aisp 0.1.33__tar.gz → 0.1.35__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {aisp-0.1.33 → aisp-0.1.35}/PKG-INFO +6 -109
- {aisp-0.1.33 → aisp-0.1.35}/README.md +1 -105
- aisp-0.1.35/aisp/__init__.py +4 -0
- aisp-0.1.35/aisp/exceptions.py +42 -0
- aisp-0.1.35/aisp/nsa/__init__.py +11 -0
- aisp-0.1.35/aisp/nsa/_base.py +212 -0
- aisp-0.1.35/aisp/nsa/_negative_selection.py +752 -0
- {aisp-0.1.33 → aisp-0.1.35}/aisp/utils/__init__.py +2 -1
- aisp-0.1.35/aisp/utils/_multiclass.py +28 -0
- aisp-0.1.35/aisp/utils/metrics.py +40 -0
- aisp-0.1.35/aisp/utils/sanitizers.py +54 -0
- {aisp-0.1.33 → aisp-0.1.35}/aisp.egg-info/PKG-INFO +6 -109
- {aisp-0.1.33 → aisp-0.1.35}/aisp.egg-info/SOURCES.txt +7 -4
- {aisp-0.1.33 → aisp-0.1.35}/pyproject.toml +14 -11
- aisp-0.1.33/aisp/NSA/__init__.py +0 -5
- aisp-0.1.33/aisp/NSA/_base.py +0 -281
- aisp-0.1.33/aisp/NSA/_negative_selection.py +0 -1191
- aisp-0.1.33/aisp/utils/_multiclass.py +0 -43
- aisp-0.1.33/aisp/utils/metrics.py +0 -61
- {aisp-0.1.33 → aisp-0.1.35}/LICENSE +0 -0
- {aisp-0.1.33 → aisp-0.1.35}/aisp.egg-info/dependency_links.txt +0 -0
- {aisp-0.1.33 → aisp-0.1.35}/aisp.egg-info/requires.txt +0 -0
- {aisp-0.1.33 → aisp-0.1.35}/aisp.egg-info/top_level.txt +0 -0
- {aisp-0.1.33 → aisp-0.1.35}/setup.cfg +0 -0
@@ -1,15 +1,15 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: aisp
|
3
|
-
Version: 0.1.
|
3
|
+
Version: 0.1.35
|
4
4
|
Summary: Package with techniques of artificial immune systems.
|
5
5
|
Author-email: João Paulo da Silva Barros <jpsilvabarr@gmail.com>
|
6
6
|
Maintainer-email: Alison Zille Lopes <alisonzille@gmail.com>
|
7
|
-
License: LGPL-3.0
|
7
|
+
License-Expression: LGPL-3.0-only
|
8
8
|
Project-URL: Homepage, https://ais-package.github.io/
|
9
9
|
Project-URL: Documentation, https://ais-package.github.io/docs/intro
|
10
10
|
Project-URL: Source Code, https://github.com/AIS-Package/aisp
|
11
11
|
Project-URL: Tracker, https://github.com/AIS-Package/aisp/issues
|
12
|
-
|
12
|
+
Keywords: Artificial Immune Systems,classification,Natural computing,machine learning,artificial intelligence
|
13
13
|
Classifier: Operating System :: OS Independent
|
14
14
|
Classifier: Programming Language :: Python
|
15
15
|
Classifier: Programming Language :: Python :: 3
|
@@ -23,6 +23,7 @@ License-File: LICENSE
|
|
23
23
|
Requires-Dist: numpy>=1.22.4
|
24
24
|
Requires-Dist: scipy>=1.8.1
|
25
25
|
Requires-Dist: tqdm>=4.64.1
|
26
|
+
Dynamic: license-file
|
26
27
|
|
27
28
|
<div align = center>
|
28
29
|
|
@@ -38,7 +39,7 @@ Requires-Dist: tqdm>=4.64.1
|
|
38
39
|
<div class='language-options'>
|
39
40
|
|
40
41
|
* [English.](#english)
|
41
|
-
* [Português.](
|
42
|
+
* [Português.](https://ais-package.github.io/pt-br/docs/intro)
|
42
43
|
|
43
44
|
</div>
|
44
45
|
|
@@ -51,11 +52,6 @@ Requires-Dist: tqdm>=4.64.1
|
|
51
52
|
---
|
52
53
|
|
53
54
|
<section id='english'>
|
54
|
-
<div align = center>
|
55
|
-
|
56
|
-
## English
|
57
|
-
|
58
|
-
</div>
|
59
55
|
|
60
56
|
#### Summary:
|
61
57
|
|
@@ -143,104 +139,5 @@ Below are some examples that use a database for classification with the [Jupyter
|
|
143
139
|
|
144
140
|
---
|
145
141
|
|
146
|
-
|
147
|
-
</section>
|
148
|
-
</section>
|
149
|
-
|
150
|
-
---
|
151
|
-
|
152
|
-
<section id='português'>
|
153
|
-
<div align = center>
|
154
|
-
|
155
|
-
## Português
|
156
|
-
|
157
|
-
</div>
|
158
|
-
|
159
|
-
#### Sumário:
|
160
|
-
|
161
|
-
> 1. [Introdução.](#introdução)
|
162
|
-
> 2. [Instalação.](#instalação)
|
163
|
-
> 1. [Dependências](#dependências)
|
164
|
-
> 2. [Instalação do usuário](#instalação-do-usuário)
|
165
|
-
> 3. [Exemplos.](#exemplos)
|
166
|
-
|
167
|
-
---
|
168
|
-
<section id='introdução'>
|
169
|
-
|
170
|
-
#### Introdução
|
171
|
-
|
172
|
-
O **AISP** é um pacote python que implementa as técnicas dos sistemas imunológicos artificiais, distribuído sob a licença GNU Lesser General Public License v3.0 (LGPLv3).
|
173
|
-
|
174
|
-
O pacote teve início no ano de **2022** como um pacote de pesquisa no instituto federal do norte de minas gerais - campus salinas (**IFNMG - Salinas**).
|
175
|
-
|
176
|
-
Os sistemas imunológicos artificiais (SIA) inspiram-se no sistema imunológico dos vertebrados, criando metáforas que aplicam a capacidade de reconhecer e catalogar os patógenos, entre outras características desse sistema.
|
177
|
-
|
178
|
-
##### Algoritmos implementados:
|
179
|
-
|
180
|
-
> - [x] [**Seleção Negativa.**](https://ais-package.github.io/docs/aisp-techniques/Negative%20Selection/)
|
181
|
-
> - [ ] *Algoritmos de Seleção Clonal.*
|
182
|
-
> - [ ] *Células Dendríticas.*
|
183
|
-
> - [ ] *Teoria da Rede Imune.*
|
184
|
-
|
185
|
-
</section>
|
186
|
-
|
187
|
-
<section id='introdução'>
|
188
|
-
|
189
|
-
#### **Instalação**
|
190
|
-
|
191
|
-
|
192
|
-
O módulo requer a instalação do [python 3.8.10](https://www.python.org/downloads/) ou superior.
|
193
|
-
|
194
|
-
<section id='dependências'>
|
195
|
-
|
196
|
-
##### **Dependências:**
|
197
|
-
<div align = center>
|
198
|
-
|
199
|
-
| Pacotes | Versão |
|
200
|
-
|:-------------:|:-------------:|
|
201
|
-
| numpy | ≥ 1.22.4 |
|
202
|
-
| scipy | ≥ 1.8.1 |
|
203
|
-
| tqdm | ≥ 4.64.1 |
|
204
|
-
|
205
|
-
</div>
|
206
|
-
</section>
|
207
|
-
|
208
|
-
<section id='instalação-do-usuário'>
|
209
|
-
|
210
|
-
##### **Instalação do usuário**
|
211
|
-
|
212
|
-
A maneira mais simples de instalação do AISP é utilizando o ``pip``:
|
213
|
-
|
214
|
-
```Bash
|
215
|
-
pip install aisp
|
216
|
-
```
|
217
|
-
|
218
|
-
</section>
|
219
|
-
|
220
|
-
</section>
|
221
|
-
<section id='exemplos'>
|
222
|
-
|
223
|
-
#### Exemplos:
|
224
|
-
|
225
|
-
---
|
226
|
-
|
227
|
-
##### Exemplo utilizando a técnica de seleção negativa (**nsa**):
|
228
|
-
|
229
|
-
No exemplo presente nesse [notebook](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/example_with_randomly_generated_dataset-pt.ipynb), gerando **500** amostras aleatórias dispostas em dois grupos um para cada classe.
|
230
|
-
|
231
|
-
A seguir alguns exemplos que utiliza-se de base de dados para classificação com a ferramenta [Jupyter notebook](https://jupyter.org/).
|
232
|
-
|
233
|
-
#### **Seleção Negativa:**
|
234
|
-
|
235
|
-
+ **RNSA** Aplicação das tecnica de seleção negativa para classificação utilizando a base de dados de flores da família Iris e Old Faithful Geyser:
|
236
|
-
+ [iris_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/iris_dataBase_example_pt-br.ipynb)
|
237
|
-
+ [geyser_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/geyser_dataBase_example_pt-br.ipynb)
|
238
|
-
|
239
|
-
+ **BNSA**
|
240
|
-
+ [mushrooms_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/BNSA/mushrooms_dataBase_example_en.ipynb)
|
241
|
-
|
242
|
-
|
243
|
-
---
|
244
|
-
|
245
142
|
</section>
|
246
143
|
</section>
|
@@ -12,7 +12,7 @@
|
|
12
12
|
<div class='language-options'>
|
13
13
|
|
14
14
|
* [English.](#english)
|
15
|
-
* [Português.](
|
15
|
+
* [Português.](https://ais-package.github.io/pt-br/docs/intro)
|
16
16
|
|
17
17
|
</div>
|
18
18
|
|
@@ -25,11 +25,6 @@
|
|
25
25
|
---
|
26
26
|
|
27
27
|
<section id='english'>
|
28
|
-
<div align = center>
|
29
|
-
|
30
|
-
## English
|
31
|
-
|
32
|
-
</div>
|
33
28
|
|
34
29
|
#### Summary:
|
35
30
|
|
@@ -117,104 +112,5 @@ Below are some examples that use a database for classification with the [Jupyter
|
|
117
112
|
|
118
113
|
---
|
119
114
|
|
120
|
-
|
121
|
-
</section>
|
122
|
-
</section>
|
123
|
-
|
124
|
-
---
|
125
|
-
|
126
|
-
<section id='português'>
|
127
|
-
<div align = center>
|
128
|
-
|
129
|
-
## Português
|
130
|
-
|
131
|
-
</div>
|
132
|
-
|
133
|
-
#### Sumário:
|
134
|
-
|
135
|
-
> 1. [Introdução.](#introdução)
|
136
|
-
> 2. [Instalação.](#instalação)
|
137
|
-
> 1. [Dependências](#dependências)
|
138
|
-
> 2. [Instalação do usuário](#instalação-do-usuário)
|
139
|
-
> 3. [Exemplos.](#exemplos)
|
140
|
-
|
141
|
-
---
|
142
|
-
<section id='introdução'>
|
143
|
-
|
144
|
-
#### Introdução
|
145
|
-
|
146
|
-
O **AISP** é um pacote python que implementa as técnicas dos sistemas imunológicos artificiais, distribuído sob a licença GNU Lesser General Public License v3.0 (LGPLv3).
|
147
|
-
|
148
|
-
O pacote teve início no ano de **2022** como um pacote de pesquisa no instituto federal do norte de minas gerais - campus salinas (**IFNMG - Salinas**).
|
149
|
-
|
150
|
-
Os sistemas imunológicos artificiais (SIA) inspiram-se no sistema imunológico dos vertebrados, criando metáforas que aplicam a capacidade de reconhecer e catalogar os patógenos, entre outras características desse sistema.
|
151
|
-
|
152
|
-
##### Algoritmos implementados:
|
153
|
-
|
154
|
-
> - [x] [**Seleção Negativa.**](https://ais-package.github.io/docs/aisp-techniques/Negative%20Selection/)
|
155
|
-
> - [ ] *Algoritmos de Seleção Clonal.*
|
156
|
-
> - [ ] *Células Dendríticas.*
|
157
|
-
> - [ ] *Teoria da Rede Imune.*
|
158
|
-
|
159
|
-
</section>
|
160
|
-
|
161
|
-
<section id='introdução'>
|
162
|
-
|
163
|
-
#### **Instalação**
|
164
|
-
|
165
|
-
|
166
|
-
O módulo requer a instalação do [python 3.8.10](https://www.python.org/downloads/) ou superior.
|
167
|
-
|
168
|
-
<section id='dependências'>
|
169
|
-
|
170
|
-
##### **Dependências:**
|
171
|
-
<div align = center>
|
172
|
-
|
173
|
-
| Pacotes | Versão |
|
174
|
-
|:-------------:|:-------------:|
|
175
|
-
| numpy | ≥ 1.22.4 |
|
176
|
-
| scipy | ≥ 1.8.1 |
|
177
|
-
| tqdm | ≥ 4.64.1 |
|
178
|
-
|
179
|
-
</div>
|
180
|
-
</section>
|
181
|
-
|
182
|
-
<section id='instalação-do-usuário'>
|
183
|
-
|
184
|
-
##### **Instalação do usuário**
|
185
|
-
|
186
|
-
A maneira mais simples de instalação do AISP é utilizando o ``pip``:
|
187
|
-
|
188
|
-
```Bash
|
189
|
-
pip install aisp
|
190
|
-
```
|
191
|
-
|
192
|
-
</section>
|
193
|
-
|
194
|
-
</section>
|
195
|
-
<section id='exemplos'>
|
196
|
-
|
197
|
-
#### Exemplos:
|
198
|
-
|
199
|
-
---
|
200
|
-
|
201
|
-
##### Exemplo utilizando a técnica de seleção negativa (**nsa**):
|
202
|
-
|
203
|
-
No exemplo presente nesse [notebook](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/example_with_randomly_generated_dataset-pt.ipynb), gerando **500** amostras aleatórias dispostas em dois grupos um para cada classe.
|
204
|
-
|
205
|
-
A seguir alguns exemplos que utiliza-se de base de dados para classificação com a ferramenta [Jupyter notebook](https://jupyter.org/).
|
206
|
-
|
207
|
-
#### **Seleção Negativa:**
|
208
|
-
|
209
|
-
+ **RNSA** Aplicação das tecnica de seleção negativa para classificação utilizando a base de dados de flores da família Iris e Old Faithful Geyser:
|
210
|
-
+ [iris_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/iris_dataBase_example_pt-br.ipynb)
|
211
|
-
+ [geyser_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/RNSA/geyser_dataBase_example_pt-br.ipynb)
|
212
|
-
|
213
|
-
+ **BNSA**
|
214
|
-
+ [mushrooms_dataBase_example](https://github.com/AIS-Package/aisp/blob/main/examples/BNSA/mushrooms_dataBase_example_en.ipynb)
|
215
|
-
|
216
|
-
|
217
|
-
---
|
218
|
-
|
219
115
|
</section>
|
220
116
|
</section>
|
@@ -0,0 +1,42 @@
|
|
1
|
+
"""Custom warnings and errors"""
|
2
|
+
|
3
|
+
|
4
|
+
class MaxDiscardsReachedError(Exception):
|
5
|
+
"""Exception thrown when the maximum number of detector discards is reached."""
|
6
|
+
|
7
|
+
def __init__(self, _class_, message=None):
|
8
|
+
if message is None:
|
9
|
+
message = (
|
10
|
+
"An error has been identified:\n"
|
11
|
+
f"the maximum number of discards of detectors for the {_class_} class "
|
12
|
+
"has been reached.\nIt is recommended to check the defined radius and "
|
13
|
+
"consider reducing its value."
|
14
|
+
)
|
15
|
+
|
16
|
+
super().__init__(message)
|
17
|
+
|
18
|
+
|
19
|
+
class FeatureDimensionMismatch(Exception):
|
20
|
+
"""
|
21
|
+
Exception raised when the number of input features does not match the expected number
|
22
|
+
required by the model for prediction
|
23
|
+
"""
|
24
|
+
|
25
|
+
def __init__(
|
26
|
+
self,
|
27
|
+
expected: int,
|
28
|
+
received: int,
|
29
|
+
variable_name: str = None
|
30
|
+
):
|
31
|
+
parts = []
|
32
|
+
if variable_name:
|
33
|
+
parts.append(f"In variable '{variable_name}'")
|
34
|
+
|
35
|
+
parts.append("feature dimension mismatch")
|
36
|
+
|
37
|
+
message = (
|
38
|
+
f"{' '.join(parts)}: expected {expected} features, but received {received}. "
|
39
|
+
"Please ensure the input data has the correct number of features "
|
40
|
+
"and matches the expected shape for the model."
|
41
|
+
)
|
42
|
+
super().__init__(message)
|
@@ -0,0 +1,11 @@
|
|
1
|
+
"""nsa: Module (NSA) Negative Selection Algorithm
|
2
|
+
|
3
|
+
NSAs simulate the maturation process of T-cells in the immune system, where these cells learn to
|
4
|
+
distinguish between self and non-self. Only T-cells capable of recognizing non-self elements are
|
5
|
+
preserved.
|
6
|
+
"""
|
7
|
+
from ._negative_selection import BNSA, RNSA
|
8
|
+
|
9
|
+
__author__ = "João Paulo da Silva Barros"
|
10
|
+
__all__ = ["RNSA", "BNSA"]
|
11
|
+
__version__ = "0.1.35"
|
@@ -0,0 +1,212 @@
|
|
1
|
+
"""Base Class for Negative Selection Algorithm."""
|
2
|
+
from abc import abstractmethod
|
3
|
+
from typing import Literal, Optional
|
4
|
+
|
5
|
+
import numpy as np
|
6
|
+
import numpy.typing as npt
|
7
|
+
from scipy.spatial.distance import cityblock, euclidean, minkowski
|
8
|
+
|
9
|
+
from ..exceptions import FeatureDimensionMismatch
|
10
|
+
from ..utils.metrics import accuracy_score
|
11
|
+
from ..utils.sanitizers import sanitize_choice
|
12
|
+
|
13
|
+
|
14
|
+
class Base:
|
15
|
+
"""
|
16
|
+
The base class contains functions that are used by more than one class in the package, and
|
17
|
+
therefore are considered essential for the overall functioning of the system.
|
18
|
+
|
19
|
+
Parameters
|
20
|
+
----------
|
21
|
+
* metric (``str``): Way to calculate the distance between the detector and the sample:
|
22
|
+
* ``'Euclidean'`` ➜ The calculation of the distance is given by the expression: \
|
23
|
+
√( (x₁ – x₂)² + (y₁ – y₂)² + ... + (yn – yn)²).
|
24
|
+
* ``'minkowski'`` ➜ The calculation of the distance is given by the expression: \
|
25
|
+
( |X₁ – Y₁|p + |X₂ – Y₂|p + ... + |Xn – Yn|p) ¹/ₚ.
|
26
|
+
* ``'manhattan'`` ➜ The calculation of the distance is given by the expression: \
|
27
|
+
( |x₁ – x₂| + |y₁ – y₂| + ... + |yn – yn|) .
|
28
|
+
* p (``float``): This parameter stores the value of ``p`` used in the Minkowski distance.\
|
29
|
+
The default is ``2``, which represents normalized Euclidean distance. Different \
|
30
|
+
values of p lead to different variants of the [Minkowski Distance][1].
|
31
|
+
|
32
|
+
Notes
|
33
|
+
----------
|
34
|
+
[1]: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.minkowski_distance.html
|
35
|
+
"""
|
36
|
+
|
37
|
+
def __init__(self, metric: str = "euclidean", p: float = 2):
|
38
|
+
self.metric = sanitize_choice(metric, ["manhattan", "minkowski"], "euclidean")
|
39
|
+
self.p: float = p
|
40
|
+
|
41
|
+
def _distance(self, u: npt.NDArray, v: npt.NDArray):
|
42
|
+
"""
|
43
|
+
Function to calculate the distance between two points by the chosen ``metric``.
|
44
|
+
|
45
|
+
Parameters
|
46
|
+
----------
|
47
|
+
* u (``npt.NDArray``): Coordinates of the first point.
|
48
|
+
* v (``npt.NDArray``): Coordinates of the second point.
|
49
|
+
|
50
|
+
returns
|
51
|
+
----------
|
52
|
+
* Distance (``double``) between the two points.
|
53
|
+
"""
|
54
|
+
if self.metric == "manhattan":
|
55
|
+
return cityblock(u, v)
|
56
|
+
if self.metric == "minkowski":
|
57
|
+
return minkowski(u, v, self.p)
|
58
|
+
|
59
|
+
return euclidean(u, v)
|
60
|
+
|
61
|
+
@staticmethod
|
62
|
+
def _check_and_raise_exceptions_fit(
|
63
|
+
X: npt.NDArray = None,
|
64
|
+
y: npt.NDArray = None,
|
65
|
+
_class_: Literal["RNSA", "BNSA"] = "RNSA",
|
66
|
+
) -> None:
|
67
|
+
"""
|
68
|
+
Function responsible for verifying fit function parameters and throwing exceptions if the
|
69
|
+
verification is not successful.
|
70
|
+
|
71
|
+
Parameters
|
72
|
+
----------
|
73
|
+
* X (``npt.NDArray``) Training array, containing the samples and their
|
74
|
+
characteristics, [``N samples`` (rows)][``N features`` (columns)].
|
75
|
+
* y (``npt.NDArray``) Array of target classes of ``X`` with [``N samples`` (lines)].
|
76
|
+
* _class_ (``Literal[RNSA, BNSA], optional``) Current class. Defaults to 'RNSA'.
|
77
|
+
|
78
|
+
Raises
|
79
|
+
----------
|
80
|
+
* TypeError: If X or y are not ndarrays or have incompatible shapes.
|
81
|
+
* ValueError: If _class_ is BNSA and X contains values that are not composed only of
|
82
|
+
0 and 1.
|
83
|
+
"""
|
84
|
+
if isinstance(X, list):
|
85
|
+
X = np.array(X)
|
86
|
+
if isinstance(y, list):
|
87
|
+
y = np.array(y)
|
88
|
+
|
89
|
+
if not isinstance(X, np.ndarray):
|
90
|
+
raise TypeError("X is not an ndarray or list.")
|
91
|
+
if not isinstance(y, np.ndarray):
|
92
|
+
raise TypeError("y is not an ndarray or list.")
|
93
|
+
|
94
|
+
if X.shape[0] != y.shape[0]:
|
95
|
+
raise TypeError(
|
96
|
+
"X does not have the same amount of sample for the output classes in y."
|
97
|
+
)
|
98
|
+
|
99
|
+
if _class_ == "BNSA" and not np.isin(X, [0, 1]).all():
|
100
|
+
raise ValueError(
|
101
|
+
"The array X contains values that are not composed only of 0 and 1."
|
102
|
+
)
|
103
|
+
|
104
|
+
@staticmethod
|
105
|
+
def _check_and_raise_exceptions_predict(
|
106
|
+
X: npt.NDArray = None,
|
107
|
+
expected: int = 0,
|
108
|
+
_class_: Literal["RNSA", "BNSA"] = "RNSA",
|
109
|
+
) -> None:
|
110
|
+
"""
|
111
|
+
Function responsible for verifying predict function parameters and throwing exceptions if
|
112
|
+
the verification is not successful.
|
113
|
+
|
114
|
+
Parameters
|
115
|
+
----------
|
116
|
+
* X (``npt.NDArray``)
|
117
|
+
Input array for prediction, containing the samples and their characteristics,
|
118
|
+
[``N samples`` (rows)][``N features`` (columns)].
|
119
|
+
* expected (``int``)
|
120
|
+
Expected number of features per sample (columns in X).
|
121
|
+
* _class_ (``Literal[RNSA, BNSA], optional``)
|
122
|
+
Current class. Defaults to 'RNSA'.
|
123
|
+
|
124
|
+
Raises
|
125
|
+
----------
|
126
|
+
* TypeError
|
127
|
+
If X is not an ndarray or list.
|
128
|
+
* FeatureDimensionMismatch
|
129
|
+
If the number of features in X does not match the expected number.
|
130
|
+
* ValueError
|
131
|
+
If _class_ is BNSA and X contains values that are not composed only of 0 and 1.
|
132
|
+
"""
|
133
|
+
if not isinstance(X, (np.ndarray, list)):
|
134
|
+
raise TypeError("X is not an ndarray or list")
|
135
|
+
if expected != len(X[0]):
|
136
|
+
raise FeatureDimensionMismatch(
|
137
|
+
expected,
|
138
|
+
len(X[0]),
|
139
|
+
"X"
|
140
|
+
)
|
141
|
+
|
142
|
+
if _class_ != "BNSA":
|
143
|
+
return
|
144
|
+
|
145
|
+
# Checks if matrix X contains only binary samples. Otherwise, raises an exception.
|
146
|
+
if not np.isin(X, [0, 1]).all():
|
147
|
+
raise ValueError(
|
148
|
+
"The array X contains values that are not composed only of 0 and 1."
|
149
|
+
)
|
150
|
+
|
151
|
+
def score(self, X: npt.NDArray, y: list) -> float:
|
152
|
+
"""
|
153
|
+
Score function calculates forecast accuracy.
|
154
|
+
|
155
|
+
Details
|
156
|
+
----------
|
157
|
+
This function performs the prediction of X and checks how many elements are equal
|
158
|
+
between vector y and y_predicted. This function was added for compatibility with some
|
159
|
+
scikit-learn functions.
|
160
|
+
|
161
|
+
Parameters
|
162
|
+
----------
|
163
|
+
* X (``np.ndarray``):
|
164
|
+
Feature set with shape (n_samples, n_features).
|
165
|
+
* y (``np.ndarray``):
|
166
|
+
True values with shape (n_samples,).
|
167
|
+
|
168
|
+
Returns
|
169
|
+
----------
|
170
|
+
* accuracy (``float``): The accuracy of the model.
|
171
|
+
"""
|
172
|
+
if len(y) == 0:
|
173
|
+
return 0
|
174
|
+
y_pred = self.predict(X)
|
175
|
+
return accuracy_score(y, y_pred)
|
176
|
+
|
177
|
+
@abstractmethod
|
178
|
+
def fit(self, X: npt.NDArray, y: npt.NDArray, verbose: bool = True):
|
179
|
+
"""
|
180
|
+
Function to train the model using the input data ``X`` and corresponding labels ``y``.
|
181
|
+
|
182
|
+
This abstract method is implemented by the class that inherits it.
|
183
|
+
|
184
|
+
Parameters
|
185
|
+
----------
|
186
|
+
* X (``npt.NDArray``): Input data used for training the model, previously normalized to the
|
187
|
+
range [0, 1].
|
188
|
+
* y (``npt.NDArray``): Corresponding labels or target values for the input data.
|
189
|
+
* verbose (``bool``, optional): Flag to enable or disable detailed output during training.
|
190
|
+
Default is ``True``.
|
191
|
+
|
192
|
+
Returns
|
193
|
+
----------
|
194
|
+
* self: Returns the instance of the class that implements this method.
|
195
|
+
"""
|
196
|
+
|
197
|
+
@abstractmethod
|
198
|
+
def predict(self, X) -> Optional[npt.NDArray]:
|
199
|
+
"""
|
200
|
+
Function to generate predictions based on the input data ``X``.
|
201
|
+
|
202
|
+
This abstract method is implemented by the class that inherits it.
|
203
|
+
|
204
|
+
Parameters
|
205
|
+
----------
|
206
|
+
* X (``npt.NDArray``): Input data for which predictions will be generated.
|
207
|
+
|
208
|
+
Returns
|
209
|
+
----------
|
210
|
+
* Predictions (``Optional[npt.NDArray]``): Predicted values for each input sample, or
|
211
|
+
``None`` if the prediction fails.
|
212
|
+
"""
|