aiqa-client 0.5.2__tar.gz → 0.7.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (32) hide show
  1. {aiqa_client-0.5.2/aiqa_client.egg-info → aiqa_client-0.7.0}/PKG-INFO +1 -1
  2. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/__init__.py +8 -2
  3. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/client.py +90 -5
  4. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/constants.py +1 -1
  5. aiqa_client-0.7.0/aiqa/experiment_runner.py +455 -0
  6. aiqa_client-0.7.0/aiqa/llm_as_judge.py +282 -0
  7. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/object_serialiser.py +5 -2
  8. aiqa_client-0.7.0/aiqa/span_helpers.py +511 -0
  9. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/tracing.py +252 -565
  10. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/tracing_llm_utils.py +20 -9
  11. aiqa_client-0.7.0/aiqa/types.py +61 -0
  12. {aiqa_client-0.5.2 → aiqa_client-0.7.0/aiqa_client.egg-info}/PKG-INFO +1 -1
  13. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa_client.egg-info/SOURCES.txt +6 -1
  14. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/pyproject.toml +1 -1
  15. aiqa_client-0.7.0/tests/test_chatbot.py +87 -0
  16. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/tests/test_integration.py +42 -5
  17. aiqa_client-0.5.2/tests/test_api_key.py → aiqa_client-0.7.0/tests/test_integration_api_key.py +5 -5
  18. aiqa_client-0.7.0/tests/test_span_helpers.py +345 -0
  19. aiqa_client-0.7.0/tests/test_tracing.py +1162 -0
  20. aiqa_client-0.5.2/aiqa/experiment_runner.py +0 -319
  21. aiqa_client-0.5.2/tests/test_tracing.py +0 -413
  22. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/LICENSE.txt +0 -0
  23. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/MANIFEST.in +0 -0
  24. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/README.md +0 -0
  25. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/http_utils.py +0 -0
  26. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa/py.typed +0 -0
  27. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa_client.egg-info/dependency_links.txt +0 -0
  28. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa_client.egg-info/requires.txt +0 -0
  29. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/aiqa_client.egg-info/top_level.txt +0 -0
  30. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/setup.cfg +0 -0
  31. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/tests/test_object_serialiser.py +0 -0
  32. {aiqa_client-0.5.2 → aiqa_client-0.7.0}/tests/test_startup_reliability.py +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aiqa-client
3
- Version: 0.5.2
3
+ Version: 0.7.0
4
4
  Summary: OpenTelemetry-based Python client for tracing functions and sending traces to the AIQA server
5
5
  Author-email: AIQA <info@aiqa.dev>
6
6
  License: MIT
@@ -26,8 +26,8 @@ Example:
26
26
  result = my_function()
27
27
  """
28
28
 
29
- from .tracing import (
30
- WithTracing,
29
+ from .tracing import WithTracing
30
+ from .span_helpers import (
31
31
  flush_tracing,
32
32
  set_span_attribute,
33
33
  set_span_name,
@@ -39,7 +39,10 @@ from .tracing import (
39
39
  extract_trace_context,
40
40
  set_conversation_id,
41
41
  set_component_tag,
42
+ set_token_usage,
43
+ set_provider_and_model,
42
44
  get_span,
45
+ submit_feedback,
43
46
  )
44
47
  from .client import get_aiqa_client
45
48
  from .experiment_runner import ExperimentRunner
@@ -60,7 +63,10 @@ __all__ = [
60
63
  "extract_trace_context",
61
64
  "set_conversation_id",
62
65
  "set_component_tag",
66
+ "set_token_usage",
67
+ "set_provider_and_model",
63
68
  "get_span",
69
+ "submit_feedback",
64
70
  "VERSION",
65
71
  ]
66
72
 
@@ -2,11 +2,13 @@
2
2
  import os
3
3
  import logging
4
4
  from functools import lru_cache
5
- from typing import Optional, TYPE_CHECKING, Any, Dict
5
+ from typing import Optional, TYPE_CHECKING, Any, Dict, List
6
6
  from opentelemetry import trace
7
7
  from opentelemetry.sdk.trace import TracerProvider
8
- from opentelemetry.sdk.trace.export import BatchSpanProcessor
8
+ from opentelemetry.sdk.trace.export import BatchSpanProcessor, SpanExporter, SpanExportResult
9
9
  from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
10
+ from opentelemetry.sdk.trace import ReadableSpan
11
+ from opentelemetry.trace import SpanContext
10
12
  import requests
11
13
 
12
14
  from .constants import AIQA_TRACER_NAME, LOG_TAG
@@ -50,6 +52,8 @@ class AIQAClient:
50
52
  cls._instance._exporter = None # reduce circular import issues by not importing for typecheck here
51
53
  cls._instance._enabled: bool = True
52
54
  cls._instance._initialized: bool = False
55
+ cls._instance._default_ignore_patterns: List[str] = ["_*"] # Default: filter properties starting with '_'
56
+ cls._instance._ignore_recursive: bool = True # Default: recursive filtering enabled
53
57
  return cls._instance
54
58
 
55
59
  @property
@@ -88,6 +92,76 @@ class AIQAClient:
88
92
  logger.info(f"AIQA tracing {'enabled' if value else 'disabled'}")
89
93
  self._enabled = value
90
94
 
95
+ @property
96
+ def default_ignore_patterns(self) -> List[str]:
97
+ """
98
+ Get the default ignore patterns applied to all traced inputs and outputs.
99
+
100
+ Default: ["_*"] (filters properties starting with '_')
101
+
102
+ Returns:
103
+ List of ignore patterns (supports wildcards like "_*")
104
+ """
105
+ return self._default_ignore_patterns.copy()
106
+
107
+ @default_ignore_patterns.setter
108
+ def default_ignore_patterns(self, value: Optional[List[str]]) -> None:
109
+ """
110
+ Set the default ignore patterns applied to all traced inputs and outputs.
111
+
112
+ Args:
113
+ value: List of patterns to ignore (e.g., ["_*", "password"]).
114
+ Set to None or [] to disable default ignore patterns.
115
+ Supports wildcards (e.g., "_*" matches "_apple", "_fruit").
116
+
117
+ Example:
118
+ from aiqa import get_aiqa_client
119
+
120
+ client = get_aiqa_client()
121
+ # Add password to default ignore patterns
122
+ client.default_ignore_patterns = ["_*", "password", "api_key"]
123
+ # Disable default ignore patterns
124
+ client.default_ignore_patterns = []
125
+ """
126
+ if value is None:
127
+ self._default_ignore_patterns = []
128
+ else:
129
+ self._default_ignore_patterns = list(value)
130
+ logger.info(f"Default ignore patterns set to: {self._default_ignore_patterns}")
131
+
132
+ @property
133
+ def ignore_recursive(self) -> bool:
134
+ """
135
+ Get whether ignore patterns are applied recursively to nested objects.
136
+
137
+ Default: True (recursive filtering enabled)
138
+
139
+ Returns:
140
+ True if recursive filtering is enabled, False otherwise
141
+ """
142
+ return self._ignore_recursive
143
+
144
+ @ignore_recursive.setter
145
+ def ignore_recursive(self, value: bool) -> None:
146
+ """
147
+ Set whether ignore patterns are applied recursively to nested objects.
148
+
149
+ When True (default), ignore patterns are applied at all nesting levels.
150
+ When False, ignore patterns are only applied to top-level keys.
151
+
152
+ Args:
153
+ value: True to enable recursive filtering, False to disable
154
+
155
+ Example:
156
+ from aiqa import get_aiqa_client
157
+
158
+ client = get_aiqa_client()
159
+ # Disable recursive filtering (only filter top-level keys)
160
+ client.ignore_recursive = False
161
+ """
162
+ self._ignore_recursive = bool(value)
163
+ logger.info(f"Ignore recursive filtering {'enabled' if self._ignore_recursive else 'disabled'}")
164
+
91
165
  def shutdown(self) -> None:
92
166
  """
93
167
  Shutdown the tracer provider and exporter.
@@ -243,8 +317,6 @@ def _attach_aiqa_processor(provider: TracerProvider) -> None:
243
317
  auth_headers = {}
244
318
  if api_key:
245
319
  auth_headers["Authorization"] = f"ApiKey {api_key}"
246
- elif os.getenv("AIQA_API_KEY"):
247
- auth_headers["Authorization"] = f"ApiKey {os.getenv('AIQA_API_KEY')}"
248
320
 
249
321
  # OTLP HTTP exporter requires the full endpoint URL including /v1/traces
250
322
  # Ensure server_url doesn't have trailing slash or /v1/traces, then append /v1/traces
@@ -254,11 +326,24 @@ def _attach_aiqa_processor(provider: TracerProvider) -> None:
254
326
  else:
255
327
  endpoint = f"{base_url}/v1/traces"
256
328
 
257
- # Create OTLP exporter with authentication headers only
329
+ # Get timeout from environment variable (in seconds)
330
+ # Supports OTEL_EXPORTER_OTLP_TIMEOUT (standard) or AIQA_EXPORT_TIMEOUT (custom)
331
+ # Default is 30 seconds (more generous than OTLP default of 10s)
332
+ timeout = 30.0
333
+ otlp_timeout = os.getenv("OTEL_EXPORTER_OTLP_TIMEOUT")
334
+
335
+ if otlp_timeout:
336
+ try:
337
+ timeout = float(otlp_timeout)
338
+ except ValueError:
339
+ logger.warning(f"Invalid OTEL_EXPORTER_OTLP_TIMEOUT value '{otlp_timeout}', using default 30.0")
340
+
341
+ # Create OTLP exporter with authentication headers and timeout
258
342
  # The exporter will set Content-Type and other headers automatically
259
343
  exporter = OTLPSpanExporter(
260
344
  endpoint=endpoint,
261
345
  headers=auth_headers if auth_headers else None,
346
+ timeout=timeout,
262
347
  )
263
348
 
264
349
  provider.add_span_processor(BatchSpanProcessor(exporter))
@@ -3,6 +3,6 @@ Constants used across the AIQA client package.
3
3
  """
4
4
 
5
5
  AIQA_TRACER_NAME = "aiqa-tracer"
6
- VERSION = "0.5.2" # automatically updated by set-version-json.sh
6
+ VERSION = "0.7.0" # automatically updated by set-version-json.sh
7
7
 
8
8
  LOG_TAG = "AIQA" # Used in all logging output to identify AIQA messages
@@ -0,0 +1,455 @@
1
+ """
2
+ ExperimentRunner - runs experiments on datasets and scores results
3
+ """
4
+
5
+ import os
6
+ import time
7
+ import asyncio
8
+ from .constants import LOG_TAG
9
+ from .http_utils import build_headers, get_server_url, get_api_key, format_http_error
10
+ from typing import Any, Dict, List, Optional, Callable, Awaitable, Union
11
+ from .tracing import WithTracing
12
+ from .span_helpers import set_span_attribute, flush_tracing
13
+ from .llm_as_judge import score_llm_metric_local, get_model_from_server, call_llm_fallback
14
+ import requests
15
+ from .types import MetricResult, ScoreThisInputOutputMetricType, Example, Result, Metric, CallLLMType
16
+
17
+ # Type aliases for engine/scoring functions to improve code completion and clarity
18
+ from typing import TypedDict
19
+
20
+ # Function that processes input and parameters to produce an output (sync or async)
21
+ CallMyCodeType = Callable[[Any, Dict[str, Any]], Union[Any, Awaitable[Any]]]
22
+
23
+ # Function that scores a given output, using input, example, and parameters (usually async)
24
+ # Returns a dictionary with score/message/etc.
25
+ ScoreThisOutputType = Callable[[Any, Any, Dict[str, Any], Dict[str, Any]], Awaitable[Dict[str, Any]]]
26
+
27
+
28
+
29
+ def _filter_input_for_run(input_data: Any) -> Dict[str, Any]:
30
+ """Tracing:Filter input - drop most, keep just ids"""
31
+ if not isinstance(input_data, dict):
32
+ return {}
33
+ self_obj = input_data.get("self")
34
+ if not self_obj:
35
+ return {}
36
+ return {
37
+ "dataset": getattr(self_obj, "dataset_id", None),
38
+ "experiment": getattr(self_obj, "experiment_id", None),
39
+ }
40
+
41
+
42
+ def _filter_input_for_run_example(
43
+ self: "ExperimentRunner",
44
+ example: Dict[str, Any],
45
+ call_my_code: Any = None,
46
+ score_this_output: Any = None,
47
+ ) -> Dict[str, Any]:
48
+ """Filter input for run_example method to extract dataset, experiment, and example IDs."""
49
+ result = _filter_input_for_run({"self": self})
50
+ if isinstance(example, dict):
51
+ result["example"] = example.get("id")
52
+ return result
53
+
54
+
55
+ class ExperimentRunner:
56
+ """
57
+ The ExperimentRunner is the main class for running experiments on datasets.
58
+ It can create an experiment, run it, and score the results.
59
+ Handles setting up environment variables and passing parameters to the engine function.
60
+ """
61
+
62
+ def __init__(
63
+ self,
64
+ dataset_id: str,
65
+ experiment_id: Optional[str] = None,
66
+ server_url: Optional[str] = None,
67
+ api_key: Optional[str] = None,
68
+ organisation_id: Optional[str] = None,
69
+ llm_call_fn: Optional[CallLLMType] = None,
70
+ ):
71
+ """
72
+ Initialize the ExperimentRunner.
73
+
74
+ Args:
75
+ dataset_id: ID of the dataset to run experiments on
76
+ experiment_id: Usually unset, and a fresh experiment is created with a random ID
77
+ server_url: URL of the AIQA server (defaults to AIQA_SERVER_URL env var)
78
+ api_key: API key for authentication (defaults to AIQA_API_KEY env var)
79
+ organisation_id: Optional organisation ID for the experiment. If not provided, will be
80
+ derived from the dataset when needed.
81
+ llm_call_fn: Optional async function that takes (system_prompt, user_message) and returns
82
+ raw content string (typically JSON). If not provided, will check for OPENAI_API_KEY
83
+ or ANTHROPIC_API_KEY environment variables.
84
+ """
85
+ self.dataset_id = dataset_id
86
+ self.experiment_id = experiment_id
87
+ self.server_url = get_server_url(server_url)
88
+ self.api_key = get_api_key(api_key)
89
+ self.organisation = organisation_id
90
+ self.experiment: Optional[Dict[str, Any]] = None
91
+ self.scores: List[Dict[str, Any]] = []
92
+ self.llm_call_fn = llm_call_fn
93
+ self._dataset_cache: Optional[Dict[str, Any]] = None
94
+
95
+ def _get_headers(self) -> Dict[str, str]:
96
+ """Build HTTP headers for API requests."""
97
+ return build_headers(self.api_key)
98
+
99
+ def get_dataset(self) -> Dict[str, Any]:
100
+ """
101
+ Fetch the dataset to get its metrics.
102
+
103
+ Returns:
104
+ The dataset object with metrics and other information
105
+ """
106
+ if self._dataset_cache is not None:
107
+ return self._dataset_cache
108
+
109
+ response = requests.get(
110
+ f"{self.server_url}/dataset/{self.dataset_id}",
111
+ headers=self._get_headers(),
112
+ )
113
+
114
+ if not response.ok:
115
+ raise Exception(format_http_error(response, "fetch dataset"))
116
+
117
+ dataset = response.json()
118
+ self._dataset_cache = dataset
119
+
120
+ # If organisation_id wasn't set, derive it from the dataset
121
+ if not self.organisation and dataset.get("organisation"):
122
+ self.organisation = dataset.get("organisation")
123
+
124
+ return dataset
125
+
126
+ def get_example(self, example_id: str) -> Dict[str, Any]:
127
+ """
128
+ Fetch an example by ID.
129
+ """
130
+ response = requests.get(
131
+ f"{self.server_url}/example/{example_id}",
132
+ headers=self._get_headers(),
133
+ )
134
+ return response.json()
135
+
136
+ def get_examples_for_dataset(self, limit: int = 10000) -> List[Dict[str, Any]]:
137
+ """
138
+ Fetch example inputs from the dataset.
139
+
140
+ Args:
141
+ limit: Maximum number of examples to fetch (default: 10000)
142
+
143
+ Returns:
144
+ List of example objects
145
+ """
146
+ params = {
147
+ "dataset_id": self.dataset_id,
148
+ "limit": str(limit),
149
+ }
150
+ if self.organisation:
151
+ params["organisation"] = self.organisation
152
+
153
+ response = requests.get(
154
+ f"{self.server_url}/example",
155
+ params=params,
156
+ headers=self._get_headers(),
157
+ )
158
+
159
+ if not response.ok:
160
+ raise Exception(format_http_error(response, "fetch example inputs"))
161
+
162
+ data = response.json()
163
+ return data.get("hits", [])
164
+
165
+ def create_experiment(
166
+ self, experiment_setup: Optional[Dict[str, Any]] = None
167
+ ) -> Dict[str, Any]:
168
+ """
169
+ Create an experiment if one does not exist.
170
+
171
+ Args:
172
+ experiment_setup: Optional setup for the experiment object. You may wish to set:
173
+ - name (recommended for labelling the experiment)
174
+ - parameters
175
+
176
+ Returns:
177
+ The created experiment object
178
+ """
179
+ # Ensure we have the organisation ID - try to get it from the dataset if not set
180
+ if not self.organisation:
181
+ dataset = self.get_dataset()
182
+ self.organisation = dataset.get("organisation")
183
+
184
+ if not self.organisation or not self.dataset_id:
185
+ raise Exception("Organisation and dataset ID are required to create an experiment. Organisation can be derived from the dataset or set via organisation_id parameter.")
186
+
187
+ if not experiment_setup:
188
+ experiment_setup = {}
189
+
190
+ # Fill in if not set
191
+ experiment_setup = {
192
+ **experiment_setup,
193
+ "organisation": self.organisation,
194
+ "dataset": self.dataset_id,
195
+ "results": [],
196
+ "summaries": {},
197
+ }
198
+
199
+ print(f"Creating experiment")
200
+ response = requests.post(
201
+ f"{self.server_url}/experiment",
202
+ json=experiment_setup,
203
+ headers=self._get_headers(),
204
+ )
205
+
206
+ if not response.ok:
207
+ raise Exception(format_http_error(response, "create experiment"))
208
+
209
+ experiment = response.json()
210
+ self.experiment_id = experiment["id"]
211
+ self.experiment = experiment
212
+ return experiment
213
+
214
+ async def score_and_store(
215
+ self,
216
+ example: Example,
217
+ output: Any,
218
+ result: Result,
219
+ ) -> Result:
220
+ """
221
+ Ask the server to score an example result. Stores the score for later summary calculation.
222
+
223
+ Args:
224
+ example: The example object
225
+ output: The output from running the engine on the example
226
+ result: The result object for locally calculated scores
227
+
228
+ Returns:
229
+ The score result from the server
230
+ """
231
+ # Do we have an experiment ID? If not, we need to create the experiment first
232
+ if not self.experiment_id:
233
+ self.create_experiment()
234
+ example_id = example.get("id")
235
+ if not example_id:
236
+ raise ValueError("Example must have an 'id' field")
237
+ if result is None:
238
+ result = Result(example=example_id, scores={}, messages={}, errors={})
239
+ scores = result.get("scores") or {}
240
+
241
+
242
+
243
+ print(f"Scoring and storing example: {example_id}")
244
+ print(f"Scores: {scores}")
245
+
246
+ # Run synchronous requests.post in a thread pool to avoid blocking
247
+ def _do_request():
248
+ return requests.post(
249
+ f"{self.server_url}/experiment/{self.experiment_id}/example/{example_id}/scoreAndStore",
250
+ json={
251
+ "output": result,
252
+ "traceId": example.get("trace"), # Server returns 'trace' (lowercase), but API expects 'traceId' (camelCase)
253
+ "scores": scores,
254
+ },
255
+ headers=self._get_headers(),
256
+ )
257
+
258
+ response = await asyncio.to_thread(_do_request)
259
+
260
+ if not response.ok:
261
+ raise Exception(format_http_error(response, "score and store"))
262
+
263
+ json_result = response.json()
264
+ print(f"scoreAndStore response: {json_result}")
265
+ return json_result
266
+
267
+ @WithTracing(filter_input=_filter_input_for_run)
268
+ async def run(
269
+ self,
270
+ call_my_code: CallMyCodeType,
271
+ scorer_for_metric_id: Optional[Dict[str, ScoreThisInputOutputMetricType]] = None,
272
+ ) -> None:
273
+ """
274
+ Run an engine function on all examples and score the results.
275
+
276
+ Args:
277
+ engine: Function that takes input, returns output (can be async)
278
+ scorer: Optional function that scores the output given the example
279
+ """
280
+ examples = self.get_examples_for_dataset()
281
+
282
+ # Wrap engine to match run_example signature (input, parameters)
283
+ async def wrapped_engine(input_data, parameters):
284
+ result = call_my_code(input_data, parameters)
285
+ # Handle async functions
286
+ if hasattr(result, "__await__"):
287
+ result = await result
288
+ return result
289
+
290
+ for example in examples:
291
+ try:
292
+ scores = await self.run_example(example, wrapped_engine, scorer_for_metric_id)
293
+ if scores:
294
+ self.scores.append(
295
+ {
296
+ "example": example,
297
+ "result": scores,
298
+ "scores": scores,
299
+ }
300
+ )
301
+ except Exception as e:
302
+ print(f"Error processing example {example.get('id', 'unknown')}: {e}")
303
+ # Continue with next example instead of failing entire run
304
+
305
+ @WithTracing(filter_input=_filter_input_for_run_example)
306
+ async def run_example(
307
+ self,
308
+ example: Example,
309
+ call_my_code: CallMyCodeType,
310
+ scorer_for_metric_id: Optional[Dict[str, ScoreThisInputOutputMetricType]] = None,
311
+ ) -> List[Result]:
312
+ """
313
+ Run the engine on an example with the experiment's parameters, score the result, and store it.
314
+
315
+ Args:
316
+ example: The example to run. See Example.ts type
317
+ call_my_code: Function that takes input and parameters, returns output (can be async)
318
+ scorer_for_metric_id: Optional dictionary of metric IDs to functions that score the output given the example and parameters
319
+
320
+ Returns:
321
+ List of one result (for API compatibility).
322
+ """
323
+ if not self.experiment:
324
+ self.create_experiment()
325
+ if not self.experiment:
326
+ raise Exception("Failed to create experiment")
327
+
328
+ parameters_here = self.experiment.get("parameters") or {}
329
+ input_data = example.get("input")
330
+ if not input_data and example.get("spans") and len(example["spans"]) > 0:
331
+ input_data = example["spans"][0].get("attributes", {}).get("input")
332
+ if not input_data:
333
+ print(f"Warning: Example has no input field or spans with input attribute: {example}")
334
+
335
+ example_id = example.get("id")
336
+ if not example_id:
337
+ raise ValueError("Example must have an 'id' field")
338
+ set_span_attribute("example", example_id)
339
+
340
+ print(f"Running with parameters: {parameters_here}")
341
+ original_env_vars: Dict[str, Optional[str]] = {}
342
+ for key, value in parameters_here.items():
343
+ if value:
344
+ original_env_vars[key] = os.environ.get(key)
345
+ os.environ[key] = str(value)
346
+ try:
347
+ start = time.time() * 1000
348
+ output = call_my_code(input_data, parameters_here)
349
+ if hasattr(output, "__await__"):
350
+ output = await output
351
+ duration = int((time.time() * 1000) - start)
352
+ print(f"Output: {output}")
353
+
354
+ dataset_metrics = self.get_dataset().get("metrics", [])
355
+ specific_metrics = example.get("metrics", [])
356
+ metrics = [*dataset_metrics, *specific_metrics]
357
+ result = Result(example=example_id, scores={}, messages={}, errors={})
358
+ for metric in metrics:
359
+ metric_id = metric.get("id")
360
+ if not metric_id:
361
+ continue
362
+ scorer = scorer_for_metric_id.get(metric_id) if scorer_for_metric_id else None
363
+ if scorer:
364
+ metric_result = await scorer(input_data, output, metric)
365
+ elif metric.get("type") == "llm":
366
+ metric_result = await self._score_llm_metric(input_data, output, example, metric)
367
+ else:
368
+ continue
369
+ if not metric_result:
370
+ result["errors"][metric_id] = "Scoring function returned None"
371
+ continue
372
+ result["scores"][metric_id] = metric_result.get("score")
373
+ result["messages"][metric_id] = metric_result.get("message")
374
+ result["errors"][metric_id] = metric_result.get("error")
375
+ result["scores"]["duration"] = duration
376
+ await flush_tracing()
377
+ print(f"Call scoreAndStore ... for example: {example_id} with scores: {result['scores']}")
378
+ result = await self.score_and_store(example, output, result)
379
+ print(f"scoreAndStore returned: {result}")
380
+ return [result]
381
+ finally:
382
+ for key, original_value in original_env_vars.items():
383
+ if original_value is None:
384
+ os.environ.pop(key, None)
385
+ else:
386
+ os.environ[key] = original_value
387
+
388
+ def get_summaries(self) -> Dict[str, Any]:
389
+ """
390
+ Get summaries from the experiment.
391
+
392
+ Returns:
393
+ Dictionary of metric names to summary statistics
394
+ """
395
+ if not self.experiment_id:
396
+ raise ValueError("No experiment ID available. Create an experiment first.")
397
+
398
+ response = requests.get(
399
+ f"{self.server_url}/experiment/{self.experiment_id}",
400
+ headers=self._get_headers(),
401
+ )
402
+
403
+ if not response.ok:
404
+ raise Exception(format_http_error(response, "fetch summary results"))
405
+
406
+ experiment2 = response.json()
407
+ return experiment2.get("summaries", {})
408
+
409
+ async def _score_llm_metric(
410
+ self,
411
+ input_data: Any,
412
+ output: Any,
413
+ example: Example,
414
+ metric: Metric,
415
+ ) -> MetricResult:
416
+ """
417
+ Score an LLM metric by fetching model API key from server if needed.
418
+
419
+ Args:
420
+ input_data: The input data to score
421
+ output: The output to score
422
+ example: The example object
423
+ metric: The metric definition
424
+
425
+ Returns:
426
+ MetricResult object with score:[0,1], message (optional), and error (optional)
427
+ """
428
+ # If model is specified, try to fetch API key from server
429
+ model_id = metric.get("model")
430
+ api_key = None
431
+ provider = metric.get("provider")
432
+
433
+ if model_id:
434
+ model_data = await get_model_from_server(
435
+ model_id, self.server_url, self._get_headers()
436
+ )
437
+ if model_data:
438
+ # Server returns 'apiKey' (camelCase)
439
+ api_key = model_data.get("apiKey")
440
+ # If provider not set in metric, try to get it from model
441
+ if not provider and model_data.get("provider"):
442
+ provider = model_data.get("provider")
443
+
444
+ # Create a custom llm_call_fn if we have an API key from the model
445
+ llm_call_fn = self.llm_call_fn
446
+ if api_key and not llm_call_fn:
447
+ async def _model_llm_call(system_prompt: str, user_message: str) -> str:
448
+ return await call_llm_fallback(system_prompt, user_message, api_key, provider)
449
+ llm_call_fn = _model_llm_call
450
+
451
+ return await score_llm_metric_local(
452
+ input_data, output, example, metric, llm_call_fn
453
+ )
454
+
455
+