|
-
akita solve "Add error handling to the ReasoningEngine class"
|
|
56
|
-
```
|
|
57
|
-
|
|
58
|
-
## Configuration
|
|
59
|
-
|
|
60
|
-
AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
|
|
61
|
-
```bash
|
|
62
|
-
# View and change model settings
|
|
63
|
-
akita config model
|
|
64
|
-
|
|
65
|
-
# Reset all settings
|
|
66
|
-
akita config model --reset
|
|
67
|
-
```
|
|
68
|
-
|
|
69
|
-
## Contributing
|
|
70
|
-
|
|
71
|
-
We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
|
|
72
|
-
|
|
73
|
-
## License
|
|
74
|
-
|
|
75
|
-
This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
|
|
76
|
-
|
|
77
|
-
---
|
|
78
|
-
|
|
79
|
-
*“Understanding the internals is the first step to excellence.”*
|
akitallm-0.1.0/akita/__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
__version__ = "0.1.0"
|
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: akitallm
|
|
3
|
-
Version: 0.1.0
|
|
4
|
-
Summary: AkitaLLM: An open-source local-first AI system for programming.
|
|
5
|
-
Author: KerubinDev
|
|
6
|
-
License: MIT
|
|
7
|
-
Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
|
|
8
|
-
Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
|
|
9
|
-
Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
|
|
10
|
-
Keywords: ai,cli,programming,local-first,llm
|
|
11
|
-
Classifier: Development Status :: 4 - Beta
|
|
12
|
-
Classifier: Intended Audience :: Developers
|
|
13
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
14
|
-
Classifier: Programming Language :: Python :: 3
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
-
Classifier: Programming Language :: Python :: 3.12
|
|
18
|
-
Requires-Python: >=3.10
|
|
19
|
-
Description-Content-Type: text/markdown
|
|
20
|
-
License-File: LICENSE
|
|
21
|
-
Requires-Dist: typer[all]
|
|
22
|
-
Requires-Dist: litellm
|
|
23
|
-
Requires-Dist: pydantic
|
|
24
|
-
Requires-Dist: rich
|
|
25
|
-
Requires-Dist: python-dotenv
|
|
26
|
-
Requires-Dist: pytest
|
|
27
|
-
Requires-Dist: pytest-mock
|
|
28
|
-
Requires-Dist: gitpython
|
|
29
|
-
Requires-Dist: tomli-w
|
|
30
|
-
Requires-Dist: tomli
|
|
31
|
-
Dynamic: license-file
|
|
32
|
-
|
|
33
|
-
# AkitaLLM
|
|
34
|
-
|
|
35
|
-
**AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
|
|
36
|
-
|
|
37
|
-
## What is AkitaLLM?
|
|
38
|
-
|
|
39
|
-
AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
|
|
40
|
-
- **Analyzes** your project structure and file content before proposing changes.
|
|
41
|
-
- **Plans** technical steps using a structured reasoning engine.
|
|
42
|
-
- **Solves** problems by generating Unified Diffs that you can review.
|
|
43
|
-
- **Validates** changes using local testing frameworks like `pytest`.
|
|
44
|
-
|
|
45
|
-
## Key Features
|
|
46
|
-
|
|
47
|
-
- **Local-First**: Developed with privacy and security in mind.
|
|
48
|
-
- **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
|
|
49
|
-
- **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
|
|
50
|
-
- **Security by Default**: Diffs are only applied with your explicit confirmation.
|
|
51
|
-
- **Support for .env**: Manage your API keys safely.
|
|
52
|
-
|
|
53
|
-
## Installation
|
|
54
|
-
|
|
55
|
-
```bash
|
|
56
|
-
# Clone the repository
|
|
57
|
-
git clone https://github.com/Your-Name/AkitaLLM.git
|
|
58
|
-
cd AkitaLLM
|
|
59
|
-
|
|
60
|
-
# Install in editable mode
|
|
61
|
-
pip install -e .
|
|
62
|
-
```
|
|
63
|
-
|
|
64
|
-
## Usage
|
|
65
|
-
|
|
66
|
-
### 1. Initial Setup
|
|
67
|
-
The first time you run a command, AkitaLLM will guide you through choosing a model.
|
|
68
|
-
```bash
|
|
69
|
-
akita review .
|
|
70
|
-
```
|
|
71
|
-
|
|
72
|
-
### 2. Code Review
|
|
73
|
-
Analyze files or directories for bugs, style, and security risks.
|
|
74
|
-
```bash
|
|
75
|
-
akita review src/
|
|
76
|
-
```
|
|
77
|
-
|
|
78
|
-
### 3. Solution Planning
|
|
79
|
-
Generate a technical plan for a complex task.
|
|
80
|
-
```bash
|
|
81
|
-
akita plan "Refactor the authentication module to support JWT"
|
|
82
|
-
```
|
|
83
|
-
|
|
84
|
-
### 4. Problem Solving
|
|
85
|
-
Generate a diff to solve a specific issue.
|
|
86
|
-
```bash
|
|
87
|
-
akita solve "Add error handling to the ReasoningEngine class"
|
|
88
|
-
```
|
|
89
|
-
|
|
90
|
-
## Configuration
|
|
91
|
-
|
|
92
|
-
AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
|
|
93
|
-
```bash
|
|
94
|
-
# View and change model settings
|
|
95
|
-
akita config model
|
|
96
|
-
|
|
97
|
-
# Reset all settings
|
|
98
|
-
akita config model --reset
|
|
99
|
-
```
|
|
100
|
-
|
|
101
|
-
## Contributing
|
|
102
|
-
|
|
103
|
-
We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
|
|
104
|
-
|
|
105
|
-
## License
|
|
106
|
-
|
|
107
|
-
This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
|
|
108
|
-
|
|
109
|
-
---
|
|
110
|
-
|
|
111
|
-
*“Understanding the internals is the first step to excellence.”*
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|