aisp 0.1.33__tar.gz → 0.1.34__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,15 +1,15 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: aisp
3
- Version: 0.1.33
3
+ Version: 0.1.34
4
4
  Summary: Package with techniques of artificial immune systems.
5
5
  Author-email: João Paulo da Silva Barros <jpsilvabarr@gmail.com>
6
6
  Maintainer-email: Alison Zille Lopes <alisonzille@gmail.com>
7
- License: LGPL-3.0 license
7
+ License-Expression: LGPL-3.0-only
8
8
  Project-URL: Homepage, https://ais-package.github.io/
9
9
  Project-URL: Documentation, https://ais-package.github.io/docs/intro
10
10
  Project-URL: Source Code, https://github.com/AIS-Package/aisp
11
11
  Project-URL: Tracker, https://github.com/AIS-Package/aisp/issues
12
- Classifier: License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)
12
+ Keywords: Artificial Immune Systems,classification,Natural computing,machine learning,artificial intelligence
13
13
  Classifier: Operating System :: OS Independent
14
14
  Classifier: Programming Language :: Python
15
15
  Classifier: Programming Language :: Python :: 3
@@ -23,6 +23,7 @@ License-File: LICENSE
23
23
  Requires-Dist: numpy>=1.22.4
24
24
  Requires-Dist: scipy>=1.8.1
25
25
  Requires-Dist: tqdm>=4.64.1
26
+ Dynamic: license-file
26
27
 
27
28
  <div align = center>
28
29
 
@@ -0,0 +1,18 @@
1
+ """Module (NSA) Negative Selection Algorithm
2
+
3
+ NSAs simulate the maturation process of T-cells in the immune system, where these \
4
+ cells learn to distinguish between self and non-self. Only T-cells capable \
5
+ of recognizing non-self elements are preserved.
6
+
7
+ ----
8
+
9
+ Os NSAs simulam o processo de maturação das células-T no sistema imunológico, onde \
10
+ essas células aprendem a distinguir entre o próprio e não-próprio.
11
+ Apenas as células-T capazes de reconhecer elementos não-próprios são preservadas.
12
+
13
+ """
14
+ from ._negative_selection import BNSA, RNSA
15
+
16
+ __author__ = "João Paulo da Silva Barros"
17
+ __all__ = ["RNSA", "BNSA"]
18
+ __version__ = "0.1.34"
@@ -156,7 +156,7 @@ class Base:
156
156
  "The array X contains values that are not composed only of 0 and 1."
157
157
  )
158
158
 
159
- def _score(self, X: npt.NDArray, y: list) -> float:
159
+ def score(self, X: npt.NDArray, y: list) -> float:
160
160
  """
161
161
  Score function calculates forecast accuracy.
162
162
 
@@ -89,10 +89,18 @@ class RNSA(Base):
89
89
  * classes (``npt.NDArray``): lista com as classes de saída.
90
90
  """
91
91
 
92
- def __init__(self, N: int = 100, r: float = 0.05, r_s: float = 0.0001, k: int = 1,
93
- metric: Literal["manhattan", "minkowski", "euclidean"] = "euclidean", max_discards: int = 1000,
94
- seed: int = None, algorithm: Literal["default-NSA", "V-detector"] = "default-NSA",
95
- **kwargs: Dict[str, Union[bool, str, float]]):
92
+ def __init__(
93
+ self,
94
+ N: int = 100,
95
+ r: float = 0.05,
96
+ r_s: float = 0.0001,
97
+ k: int = 1,
98
+ metric: Literal["manhattan", "minkowski", "euclidean"] = "euclidean",
99
+ max_discards: int = 1000,
100
+ seed: int = None,
101
+ algorithm: Literal["default-NSA", "V-detector"] = "default-NSA",
102
+ **kwargs: Dict[str, Union[bool, str, float]],
103
+ ):
96
104
  """
97
105
  Negative Selection class constructor (``RNSA``).
98
106
 
@@ -458,8 +466,12 @@ class RNSA(Base):
458
466
  """
459
467
  return slice_index_list_by_class(self.classes, y)
460
468
 
461
- def __checks_valid_detector(self, X: npt.NDArray = None, vector_x: npt.NDArray = None,
462
- samples_index_class: npt.NDArray = None):
469
+ def __checks_valid_detector(
470
+ self,
471
+ X: npt.NDArray = None,
472
+ vector_x: npt.NDArray = None,
473
+ samples_index_class: npt.NDArray = None,
474
+ ):
463
475
  """
464
476
  Function to check if the detector has a valid non-proper ``r`` radius for the class.
465
477
 
@@ -712,52 +724,6 @@ class RNSA(Base):
712
724
  return False
713
725
  return True, new_detector_r
714
726
 
715
- def score(self, X: npt.NDArray, y: list) -> float:
716
- """
717
- Score function calculates forecast accuracy.
718
-
719
- Details:
720
- ---
721
- This function performs the prediction of X and checks how many elements are equal between \
722
- vector y and y_predicted. This function was added for compatibility with some scikit-learn \
723
- functions.
724
-
725
- Parameters:
726
- -----------
727
-
728
- * X (np.ndarray): Feature set with shape (n_samples, n_features).
729
- * y (np.ndarray): True values with shape (n_samples,).
730
-
731
- Returns:
732
- -------
733
-
734
- accuracy: float
735
- The accuracy of the model.
736
-
737
- ---
738
-
739
- Função score calcular a acurácia da previsão.
740
-
741
- Details:
742
- ---
743
- Esta função realiza a previsão de X e verifica quantos elementos são iguais entre o vetor \
744
- y e y_previsto. Essa função foi adicionada para oferecer compatibilidade com algumas \
745
- funções do scikit-learn.
746
-
747
- Parameters:
748
- ---
749
-
750
- * X (np.ndarray): Conjunto de características com shape (n_samples, n_features).
751
- * y (np.ndarray): Valores verdadeiros com shape (n_samples,).
752
-
753
- returns:
754
- ---
755
-
756
- * accuracy (float): A acurácia do modelo.
757
-
758
- """
759
- return super()._score(X, y)
760
-
761
727
  def get_params(self, deep: bool = True) -> dict:
762
728
  return {
763
729
  "N": self.N,
@@ -816,9 +782,16 @@ class BNSA(Base):
816
782
 
817
783
  """
818
784
 
819
- def __init__(self, N: int = 100, aff_thresh: float = 0.1, max_discards: int = 1000, seed: int = None,
820
- no_label_sample_selection: Literal["max_average_difference", "max_nearest_difference"] =
821
- "max_average_difference"):
785
+ def __init__(
786
+ self,
787
+ N: int = 100,
788
+ aff_thresh: float = 0.1,
789
+ max_discards: int = 1000,
790
+ seed: int = None,
791
+ no_label_sample_selection: Literal[
792
+ "max_average_difference", "max_nearest_difference"
793
+ ] = "max_average_difference",
794
+ ):
822
795
  """
823
796
  Constructor of the Negative Selection class (``BNSA``).
824
797
 
@@ -1133,55 +1106,6 @@ class BNSA(Base):
1133
1106
  """
1134
1107
  return slice_index_list_by_class(self.classes, y)
1135
1108
 
1136
- def score(self, X: npt.NDArray, y: list) -> float:
1137
- """
1138
- Score function calculates forecast accuracy.
1139
-
1140
- Details:
1141
- ---
1142
- This function performs the prediction of X and checks how many elements are equal between vector \
1143
- y and y_predicted. This function was added for compatibility with some scikit-learn functions.
1144
-
1145
- Parameters:
1146
- -----------
1147
-
1148
- X: np.ndarray
1149
- Feature set with shape (n_samples, n_features).
1150
- y: np.ndarray
1151
- True values with shape (n_samples,).
1152
-
1153
- Returns:
1154
- -------
1155
-
1156
- accuracy: float
1157
- The accuracy of the model.
1158
-
1159
- ---
1160
-
1161
- Função score calcular a acurácia da previsão.
1162
-
1163
- Details:
1164
- ---
1165
- Esta função realiza a previsão de X e verifica quantos elementos são iguais entre o vetor y \
1166
- e y_previsto.
1167
- Essa função foi adicionada para oferecer compatibilidade com algumas funções do scikit-learn.
1168
-
1169
- Parameters:
1170
- ---
1171
-
1172
- * X : np.ndarray
1173
- Conjunto de características com shape (n_samples, n_features).
1174
- * y : np.ndarray
1175
- Valores verdadeiros com shape (n_samples,).
1176
-
1177
- returns:
1178
- ---
1179
-
1180
- accuracy : float
1181
- A acurácia do modelo.
1182
- """
1183
- return super()._score(X, y)
1184
-
1185
1109
  def get_params(self, deep: bool = True) -> dict:
1186
1110
  return {
1187
1111
  "N": self.N,
@@ -1,15 +1,15 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: aisp
3
- Version: 0.1.33
3
+ Version: 0.1.34
4
4
  Summary: Package with techniques of artificial immune systems.
5
5
  Author-email: João Paulo da Silva Barros <jpsilvabarr@gmail.com>
6
6
  Maintainer-email: Alison Zille Lopes <alisonzille@gmail.com>
7
- License: LGPL-3.0 license
7
+ License-Expression: LGPL-3.0-only
8
8
  Project-URL: Homepage, https://ais-package.github.io/
9
9
  Project-URL: Documentation, https://ais-package.github.io/docs/intro
10
10
  Project-URL: Source Code, https://github.com/AIS-Package/aisp
11
11
  Project-URL: Tracker, https://github.com/AIS-Package/aisp/issues
12
- Classifier: License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)
12
+ Keywords: Artificial Immune Systems,classification,Natural computing,machine learning,artificial intelligence
13
13
  Classifier: Operating System :: OS Independent
14
14
  Classifier: Programming Language :: Python
15
15
  Classifier: Programming Language :: Python :: 3
@@ -23,6 +23,7 @@ License-File: LICENSE
23
23
  Requires-Dist: numpy>=1.22.4
24
24
  Requires-Dist: scipy>=1.8.1
25
25
  Requires-Dist: tqdm>=4.64.1
26
+ Dynamic: license-file
26
27
 
27
28
  <div align = center>
28
29
 
@@ -1,3 +1,4 @@
1
+ NSA
1
2
  aisp
2
3
  dist
3
4
  docs
@@ -1,5 +1,5 @@
1
1
  [build-system]
2
- requires = ["setuptools>=61.0"]
2
+ requires = ["setuptools >= 77.0.3"]
3
3
  build-backend = "setuptools.build_meta"
4
4
 
5
5
  [tool.setuptools]
@@ -7,7 +7,7 @@ packages = {find = {exclude = ["*test*", "*tests", "*tests/*", ".venv", ".idea",
7
7
 
8
8
  [project]
9
9
  name = "aisp"
10
- version = "0.1.33"
10
+ version = "0.1.34"
11
11
  authors = [
12
12
  { name="João Paulo da Silva Barros", email="jpsilvabarr@gmail.com" },
13
13
  ]
@@ -21,11 +21,10 @@ description = "Package with techniques of artificial immune systems."
21
21
  readme = "README.md"
22
22
 
23
23
  requires-python = ">= 3.8.10"
24
-
25
- license = {text = "LGPL-3.0 license"}
24
+ license = "LGPL-3.0-only"
25
+ license-files = ["LICENSE"]
26
26
 
27
27
  classifiers = [
28
- "License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)",
29
28
  "Operating System :: OS Independent",
30
29
  "Programming Language :: Python",
31
30
  "Programming Language :: Python :: 3",
@@ -38,14 +37,9 @@ classifiers = [
38
37
  dependencies = [
39
38
  "numpy>=1.22.4",
40
39
  "scipy>=1.8.1",
41
- "tqdm>=4.64.1",
40
+ "tqdm>=4.64.1"
42
41
  ]
43
42
 
44
- [tool.poetry]
45
- readme = "README.md"
46
-
47
- repository = "https://github.com/AIS-Package/aisp"
48
-
49
43
  keywords = ["Artificial Immune Systems", "classification", "Natural computing", "machine learning", "artificial intelligence"]
50
44
 
51
45
  [project.urls]
@@ -1,5 +0,0 @@
1
- from ._negative_selection import BNSA, RNSA
2
-
3
- __author__ = "João Paulo da Silva Barros"
4
- __all__ = ["RNSA", "BNSA"]
5
- __version__ = "0.1.33"
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes
File without changes