aisp 0.1.35__tar.gz → 0.1.41__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {aisp-0.1.35 → aisp-0.1.41}/PKG-INFO +10 -6
- {aisp-0.1.35 → aisp-0.1.41}/README.md +2 -1
- {aisp-0.1.35 → aisp-0.1.41}/aisp/__init__.py +1 -1
- aisp-0.1.41/aisp/base/__init__.py +4 -0
- aisp-0.1.41/aisp/base/_classifier.py +110 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/nsa/__init__.py +1 -1
- aisp-0.1.41/aisp/nsa/_base.py +118 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/nsa/_negative_selection.py +118 -213
- aisp-0.1.41/aisp/nsa/_ns_core.py +153 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/utils/_multiclass.py +1 -0
- aisp-0.1.41/aisp/utils/distance.py +215 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/utils/metrics.py +2 -2
- {aisp-0.1.35 → aisp-0.1.41}/aisp/utils/sanitizers.py +3 -2
- {aisp-0.1.35 → aisp-0.1.41}/aisp.egg-info/PKG-INFO +10 -6
- {aisp-0.1.35 → aisp-0.1.41}/aisp.egg-info/SOURCES.txt +4 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp.egg-info/requires.txt +1 -0
- {aisp-0.1.35 → aisp-0.1.41}/pyproject.toml +39 -21
- aisp-0.1.35/aisp/nsa/_base.py +0 -212
- {aisp-0.1.35 → aisp-0.1.41}/LICENSE +0 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/exceptions.py +0 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp/utils/__init__.py +0 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp.egg-info/dependency_links.txt +0 -0
- {aisp-0.1.35 → aisp-0.1.41}/aisp.egg-info/top_level.txt +0 -0
- {aisp-0.1.35 → aisp-0.1.41}/setup.cfg +0 -0
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: aisp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.41
|
4
4
|
Summary: Package with techniques of artificial immune systems.
|
5
5
|
Author-email: João Paulo da Silva Barros <jpsilvabarr@gmail.com>
|
6
6
|
Maintainer-email: Alison Zille Lopes <alisonzille@gmail.com>
|
@@ -9,18 +9,21 @@ Project-URL: Homepage, https://ais-package.github.io/
|
|
9
9
|
Project-URL: Documentation, https://ais-package.github.io/docs/intro
|
10
10
|
Project-URL: Source Code, https://github.com/AIS-Package/aisp
|
11
11
|
Project-URL: Tracker, https://github.com/AIS-Package/aisp/issues
|
12
|
-
Keywords: Artificial Immune Systems,classification,Natural computing,machine learning,artificial intelligence
|
12
|
+
Keywords: Artificial Immune Systems,classification,Natural computing,machine learning,artificial intelligence,AIS
|
13
13
|
Classifier: Operating System :: OS Independent
|
14
14
|
Classifier: Programming Language :: Python
|
15
15
|
Classifier: Programming Language :: Python :: 3
|
16
|
-
Classifier: Programming Language :: Python :: 3.8
|
17
|
-
Classifier: Programming Language :: Python :: 3.9
|
18
16
|
Classifier: Programming Language :: Python :: 3.10
|
19
17
|
Classifier: Programming Language :: Python :: 3.11
|
20
|
-
|
18
|
+
Classifier: Programming Language :: Python :: 3.12
|
19
|
+
Classifier: Programming Language :: Python :: 3.13
|
20
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
21
|
+
Classifier: Topic :: Software Development :: Libraries :: Python Modules
|
22
|
+
Requires-Python: >=3.10
|
21
23
|
Description-Content-Type: text/markdown
|
22
24
|
License-File: LICENSE
|
23
25
|
Requires-Dist: numpy>=1.22.4
|
26
|
+
Requires-Dist: numba>=0.59.0
|
24
27
|
Requires-Dist: scipy>=1.8.1
|
25
28
|
Requires-Dist: tqdm>=4.64.1
|
26
29
|
Dynamic: license-file
|
@@ -86,7 +89,7 @@ Artificial Immune Systems (AIS) are inspired by the vertebrate immune system, cr
|
|
86
89
|
|
87
90
|
#### **Installation**
|
88
91
|
|
89
|
-
The module requires installation of [python 3.
|
92
|
+
The module requires installation of [python 3.10](https://www.python.org/downloads/) or higher.
|
90
93
|
|
91
94
|
<section id='dependencies'>
|
92
95
|
|
@@ -99,6 +102,7 @@ The module requires installation of [python 3.8.10](https://www.python.org/downl
|
|
99
102
|
| numpy | ≥ 1.22.4 |
|
100
103
|
| scipy | ≥ 1.8.1 |
|
101
104
|
| tqdm | ≥ 4.64.1 |
|
105
|
+
| numba | ≥ 0.59.0 |
|
102
106
|
|
103
107
|
</div>
|
104
108
|
|
@@ -59,7 +59,7 @@ Artificial Immune Systems (AIS) are inspired by the vertebrate immune system, cr
|
|
59
59
|
|
60
60
|
#### **Installation**
|
61
61
|
|
62
|
-
The module requires installation of [python 3.
|
62
|
+
The module requires installation of [python 3.10](https://www.python.org/downloads/) or higher.
|
63
63
|
|
64
64
|
<section id='dependencies'>
|
65
65
|
|
@@ -72,6 +72,7 @@ The module requires installation of [python 3.8.10](https://www.python.org/downl
|
|
72
72
|
| numpy | ≥ 1.22.4 |
|
73
73
|
| scipy | ≥ 1.8.1 |
|
74
74
|
| tqdm | ≥ 4.64.1 |
|
75
|
+
| numba | ≥ 0.59.0 |
|
75
76
|
|
76
77
|
</div>
|
77
78
|
|
@@ -0,0 +1,110 @@
|
|
1
|
+
"""Base class for classification algorithm."""
|
2
|
+
|
3
|
+
from abc import ABC, abstractmethod
|
4
|
+
from typing import Optional, Union
|
5
|
+
|
6
|
+
import numpy.typing as npt
|
7
|
+
|
8
|
+
from ..utils import slice_index_list_by_class
|
9
|
+
from ..utils.metrics import accuracy_score
|
10
|
+
|
11
|
+
|
12
|
+
class BaseClassifier(ABC):
|
13
|
+
"""
|
14
|
+
Base class for classification algorithms, defining the abstract methods ``fit`` and ``predict``,
|
15
|
+
and implementing the ``get_params`` method.
|
16
|
+
"""
|
17
|
+
|
18
|
+
classes: Optional[Union[npt.NDArray, list]] = None
|
19
|
+
|
20
|
+
@abstractmethod
|
21
|
+
def fit(self, X: npt.NDArray, y: npt.NDArray, verbose: bool = True):
|
22
|
+
"""
|
23
|
+
Function to train the model using the input data ``X`` and corresponding labels ``y``.
|
24
|
+
|
25
|
+
This abstract method is implemented by the class that inherits it.
|
26
|
+
|
27
|
+
Parameters
|
28
|
+
----------
|
29
|
+
* X (``npt.NDArray``): Input data used for training the model, previously normalized to the
|
30
|
+
range [0, 1].
|
31
|
+
* y (``npt.NDArray``): Corresponding labels or target values for the input data.
|
32
|
+
* verbose (``bool``, optional): Flag to enable or disable detailed output during training.
|
33
|
+
Default is ``True``.
|
34
|
+
|
35
|
+
Returns
|
36
|
+
----------
|
37
|
+
* self: Returns the instance of the class that implements this method.
|
38
|
+
"""
|
39
|
+
|
40
|
+
@abstractmethod
|
41
|
+
def predict(self, X) -> Optional[npt.NDArray]:
|
42
|
+
"""
|
43
|
+
Function to generate predictions based on the input data ``X``.
|
44
|
+
|
45
|
+
This abstract method is implemented by the class that inherits it.
|
46
|
+
|
47
|
+
Parameters
|
48
|
+
----------
|
49
|
+
* X (``npt.NDArray``): Input data for which predictions will be generated.
|
50
|
+
|
51
|
+
Returns
|
52
|
+
----------
|
53
|
+
* Predictions (``Optional[npt.NDArray]``): Predicted values for each input sample, or
|
54
|
+
``None`` if the prediction fails.
|
55
|
+
"""
|
56
|
+
|
57
|
+
def score(self, X: npt.NDArray, y: list) -> float:
|
58
|
+
"""
|
59
|
+
Score function calculates forecast accuracy.
|
60
|
+
|
61
|
+
Details
|
62
|
+
----------
|
63
|
+
This function performs the prediction of X and checks how many elements are equal
|
64
|
+
between vector y and y_predicted. This function was added for compatibility with some
|
65
|
+
scikit-learn functions.
|
66
|
+
|
67
|
+
Parameters
|
68
|
+
----------
|
69
|
+
* X (``np.ndarray``):
|
70
|
+
Feature set with shape (n_samples, n_features).
|
71
|
+
* y (``np.ndarray``):
|
72
|
+
True values with shape (n_samples,).
|
73
|
+
|
74
|
+
Returns
|
75
|
+
----------
|
76
|
+
* accuracy (``float``): The accuracy of the model.
|
77
|
+
"""
|
78
|
+
if len(y) == 0:
|
79
|
+
return 0
|
80
|
+
y_pred = self.predict(X)
|
81
|
+
return accuracy_score(y, y_pred)
|
82
|
+
|
83
|
+
def _slice_index_list_by_class(self, y: npt.NDArray) -> dict:
|
84
|
+
"""
|
85
|
+
The function ``_slice_index_list_by_class(...)``, separates the indices of the lines \
|
86
|
+
according to the output class, to loop through the sample array, only in positions where \
|
87
|
+
the output is the class being trained.
|
88
|
+
|
89
|
+
Parameters
|
90
|
+
----------
|
91
|
+
* y (npt.NDArray): Receives a ``y``[``N sample``] array with the output classes of the \
|
92
|
+
``X`` sample array.
|
93
|
+
|
94
|
+
returns
|
95
|
+
----------
|
96
|
+
* dict: A dictionary with the list of array positions(``y``), with the classes as key.
|
97
|
+
"""
|
98
|
+
return slice_index_list_by_class(self.classes, y)
|
99
|
+
|
100
|
+
def get_params(self, deep: bool = True) -> dict: # pylint: disable=W0613
|
101
|
+
"""
|
102
|
+
The get_params function Returns a dictionary with the object's main parameters.
|
103
|
+
|
104
|
+
This function is required to ensure compatibility with scikit-learn functions.
|
105
|
+
"""
|
106
|
+
return {
|
107
|
+
key: value
|
108
|
+
for key, value in self.__dict__.items()
|
109
|
+
if not key.startswith("_")
|
110
|
+
}
|
@@ -0,0 +1,118 @@
|
|
1
|
+
"""Base Class for Negative Selection Algorithm."""
|
2
|
+
|
3
|
+
from abc import ABC
|
4
|
+
from dataclasses import dataclass
|
5
|
+
from typing import Literal, Optional
|
6
|
+
|
7
|
+
import numpy as np
|
8
|
+
import numpy.typing as npt
|
9
|
+
|
10
|
+
from ..base import BaseClassifier
|
11
|
+
from ..exceptions import FeatureDimensionMismatch
|
12
|
+
|
13
|
+
|
14
|
+
class BaseNSA(BaseClassifier, ABC):
|
15
|
+
"""
|
16
|
+
The base class contains functions that are used by more than one class in the package, and
|
17
|
+
therefore are considered essential for the overall functioning of the system.
|
18
|
+
"""
|
19
|
+
|
20
|
+
@staticmethod
|
21
|
+
def _check_and_raise_exceptions_fit(
|
22
|
+
X: npt.NDArray = None,
|
23
|
+
y: npt.NDArray = None,
|
24
|
+
_class_: Literal["RNSA", "BNSA"] = "RNSA",
|
25
|
+
) -> None:
|
26
|
+
"""
|
27
|
+
Function responsible for verifying fit function parameters and throwing exceptions if the
|
28
|
+
verification is not successful.
|
29
|
+
|
30
|
+
Parameters
|
31
|
+
----------
|
32
|
+
* X (``npt.NDArray``) Training array, containing the samples and their
|
33
|
+
characteristics, [``N samples`` (rows)][``N features`` (columns)].
|
34
|
+
* y (``npt.NDArray``) Array of target classes of ``X`` with [``N samples`` (lines)].
|
35
|
+
* _class_ (``Literal[RNSA, BNSA], optional``) Current class. Defaults to 'RNSA'.
|
36
|
+
|
37
|
+
Raises
|
38
|
+
----------
|
39
|
+
* TypeError: If X or y are not ndarrays or have incompatible shapes.
|
40
|
+
* ValueError: If _class_ is BNSA and X contains values that are not composed only of
|
41
|
+
0 and 1.
|
42
|
+
"""
|
43
|
+
if isinstance(X, list):
|
44
|
+
X = np.array(X)
|
45
|
+
if isinstance(y, list):
|
46
|
+
y = np.array(y)
|
47
|
+
|
48
|
+
if not isinstance(X, np.ndarray):
|
49
|
+
raise TypeError("X is not an ndarray or list.")
|
50
|
+
if not isinstance(y, np.ndarray):
|
51
|
+
raise TypeError("y is not an ndarray or list.")
|
52
|
+
|
53
|
+
if X.shape[0] != y.shape[0]:
|
54
|
+
raise TypeError(
|
55
|
+
"X does not have the same amount of sample for the output classes in y."
|
56
|
+
)
|
57
|
+
|
58
|
+
if _class_ == "BNSA" and not np.isin(X, [0, 1]).all():
|
59
|
+
raise ValueError(
|
60
|
+
"The array X contains values that are not composed only of 0 and 1."
|
61
|
+
)
|
62
|
+
|
63
|
+
@staticmethod
|
64
|
+
def _check_and_raise_exceptions_predict(
|
65
|
+
X: npt.NDArray = None,
|
66
|
+
expected: int = 0,
|
67
|
+
_class_: Literal["RNSA", "BNSA"] = "RNSA",
|
68
|
+
) -> None:
|
69
|
+
"""
|
70
|
+
Function responsible for verifying predict function parameters and throwing exceptions if
|
71
|
+
the verification is not successful.
|
72
|
+
|
73
|
+
Parameters
|
74
|
+
----------
|
75
|
+
* X (``npt.NDArray``)
|
76
|
+
Input array for prediction, containing the samples and their characteristics,
|
77
|
+
[``N samples`` (rows)][``N features`` (columns)].
|
78
|
+
* expected (``int``)
|
79
|
+
Expected number of features per sample (columns in X).
|
80
|
+
* _class_ (``Literal[RNSA, BNSA], optional``)
|
81
|
+
Current class. Defaults to 'RNSA'.
|
82
|
+
|
83
|
+
Raises
|
84
|
+
----------
|
85
|
+
* TypeError: If X is not an ndarray or list.
|
86
|
+
* FeatureDimensionMismatch: If the number of features in X does not match the expected
|
87
|
+
number.
|
88
|
+
* ValueError: If _class_ is BNSA and X contains values that are not composed only of 0
|
89
|
+
and 1.
|
90
|
+
"""
|
91
|
+
if not isinstance(X, (np.ndarray, list)):
|
92
|
+
raise TypeError("X is not an ndarray or list")
|
93
|
+
if expected != len(X[0]):
|
94
|
+
raise FeatureDimensionMismatch(expected, len(X[0]), "X")
|
95
|
+
|
96
|
+
if _class_ != "BNSA":
|
97
|
+
return
|
98
|
+
|
99
|
+
# Checks if matrix X contains only binary samples. Otherwise, raises an exception.
|
100
|
+
if not np.isin(X, [0, 1]).all():
|
101
|
+
raise ValueError(
|
102
|
+
"The array X contains values that are not composed only of 0 and 1."
|
103
|
+
)
|
104
|
+
|
105
|
+
|
106
|
+
@dataclass(slots=True)
|
107
|
+
class Detector:
|
108
|
+
"""
|
109
|
+
Represents a non-self detector of the RNSA class.
|
110
|
+
|
111
|
+
Attributes
|
112
|
+
----------
|
113
|
+
* position (``npt.NDArray[np.float64]``): Detector feature vector.
|
114
|
+
* radius (``float, optional``): Detector radius, used in the V-detector algorithm.
|
115
|
+
"""
|
116
|
+
|
117
|
+
position: npt.NDArray[np.float64]
|
118
|
+
radius: Optional[float] = None
|