akitallm 0.1.0__tar.gz → 0.1.1__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (26) hide show
  1. akitallm-0.1.1/PKG-INFO +143 -0
  2. akitallm-0.1.1/README.md +111 -0
  3. akitallm-0.1.1/akita/__init__.py +1 -0
  4. akitallm-0.1.1/akitallm.egg-info/PKG-INFO +143 -0
  5. {akitallm-0.1.0 → akitallm-0.1.1}/pyproject.toml +1 -1
  6. akitallm-0.1.0/PKG-INFO +0 -111
  7. akitallm-0.1.0/README.md +0 -79
  8. akitallm-0.1.0/akita/__init__.py +0 -1
  9. akitallm-0.1.0/akitallm.egg-info/PKG-INFO +0 -111
  10. {akitallm-0.1.0 → akitallm-0.1.1}/LICENSE +0 -0
  11. {akitallm-0.1.0 → akitallm-0.1.1}/akita/cli/main.py +0 -0
  12. {akitallm-0.1.0 → akitallm-0.1.1}/akita/core/config.py +0 -0
  13. {akitallm-0.1.0 → akitallm-0.1.1}/akita/models/base.py +0 -0
  14. {akitallm-0.1.0 → akitallm-0.1.1}/akita/reasoning/engine.py +0 -0
  15. {akitallm-0.1.0 → akitallm-0.1.1}/akita/schemas/review.py +0 -0
  16. {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/base.py +0 -0
  17. {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/context.py +0 -0
  18. {akitallm-0.1.0 → akitallm-0.1.1}/akita/tools/diff.py +0 -0
  19. {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/SOURCES.txt +0 -0
  20. {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/dependency_links.txt +0 -0
  21. {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/entry_points.txt +0 -0
  22. {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/requires.txt +0 -0
  23. {akitallm-0.1.0 → akitallm-0.1.1}/akitallm.egg-info/top_level.txt +0 -0
  24. {akitallm-0.1.0 → akitallm-0.1.1}/setup.cfg +0 -0
  25. {akitallm-0.1.0 → akitallm-0.1.1}/tests/test_basic.py +0 -0
  26. {akitallm-0.1.0 → akitallm-0.1.1}/tests/test_review_mock.py +0 -0
@@ -0,0 +1,143 @@
1
+ Metadata-Version: 2.4
2
+ Name: akitallm
3
+ Version: 0.1.1
4
+ Summary: AkitaLLM: An open-source local-first AI system for programming.
5
+ Author: KerubinDev
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
8
+ Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
9
+ Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
10
+ Keywords: ai,cli,programming,local-first,llm
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Requires-Python: >=3.10
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ Requires-Dist: typer[all]
22
+ Requires-Dist: litellm
23
+ Requires-Dist: pydantic
24
+ Requires-Dist: rich
25
+ Requires-Dist: python-dotenv
26
+ Requires-Dist: pytest
27
+ Requires-Dist: pytest-mock
28
+ Requires-Dist: gitpython
29
+ Requires-Dist: tomli-w
30
+ Requires-Dist: tomli
31
+ Dynamic: license-file
32
+
33
+ ```text
34
+ _ _ _ _ _ _ __ __
35
+ / \ | | _(_) |_ __ _| | | | | \/ |
36
+ / _ \ | |/ / | __/ _` | | | | | |\/| |
37
+ / ___ \ | <| | || (_| | |___| |___| | | |
38
+ /_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
39
+
40
+ ```
41
+
42
+ # AkitaLLM
43
+ ### A deterministic, local-first AI orchestrator for software engineers.
44
+
45
+ ---
46
+
47
+ ## What is AkitaLLM?
48
+
49
+ AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
50
+
51
+ Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
52
+
53
+ ---
54
+
55
+ ## Why AkitaLLM exists
56
+
57
+ Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
58
+ - **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
59
+ - **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
60
+ - **Verification**: Automatically ensuring that proposed changes don't break existing logic.
61
+
62
+ AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
63
+
64
+ ---
65
+
66
+ ## The Engineering Difference
67
+
68
+ | Feature | Generic AI Tools | AkitaLLM |
69
+ | :--- | :--- | :--- |
70
+ | **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
71
+ | **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
72
+ | **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
73
+ | **Validation** | Post-facto manual review | Automated local test execution |
74
+ | **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
75
+
76
+ ---
77
+
78
+ ## Core Principles
79
+
80
+ 1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
81
+ 2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
82
+ 3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
83
+ 4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
84
+
85
+ ---
86
+
87
+ ## Key Features
88
+
89
+ - **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
90
+ - **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
91
+ - **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
92
+ - **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
93
+ - **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
94
+
95
+ ---
96
+
97
+ ## Installation
98
+
99
+ AkitaLLM is available on PyPI. You can install it directly using pip:
100
+
101
+ ```bash
102
+ pip install akitallm
103
+ ```
104
+
105
+ ---
106
+
107
+ ## Usage
108
+
109
+ ### 1. Project Initialization
110
+ Run any command to trigger the initial configuration and onboarding.
111
+ ```bash
112
+ akita review .
113
+ ```
114
+
115
+ ### 2. Strategic Code Review
116
+ Analyze a directory for potential architectural risks and bugs.
117
+ ```bash
118
+ akita review src/
119
+ ```
120
+
121
+ ### 3. Implementation Planning
122
+ Generate a technical plan for a specific goal.
123
+ ```bash
124
+ akita plan "Implement JWT authentication with Redis-based session storage"
125
+ ```
126
+
127
+ ### 4. Code Problem Solving
128
+ Generate a diff to solve a precise issue or refactor a module.
129
+ ```bash
130
+ akita solve "Improve error handling in the reasoning engine to prevent silent failures"
131
+ ```
132
+
133
+ ---
134
+
135
+ ## Contributing
136
+
137
+ We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
138
+
139
+ Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
140
+
141
+ ---
142
+
143
+ *“Understanding the internals is the first step to excellence.”*
@@ -0,0 +1,111 @@
1
+ ```text
2
+ _ _ _ _ _ _ __ __
3
+ / \ | | _(_) |_ __ _| | | | | \/ |
4
+ / _ \ | |/ / | __/ _` | | | | | |\/| |
5
+ / ___ \ | <| | || (_| | |___| |___| | | |
6
+ /_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
7
+
8
+ ```
9
+
10
+ # AkitaLLM
11
+ ### A deterministic, local-first AI orchestrator for software engineers.
12
+
13
+ ---
14
+
15
+ ## What is AkitaLLM?
16
+
17
+ AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
18
+
19
+ Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
20
+
21
+ ---
22
+
23
+ ## Why AkitaLLM exists
24
+
25
+ Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
26
+ - **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
27
+ - **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
28
+ - **Verification**: Automatically ensuring that proposed changes don't break existing logic.
29
+
30
+ AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
31
+
32
+ ---
33
+
34
+ ## The Engineering Difference
35
+
36
+ | Feature | Generic AI Tools | AkitaLLM |
37
+ | :--- | :--- | :--- |
38
+ | **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
39
+ | **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
40
+ | **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
41
+ | **Validation** | Post-facto manual review | Automated local test execution |
42
+ | **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
43
+
44
+ ---
45
+
46
+ ## Core Principles
47
+
48
+ 1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
49
+ 2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
50
+ 3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
51
+ 4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
52
+
53
+ ---
54
+
55
+ ## Key Features
56
+
57
+ - **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
58
+ - **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
59
+ - **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
60
+ - **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
61
+ - **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
62
+
63
+ ---
64
+
65
+ ## Installation
66
+
67
+ AkitaLLM is available on PyPI. You can install it directly using pip:
68
+
69
+ ```bash
70
+ pip install akitallm
71
+ ```
72
+
73
+ ---
74
+
75
+ ## Usage
76
+
77
+ ### 1. Project Initialization
78
+ Run any command to trigger the initial configuration and onboarding.
79
+ ```bash
80
+ akita review .
81
+ ```
82
+
83
+ ### 2. Strategic Code Review
84
+ Analyze a directory for potential architectural risks and bugs.
85
+ ```bash
86
+ akita review src/
87
+ ```
88
+
89
+ ### 3. Implementation Planning
90
+ Generate a technical plan for a specific goal.
91
+ ```bash
92
+ akita plan "Implement JWT authentication with Redis-based session storage"
93
+ ```
94
+
95
+ ### 4. Code Problem Solving
96
+ Generate a diff to solve a precise issue or refactor a module.
97
+ ```bash
98
+ akita solve "Improve error handling in the reasoning engine to prevent silent failures"
99
+ ```
100
+
101
+ ---
102
+
103
+ ## Contributing
104
+
105
+ We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
106
+
107
+ Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
108
+
109
+ ---
110
+
111
+ *“Understanding the internals is the first step to excellence.”*
@@ -0,0 +1 @@
1
+ __version__ = "0.1.1"
@@ -0,0 +1,143 @@
1
+ Metadata-Version: 2.4
2
+ Name: akitallm
3
+ Version: 0.1.1
4
+ Summary: AkitaLLM: An open-source local-first AI system for programming.
5
+ Author: KerubinDev
6
+ License: MIT
7
+ Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
8
+ Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
9
+ Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
10
+ Keywords: ai,cli,programming,local-first,llm
11
+ Classifier: Development Status :: 4 - Beta
12
+ Classifier: Intended Audience :: Developers
13
+ Classifier: License :: OSI Approved :: MIT License
14
+ Classifier: Programming Language :: Python :: 3
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Programming Language :: Python :: 3.12
18
+ Requires-Python: >=3.10
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ Requires-Dist: typer[all]
22
+ Requires-Dist: litellm
23
+ Requires-Dist: pydantic
24
+ Requires-Dist: rich
25
+ Requires-Dist: python-dotenv
26
+ Requires-Dist: pytest
27
+ Requires-Dist: pytest-mock
28
+ Requires-Dist: gitpython
29
+ Requires-Dist: tomli-w
30
+ Requires-Dist: tomli
31
+ Dynamic: license-file
32
+
33
+ ```text
34
+ _ _ _ _ _ _ __ __
35
+ / \ | | _(_) |_ __ _| | | | | \/ |
36
+ / _ \ | |/ / | __/ _` | | | | | |\/| |
37
+ / ___ \ | <| | || (_| | |___| |___| | | |
38
+ /_/ \_\ |_|\_\_|\__\__,_|_____|_____|_| |_|
39
+
40
+ ```
41
+
42
+ # AkitaLLM
43
+ ### A deterministic, local-first AI orchestrator for software engineers.
44
+
45
+ ---
46
+
47
+ ## What is AkitaLLM?
48
+
49
+ AkitaLLM is not another "AI wrapper." It is a command-line utility designed for developers who value engineering rigor over generative "magic." It treats Large Language Models as non-deterministic execution engines that must be constrained within a strict, auditable pipeline: **Analyze → Plan → Execute → Validate**.
50
+
51
+ Built as a local-first tool, it provides you with an AI-augmented workflow that respects your project's context, follows security best practices, and prioritizes structured output over conversational noise.
52
+
53
+ ---
54
+
55
+ ## Why AkitaLLM exists
56
+
57
+ Most current AI tools (ChatGPT, Copilot, Cursor) operate in a "black-box" conversational mode. They are excellent at text generation but often fail at **software engineering**, which requires:
58
+ - **Project-Level Context**: Understanding how a change in `utils.py` affects `main.py`.
59
+ - **Previsibilty**: Knowing exactly what the AI intends to do before it modifies a single byte.
60
+ - **Verification**: Automatically ensuring that proposed changes don't break existing logic.
61
+
62
+ AkitaLLM was built to bridge this gap, treating AI as a component of a larger, human-controlled engineering process.
63
+
64
+ ---
65
+
66
+ ## The Engineering Difference
67
+
68
+ | Feature | Generic AI Tools | AkitaLLM |
69
+ | :--- | :--- | :--- |
70
+ | **Logic** | Conversational / Guesswork | Analyze → Plan → Execute → Validate |
71
+ | **Control** | Autocomplete / Chat | Explicit technical plans & reviewable Diffs |
72
+ | **Security** | Cloud-heavy | Local-first, respects `.gitignore` and `.env` |
73
+ | **Validation** | Post-facto manual review | Automated local test execution |
74
+ | **Philosophy** | "It just works" (Hype) | "Understand the internals" (Engineering) |
75
+
76
+ ---
77
+
78
+ ## Core Principles
79
+
80
+ 1. **Local-First**: Your code remains on your machine. AkitaLLM orchestrates local models (via Ollama) or remote APIs (via LiteLLM) through encrypted, controlled channels.
81
+ 2. **Contextual Awareness**: It uses recursive file scanning and structure analysis to build a high-fidelity map of your project before making suggestions.
82
+ 3. **No Magic**: No hidden prompts, no mysterious "thinking" phases. All actions are logged, auditable, and based on standard engineering patterns.
83
+ 4. **Tool-Driven**: AI is a user of tools (linters, test runners, AST parsers), not a replacement for them.
84
+
85
+ ---
86
+
87
+ ## Key Features
88
+
89
+ - **Structural Code Review**: Detailed analysis of bugs, style, performance, and security risks with prioritized severity levels.
90
+ - **Technical Planning**: Generation of step-by-step implementation plans in Markdown for complex feature requests.
91
+ - **Actionable Diffs**: Proposed changes are generated as standard Unified Diffs for human review before application.
92
+ - **Environment Isolation**: Supports `.env` and local configuration storage (`~/.akita/`) to keep secrets safe.
93
+ - **Model Agnostic**: Seamlessly switch between GPT-4o, Claude 3.5, Llama 3, and more.
94
+
95
+ ---
96
+
97
+ ## Installation
98
+
99
+ AkitaLLM is available on PyPI. You can install it directly using pip:
100
+
101
+ ```bash
102
+ pip install akitallm
103
+ ```
104
+
105
+ ---
106
+
107
+ ## Usage
108
+
109
+ ### 1. Project Initialization
110
+ Run any command to trigger the initial configuration and onboarding.
111
+ ```bash
112
+ akita review .
113
+ ```
114
+
115
+ ### 2. Strategic Code Review
116
+ Analyze a directory for potential architectural risks and bugs.
117
+ ```bash
118
+ akita review src/
119
+ ```
120
+
121
+ ### 3. Implementation Planning
122
+ Generate a technical plan for a specific goal.
123
+ ```bash
124
+ akita plan "Implement JWT authentication with Redis-based session storage"
125
+ ```
126
+
127
+ ### 4. Code Problem Solving
128
+ Generate a diff to solve a precise issue or refactor a module.
129
+ ```bash
130
+ akita solve "Improve error handling in the reasoning engine to prevent silent failures"
131
+ ```
132
+
133
+ ---
134
+
135
+ ## Contributing
136
+
137
+ We are looking for engineers, not just coders. If you value robust abstractions, clean code, and predictable systems, your contribution is welcome.
138
+
139
+ Review our [CONTRIBUTING.md](CONTRIBUTING.md) to understand our engineering standards and PR workflow. High-quality PRs with test coverage are prioritized.
140
+
141
+ ---
142
+
143
+ *“Understanding the internals is the first step to excellence.”*
@@ -1,6 +1,6 @@
1
1
  [project]
2
2
  name = "akitallm"
3
- version = "0.1.0"
3
+ version = "0.1.1"
4
4
  description = "AkitaLLM: An open-source local-first AI system for programming."
5
5
  authors = [{ name = "KerubinDev" }]
6
6
  readme = "README.md"
akitallm-0.1.0/PKG-INFO DELETED
@@ -1,111 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: akitallm
3
- Version: 0.1.0
4
- Summary: AkitaLLM: An open-source local-first AI system for programming.
5
- Author: KerubinDev
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
8
- Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
9
- Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
10
- Keywords: ai,cli,programming,local-first,llm
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: Developers
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Classifier: Programming Language :: Python :: 3.12
18
- Requires-Python: >=3.10
19
- Description-Content-Type: text/markdown
20
- License-File: LICENSE
21
- Requires-Dist: typer[all]
22
- Requires-Dist: litellm
23
- Requires-Dist: pydantic
24
- Requires-Dist: rich
25
- Requires-Dist: python-dotenv
26
- Requires-Dist: pytest
27
- Requires-Dist: pytest-mock
28
- Requires-Dist: gitpython
29
- Requires-Dist: tomli-w
30
- Requires-Dist: tomli
31
- Dynamic: license-file
32
-
33
- # AkitaLLM
34
-
35
- **AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
36
-
37
- ## What is AkitaLLM?
38
-
39
- AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
40
- - **Analyzes** your project structure and file content before proposing changes.
41
- - **Plans** technical steps using a structured reasoning engine.
42
- - **Solves** problems by generating Unified Diffs that you can review.
43
- - **Validates** changes using local testing frameworks like `pytest`.
44
-
45
- ## Key Features
46
-
47
- - **Local-First**: Developed with privacy and security in mind.
48
- - **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
49
- - **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
50
- - **Security by Default**: Diffs are only applied with your explicit confirmation.
51
- - **Support for .env**: Manage your API keys safely.
52
-
53
- ## Installation
54
-
55
- ```bash
56
- # Clone the repository
57
- git clone https://github.com/Your-Name/AkitaLLM.git
58
- cd AkitaLLM
59
-
60
- # Install in editable mode
61
- pip install -e .
62
- ```
63
-
64
- ## Usage
65
-
66
- ### 1. Initial Setup
67
- The first time you run a command, AkitaLLM will guide you through choosing a model.
68
- ```bash
69
- akita review .
70
- ```
71
-
72
- ### 2. Code Review
73
- Analyze files or directories for bugs, style, and security risks.
74
- ```bash
75
- akita review src/
76
- ```
77
-
78
- ### 3. Solution Planning
79
- Generate a technical plan for a complex task.
80
- ```bash
81
- akita plan "Refactor the authentication module to support JWT"
82
- ```
83
-
84
- ### 4. Problem Solving
85
- Generate a diff to solve a specific issue.
86
- ```bash
87
- akita solve "Add error handling to the ReasoningEngine class"
88
- ```
89
-
90
- ## Configuration
91
-
92
- AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
93
- ```bash
94
- # View and change model settings
95
- akita config model
96
-
97
- # Reset all settings
98
- akita config model --reset
99
- ```
100
-
101
- ## Contributing
102
-
103
- We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
104
-
105
- ## License
106
-
107
- This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
108
-
109
- ---
110
-
111
- *“Understanding the internals is the first step to excellence.”*
akitallm-0.1.0/README.md DELETED
@@ -1,79 +0,0 @@
1
- # AkitaLLM
2
-
3
- **AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
4
-
5
- ## What is AkitaLLM?
6
-
7
- AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
8
- - **Analyzes** your project structure and file content before proposing changes.
9
- - **Plans** technical steps using a structured reasoning engine.
10
- - **Solves** problems by generating Unified Diffs that you can review.
11
- - **Validates** changes using local testing frameworks like `pytest`.
12
-
13
- ## Key Features
14
-
15
- - **Local-First**: Developed with privacy and security in mind.
16
- - **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
17
- - **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
18
- - **Security by Default**: Diffs are only applied with your explicit confirmation.
19
- - **Support for .env**: Manage your API keys safely.
20
-
21
- ## Installation
22
-
23
- ```bash
24
- # Clone the repository
25
- git clone https://github.com/Your-Name/AkitaLLM.git
26
- cd AkitaLLM
27
-
28
- # Install in editable mode
29
- pip install -e .
30
- ```
31
-
32
- ## Usage
33
-
34
- ### 1. Initial Setup
35
- The first time you run a command, AkitaLLM will guide you through choosing a model.
36
- ```bash
37
- akita review .
38
- ```
39
-
40
- ### 2. Code Review
41
- Analyze files or directories for bugs, style, and security risks.
42
- ```bash
43
- akita review src/
44
- ```
45
-
46
- ### 3. Solution Planning
47
- Generate a technical plan for a complex task.
48
- ```bash
49
- akita plan "Refactor the authentication module to support JWT"
50
- ```
51
-
52
- ### 4. Problem Solving
53
- Generate a diff to solve a specific issue.
54
- ```bash
55
- akita solve "Add error handling to the ReasoningEngine class"
56
- ```
57
-
58
- ## Configuration
59
-
60
- AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
61
- ```bash
62
- # View and change model settings
63
- akita config model
64
-
65
- # Reset all settings
66
- akita config model --reset
67
- ```
68
-
69
- ## Contributing
70
-
71
- We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
72
-
73
- ## License
74
-
75
- This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
76
-
77
- ---
78
-
79
- *“Understanding the internals is the first step to excellence.”*
@@ -1 +0,0 @@
1
- __version__ = "0.1.0"
@@ -1,111 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: akitallm
3
- Version: 0.1.0
4
- Summary: AkitaLLM: An open-source local-first AI system for programming.
5
- Author: KerubinDev
6
- License: MIT
7
- Project-URL: Homepage, https://github.com/KerubinDev/AkitaLLM
8
- Project-URL: Repository, https://github.com/KerubinDev/AkitaLLM
9
- Project-URL: Issues, https://github.com/KerubinDev/AkitaLLM/issues
10
- Keywords: ai,cli,programming,local-first,llm
11
- Classifier: Development Status :: 4 - Beta
12
- Classifier: Intended Audience :: Developers
13
- Classifier: License :: OSI Approved :: MIT License
14
- Classifier: Programming Language :: Python :: 3
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Classifier: Programming Language :: Python :: 3.12
18
- Requires-Python: >=3.10
19
- Description-Content-Type: text/markdown
20
- License-File: LICENSE
21
- Requires-Dist: typer[all]
22
- Requires-Dist: litellm
23
- Requires-Dist: pydantic
24
- Requires-Dist: rich
25
- Requires-Dist: python-dotenv
26
- Requires-Dist: pytest
27
- Requires-Dist: pytest-mock
28
- Requires-Dist: gitpython
29
- Requires-Dist: tomli-w
30
- Requires-Dist: tomli
31
- Dynamic: license-file
32
-
33
- # AkitaLLM
34
-
35
- **AkitaLLM** is an open-source, local-first AI system designed for professional programming. It orchestrates existing LLMs (Ollama, OpenAI, Anthropic, etc.) through a strict **Plan-Execute-Validate** pipeline to ensure code quality and reliability.
36
-
37
- ## What is AkitaLLM?
38
-
39
- AkitaLLM is a command-line interface (CLI) that helps you manage codebases with AI. Unlike simple chat interfaces, AkitaLLM:
40
- - **Analyzes** your project structure and file content before proposing changes.
41
- - **Plans** technical steps using a structured reasoning engine.
42
- - **Solves** problems by generating Unified Diffs that you can review.
43
- - **Validates** changes using local testing frameworks like `pytest`.
44
-
45
- ## Key Features
46
-
47
- - **Local-First**: Developed with privacy and security in mind.
48
- - **Model Agnostic**: Use any model supported by LiteLLM (GPT-4o, Claude, Llama 3 via Ollama).
49
- - **Structured Output**: Code reviews and plans are presented in professional terminal tables and Markdown.
50
- - **Security by Default**: Diffs are only applied with your explicit confirmation.
51
- - **Support for .env**: Manage your API keys safely.
52
-
53
- ## Installation
54
-
55
- ```bash
56
- # Clone the repository
57
- git clone https://github.com/Your-Name/AkitaLLM.git
58
- cd AkitaLLM
59
-
60
- # Install in editable mode
61
- pip install -e .
62
- ```
63
-
64
- ## Usage
65
-
66
- ### 1. Initial Setup
67
- The first time you run a command, AkitaLLM will guide you through choosing a model.
68
- ```bash
69
- akita review .
70
- ```
71
-
72
- ### 2. Code Review
73
- Analyze files or directories for bugs, style, and security risks.
74
- ```bash
75
- akita review src/
76
- ```
77
-
78
- ### 3. Solution Planning
79
- Generate a technical plan for a complex task.
80
- ```bash
81
- akita plan "Refactor the authentication module to support JWT"
82
- ```
83
-
84
- ### 4. Problem Solving
85
- Generate a diff to solve a specific issue.
86
- ```bash
87
- akita solve "Add error handling to the ReasoningEngine class"
88
- ```
89
-
90
- ## Configuration
91
-
92
- AkitaLLM stores its configuration in `~/.akita/config.toml`. You can manage it via:
93
- ```bash
94
- # View and change model settings
95
- akita config model
96
-
97
- # Reset all settings
98
- akita config model --reset
99
- ```
100
-
101
- ## Contributing
102
-
103
- We welcome contributions! Please check [CONTRIBUTING.md](CONTRIBUTING.md) to understand our workflow and standards.
104
-
105
- ## License
106
-
107
- This project is licensed under the **MIT License**. See [LICENSE](LICENSE) for details.
108
-
109
- ---
110
-
111
- *“Understanding the internals is the first step to excellence.”*
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes