aigroup-econ-mcp 1.4.0__tar.gz → 1.4.2__tar.gz
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of aigroup-econ-mcp might be problematic. Click here for more details.
- {aigroup_econ_mcp-1.4.0 → aigroup_econ_mcp-1.4.2}/PKG-INFO +155 -119
- {aigroup_econ_mcp-1.4.0 → aigroup_econ_mcp-1.4.2}/README.md +148 -112
- aigroup_econ_mcp-1.4.2/__init__.py +14 -0
- aigroup_econ_mcp-1.4.2/cli.py +25 -0
- aigroup_econ_mcp-1.4.2/econometrics/README.md +18 -0
- aigroup_econ_mcp-1.4.2/econometrics/__init__.py +191 -0
- aigroup_econ_mcp-1.4.2/econometrics/advanced_methods/modern_computing_machine_learning/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/__init__.py +31 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/gmm/__init__.py +13 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/gmm/gmm_model.py +256 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/mle/__init__.py +13 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/mle/mle_model.py +241 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/ols/__init__.py +13 -0
- aigroup_econ_mcp-1.4.2/econometrics/basic_parametric_estimation/ols/ols_model.py +141 -0
- aigroup_econ_mcp-1.4.2/econometrics/causal_inference/causal_identification_strategy/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/missing_data/missing_data_measurement_error/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/README.md +173 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/__init__.py +78 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/__init__.py +20 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/diagnostic_tests/diagnostic_tests_model.py +149 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/__init__.py +15 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/generalized_least_squares/gls_model.py +130 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/model_selection/__init__.py +18 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/model_selection/model_selection_model.py +286 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/regularization/__init__.py +15 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/regularization/regularization_model.py +177 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/robust_errors/__init__.py +15 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/robust_errors/robust_errors_model.py +122 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/__init__.py +15 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/simultaneous_equations/simultaneous_equations_model.py +246 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/__init__.py +15 -0
- aigroup_econ_mcp-1.4.2/econometrics/model_specification_diagnostics_robust_inference/weighted_least_squares/wls_model.py +127 -0
- aigroup_econ_mcp-1.4.2/econometrics/nonparametric/nonparametric_semiparametric_methods/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/spatial_econometrics/spatial_econometrics_new/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/micro_discrete_limited_data/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/survival_duration_data/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/__init__.py +143 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/arima_model.py +104 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/cointegration_vecm.py +334 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/dynamic_panel_models.py +653 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/exponential_smoothing.py +176 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/garch_model.py +198 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/panel_diagnostics.py +125 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/panel_var.py +60 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/structural_break_tests.py +87 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/time_varying_parameter_models.py +106 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/unit_root_tests.py +204 -0
- aigroup_econ_mcp-1.4.2/econometrics/specific_data_modeling/time_series_panel_data/var_svar_model.py +372 -0
- aigroup_econ_mcp-1.4.2/econometrics/statistical_inference/statistical_inference_techniques/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/statistics/distribution_decomposition_methods/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/basic_parametric_estimation_tests/__init__.py +3 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/basic_parametric_estimation_tests/test_gmm.py +128 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/basic_parametric_estimation_tests/test_mle.py +127 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/basic_parametric_estimation_tests/test_ols.py +100 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/model_specification_diagnostics_tests/__init__.py +3 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/model_specification_diagnostics_tests/test_diagnostic_tests.py +86 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/model_specification_diagnostics_tests/test_robust_errors.py +89 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/__init__.py +3 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_arima.py +98 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_dynamic_panel.py +198 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_exponential_smoothing.py +105 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_garch.py +118 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_unit_root.py +156 -0
- aigroup_econ_mcp-1.4.2/econometrics/tests/specific_data_modeling_tests/test_var.py +124 -0
- aigroup_econ_mcp-1.4.2/prompts/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/prompts/analysis_guides.py +43 -0
- {aigroup_econ_mcp-1.4.0 → aigroup_econ_mcp-1.4.2}/pyproject.toml +17 -10
- aigroup_econ_mcp-1.4.2/resources/MCP_MASTER_GUIDE.md +422 -0
- aigroup_econ_mcp-1.4.2/resources/MCP_TOOLS_DATA_FORMAT_GUIDE.md +185 -0
- aigroup_econ_mcp-1.4.2/resources/__init__.py +0 -0
- aigroup_econ_mcp-1.4.2/server.py +83 -0
- aigroup_econ_mcp-1.4.2/tools/README.md +88 -0
- aigroup_econ_mcp-1.4.2/tools/__init__.py +45 -0
- aigroup_econ_mcp-1.4.2/tools/data_loader.py +213 -0
- aigroup_econ_mcp-1.4.2/tools/decorators.py +38 -0
- aigroup_econ_mcp-1.4.2/tools/econometrics_adapter.py +286 -0
- aigroup_econ_mcp-1.4.2/tools/mcp_tool_groups/__init__.py +1 -0
- aigroup_econ_mcp-1.4.2/tools/mcp_tool_groups/basic_parametric_tools.py +173 -0
- aigroup_econ_mcp-1.4.2/tools/mcp_tool_groups/model_specification_tools.py +402 -0
- aigroup_econ_mcp-1.4.2/tools/mcp_tool_groups/time_series_tools.py +494 -0
- aigroup_econ_mcp-1.4.2/tools/mcp_tools_registry.py +114 -0
- aigroup_econ_mcp-1.4.2/tools/model_specification_adapter.py +369 -0
- aigroup_econ_mcp-1.4.2/tools/output_formatter.py +563 -0
- aigroup_econ_mcp-1.4.2/tools/time_series_panel_data_adapter.py +858 -0
- aigroup_econ_mcp-1.4.2/tools/time_series_panel_data_tools.py +65 -0
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/__init__.py +0 -19
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/cli.py +0 -82
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/config.py +0 -561
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/server.py +0 -719
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/__init__.py +0 -39
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/advanced_econometrics.py +0 -596
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/advanced_regression.py +0 -560
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/base.py +0 -470
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/cache.py +0 -533
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/data_loader.py +0 -195
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/data_management.py +0 -608
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/discrete_choice.py +0 -595
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/file_parser.py +0 -1031
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/machine_learning.py +0 -60
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_ensemble.py +0 -210
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_evaluation.py +0 -272
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_models.py +0 -54
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_regularization.py +0 -186
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/monitoring.py +0 -555
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/optimized_example.py +0 -229
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/panel_data.py +0 -641
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/regression.py +0 -214
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/statistics.py +0 -167
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/time_series.py +0 -777
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/timeout.py +0 -283
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_descriptions.py +0 -797
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_handlers.py +0 -1545
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_registry.py +0 -478
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/validation.py +0 -482
- aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/visualization.py +0 -684
- {aigroup_econ_mcp-1.4.0 → aigroup_econ_mcp-1.4.2}/.gitignore +0 -0
- {aigroup_econ_mcp-1.4.0 → aigroup_econ_mcp-1.4.2}/LICENSE +0 -0
|
@@ -1,10 +1,10 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
|
-
Name:
|
|
3
|
-
Version: 1.4.
|
|
4
|
-
Summary: 专业计量经济学MCP工具 - 100%覆盖Stata核心功能,
|
|
5
|
-
Project-URL: Homepage, https://github.com/
|
|
6
|
-
Project-URL: Repository, https://github.com/
|
|
7
|
-
Project-URL: Issues, https://github.com/
|
|
2
|
+
Name: aigroup_econ_mcp
|
|
3
|
+
Version: 1.4.2
|
|
4
|
+
Summary: 专业计量经济学MCP工具 - 100%覆盖Stata核心功能,30+项专业分析工具,支持CSV/JSON/TXT/Excel格式,让大模型更智能地进行数据分析
|
|
5
|
+
Project-URL: Homepage, https://github.com/jackdark425/aigroup-econ-mcp
|
|
6
|
+
Project-URL: Repository, https://github.com/jackdark425/aigroup-econ-mcp.git
|
|
7
|
+
Project-URL: Issues, https://github.com/ajackdark425/aigroup-econ-mcp/issues
|
|
8
8
|
Author-email: AIGroup <jackdark425@gmail.com>
|
|
9
9
|
License-File: LICENSE
|
|
10
10
|
Keywords: data-analysis,econometrics,economics,mcp,panel-data,regression,statistics,time-series
|
|
@@ -23,9 +23,9 @@ Requires-Python: >=3.10
|
|
|
23
23
|
Requires-Dist: arch>=6.0.0
|
|
24
24
|
Requires-Dist: click>=8.0.0
|
|
25
25
|
Requires-Dist: linearmodels>=7.0
|
|
26
|
-
Requires-Dist: matplotlib>=3.5.0
|
|
27
26
|
Requires-Dist: mcp>=1.0.0
|
|
28
27
|
Requires-Dist: numpy>=1.21.0
|
|
28
|
+
Requires-Dist: openpyxl>=3.0.0
|
|
29
29
|
Requires-Dist: pandas>=1.5.0
|
|
30
30
|
Requires-Dist: psutil>=5.9.0
|
|
31
31
|
Requires-Dist: pydantic>=2.0.0
|
|
@@ -43,7 +43,7 @@ Description-Content-Type: text/markdown
|
|
|
43
43
|

|
|
44
44
|

|
|
45
45
|

|
|
46
|
-

|
|
47
47
|

|
|
48
48
|
|
|
49
49
|
## 📋 目录
|
|
@@ -98,77 +98,150 @@ MCP设置中添加:
|
|
|
98
98
|
}
|
|
99
99
|
```
|
|
100
100
|
|
|
101
|
-
## ✨ 核心功能 - 50
|
|
102
|
-
|
|
103
|
-
###
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
-
|
|
108
|
-
-
|
|
109
|
-
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
-
|
|
116
|
-
-
|
|
117
|
-
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
-
|
|
122
|
-
|
|
123
|
-
-
|
|
124
|
-
|
|
125
|
-
###
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
-
|
|
130
|
-
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
-
|
|
134
|
-
-
|
|
135
|
-
- **
|
|
136
|
-
-
|
|
137
|
-
-
|
|
138
|
-
|
|
139
|
-
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
-
|
|
152
|
-
-
|
|
153
|
-
-
|
|
154
|
-
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
-
|
|
163
|
-
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
-
|
|
167
|
-
-
|
|
168
|
-
|
|
169
|
-
-
|
|
170
|
-
|
|
171
|
-
|
|
101
|
+
## ✨ 核心功能 - 50项功能覆盖
|
|
102
|
+
|
|
103
|
+
### 1. 基础与参数估计
|
|
104
|
+
|
|
105
|
+
解决建立变量间的基础参数化关系并进行估计的问题。
|
|
106
|
+
|
|
107
|
+
- **普通最小二乘法 (OLS)**
|
|
108
|
+
- **最大似然估计 (MLE)**
|
|
109
|
+
- **广义矩估计 (GMM)**
|
|
110
|
+
|
|
111
|
+
### 2. 模型设定、诊断与稳健推断
|
|
112
|
+
|
|
113
|
+
当基础模型的理想假设不成立时,修正模型或调整推断;对模型进行诊断和选择。
|
|
114
|
+
|
|
115
|
+
- **稳健标准误**(处理异方差/自相关)
|
|
116
|
+
- **广义最小二乘法 (GLS)**
|
|
117
|
+
- **加权最小二乘法 (WLS)**
|
|
118
|
+
- **岭回归/LASSO/弹性网络**(处理多重共线性/高维数据)
|
|
119
|
+
- **联立方程模型**(处理双向因果关系)
|
|
120
|
+
|
|
121
|
+
- **模型诊断**:异方差检验(White、Breusch-Pagan)、自相关检验(Durbin-Watson、Ljung-Box)、正态性检验(Jarque-Bera)、多重共线性诊断(VIF)、内生性检验(Durbin-Wu-Hausman)、残差诊断、影响点分析
|
|
122
|
+
|
|
123
|
+
- **模型选择**:信息准则(AIC/BIC/HQIC)、交叉验证(K折、留一法)、格兰杰因果检验
|
|
124
|
+
|
|
125
|
+
### 3. 因果识别策略
|
|
126
|
+
|
|
127
|
+
在非实验数据中,识别变量间的因果关系(解决内生性问题)。
|
|
128
|
+
|
|
129
|
+
- **工具变量法 (IV/2SLS)**
|
|
130
|
+
- **控制函数法**
|
|
131
|
+
- **面板数据模型**(固定效应、随机效应、一阶差分、Hausman检验)
|
|
132
|
+
- **双重差分法 (DID)**
|
|
133
|
+
- **三重差分法 (DDD)**
|
|
134
|
+
- **事件研究法 (Event Study)**
|
|
135
|
+
- **断点回归设计 (RDD)**
|
|
136
|
+
- **合成控制法**
|
|
137
|
+
- **匹配方法**(倾向得分匹配PSM、协变量平衡、倾向得分加权IPW、熵平衡法)
|
|
138
|
+
|
|
139
|
+
- **效应分解与异质性**:中介效应分析(Baron-Kenny、Bootstrap检验、Sobel检验)、调节效应分析(交互项回归)、处理效应异质性 (HTE)、条件平均处理效应 (CATE)、因果森林
|
|
140
|
+
|
|
141
|
+
- **稳健性检验**:敏感性分析、Rosenbaum bounds、双重机器学习 (Double ML)
|
|
142
|
+
|
|
143
|
+
### 4. 特定数据类型建模
|
|
144
|
+
|
|
145
|
+
针对因变量或数据结构的固有特性进行建模。
|
|
146
|
+
|
|
147
|
+
#### 微观离散与受限数据
|
|
148
|
+
|
|
149
|
+
因变量为分类、计数、截断等非连续情况。
|
|
150
|
+
|
|
151
|
+
- **Logit/Probit**
|
|
152
|
+
- **多项/有序/条件Logit**
|
|
153
|
+
- **混合/嵌套Logit**
|
|
154
|
+
- **Tobit**
|
|
155
|
+
- **泊松/负二项回归**
|
|
156
|
+
- **Heckman选择模型**
|
|
157
|
+
|
|
158
|
+
#### 时间序列与面板数据
|
|
159
|
+
|
|
160
|
+
分析具有时间维度数据的动态依赖、预测和非平稳性。
|
|
161
|
+
|
|
162
|
+
- **ARIMA**
|
|
163
|
+
- **指数平滑法**
|
|
164
|
+
- **VAR/SVAR**
|
|
165
|
+
- **GARCH**
|
|
166
|
+
- **协整分析/VECM**
|
|
167
|
+
- **面板VAR**
|
|
168
|
+
|
|
169
|
+
- **平稳性与单位根检验**:ADF检验、PP检验、KPSS检验
|
|
170
|
+
|
|
171
|
+
- **动态面板模型**:Arellano-Bond估计(差分GMM)、Blundell-Bond估计(系统GMM)
|
|
172
|
+
|
|
173
|
+
- **结构突变检验**:Chow检验、Quandt-Andrews检验、Bai-Perron检验(多重断点)
|
|
174
|
+
|
|
175
|
+
- **面板数据诊断**:Hausman检验(FE vs RE)、F检验(Pooled vs FE)、LM检验(Pooled vs RE)、组内相关性检验
|
|
176
|
+
|
|
177
|
+
- **时变参数模型**:门限模型/转换回归(TAR/STAR)、马尔科夫转换模型
|
|
178
|
+
|
|
179
|
+
#### 生存/持续时间数据
|
|
180
|
+
|
|
181
|
+
分析"事件发生时间"数据并处理右删失。
|
|
182
|
+
|
|
183
|
+
- **Kaplan-Meier估计量**
|
|
184
|
+
- **Cox比例风险模型**
|
|
185
|
+
- **加速失效时间模型**
|
|
186
|
+
|
|
187
|
+
### 5. 空间计量经济学
|
|
188
|
+
|
|
189
|
+
处理数据的空间依赖性和空间异质性。
|
|
190
|
+
|
|
191
|
+
- **空间权重矩阵构建**(邻接、距离、K近邻矩阵)
|
|
192
|
+
|
|
193
|
+
- **空间自相关检验**:Moran's I、Geary's C、局部空间自相关 (LISA)
|
|
194
|
+
|
|
195
|
+
- **空间回归模型**:空间滞后模型 (SAR)、空间误差模型 (SEM)、空间杜宾模型 (SDM)、地理加权回归 (GWR)、空间面板数据模型
|
|
196
|
+
|
|
197
|
+
### 6. 非参数与半参数方法
|
|
198
|
+
|
|
199
|
+
放宽函数形式的线性或参数化假设,让数据本身驱动关系形态。
|
|
200
|
+
|
|
201
|
+
- **核回归**
|
|
202
|
+
- **局部回归**
|
|
203
|
+
- **样条回归**
|
|
204
|
+
- **广义可加模型 (GAM)**
|
|
205
|
+
- **部分线性模型**
|
|
206
|
+
- **非参数工具变量估计**
|
|
207
|
+
|
|
208
|
+
### 7. 分布分析与分解方法
|
|
209
|
+
|
|
210
|
+
分析因变量整个条件分布的特征,而非仅仅条件均值;对差异或变化进行分解。
|
|
211
|
+
|
|
212
|
+
- **分位数回归**
|
|
213
|
+
|
|
214
|
+
- **分解方法**:Oaxaca-Blinder分解、DiNardo-Fortin-Lemieux反事实分解、方差分解、ANOVA分解、Shapley值分解、时间序列分解(趋势-季节-随机)
|
|
215
|
+
|
|
216
|
+
### 8. 现代计算与机器学习
|
|
217
|
+
|
|
218
|
+
处理高维数据、复杂模式识别、预测以及为因果推断提供辅助工具。
|
|
219
|
+
|
|
220
|
+
- **监督学习**:随机森林、梯度提升机 (GBM/XGBoost)、支持向量机 (SVM)、神经网络
|
|
221
|
+
|
|
222
|
+
- **无监督学习**:聚类分析(K-means、层次聚类)
|
|
223
|
+
|
|
224
|
+
- **因果推断增强**:双重机器学习 (Double ML)、因果森林 (Causal Forest)
|
|
225
|
+
|
|
226
|
+
### 9. 统计推断技术
|
|
227
|
+
|
|
228
|
+
在理论分布难以推导或模型复杂时,进行可靠的区间估计与假设检验。
|
|
229
|
+
|
|
230
|
+
- **重采样方法**:自助法 (Bootstrap)、Pairs Bootstrap、Residual Bootstrap、Wild Bootstrap(异方差)、Block Bootstrap(时间序列/面板)、刀切法 (Jackknife)
|
|
231
|
+
|
|
232
|
+
- **模拟方法**:蒙特卡洛模拟、置换检验 (Permutation Test)
|
|
233
|
+
|
|
234
|
+
- **渐近方法**:Delta方法、聚类稳健推断
|
|
235
|
+
|
|
236
|
+
### 10. 缺失数据与测量误差
|
|
237
|
+
|
|
238
|
+
处理数据不完整或变量测量不准确的问题。
|
|
239
|
+
|
|
240
|
+
- **缺失数据处理**:列表删除法、均值插补、回归插补、多重插补 (Multiple Imputation - MICE/Amelia)、期望最大化算法 (EM)
|
|
241
|
+
|
|
242
|
+
- **测量误差**:工具变量法、SIMEX方法
|
|
243
|
+
|
|
244
|
+
## 🔧 完整工具列表 (30+项)
|
|
172
245
|
|
|
173
246
|
### 数据管理工具 (8项)
|
|
174
247
|
|
|
@@ -244,17 +317,6 @@ MCP设置中添加:
|
|
|
244
317
|
| `quantile_regression_analysis` | 分位数回归 | y_data, x_data, quantiles | 分位数系数、置信区间 |
|
|
245
318
|
| `survival_analysis_cox` | 生存分析 | time, event, covariates | 风险比、系数、p值 |
|
|
246
319
|
|
|
247
|
-
### 可视化工具 (7项)
|
|
248
|
-
|
|
249
|
-
| 工具 | 功能 | 主要参数 | 输出 |
|
|
250
|
-
|------|------|----------|------|
|
|
251
|
-
| `scatter_plot` | 散点图 | x_data, y_data, add_regression_line | 散点图图像 |
|
|
252
|
-
| `histogram_plot` | 直方图 | data, bins, show_density | 直方图图像 |
|
|
253
|
-
| `box_plot` | 箱线图 | data, labels | 箱线图图像 |
|
|
254
|
-
| `line_plot` | 折线图 | data, labels, title | 折线图图像 |
|
|
255
|
-
| `bar_plot` | 条形图 | data, labels, title | 条形图图像 |
|
|
256
|
-
| `correlation_heatmap` | 相关矩阵热力图 | data, method | 热力图图像 |
|
|
257
|
-
| `regression_diagnostics` | 回归诊断图 | y_data, x_data | 诊断图组合 |
|
|
258
320
|
|
|
259
321
|
### 其他高级工具 (4项)
|
|
260
322
|
|
|
@@ -302,7 +364,7 @@ GDP,CPI,失业率
|
|
|
302
364
|
|
|
303
365
|
- **单列数值**: 每行一个数值
|
|
304
366
|
|
|
305
|
-
```
|
|
367
|
+
```
|
|
306
368
|
100.5
|
|
307
369
|
102.3
|
|
308
370
|
101.8
|
|
@@ -311,7 +373,7 @@ GDP,CPI,失业率
|
|
|
311
373
|
|
|
312
374
|
- **多列数值**: 空格或制表符分隔
|
|
313
375
|
|
|
314
|
-
```
|
|
376
|
+
```
|
|
315
377
|
GDP CPI 失业率
|
|
316
378
|
3.2 2.1 4.5
|
|
317
379
|
2.8 2.3 4.2
|
|
@@ -320,7 +382,7 @@ GDP CPI 失业率
|
|
|
320
382
|
|
|
321
383
|
- **键值对格式**: 变量名: 值列表
|
|
322
384
|
|
|
323
|
-
```
|
|
385
|
+
```
|
|
324
386
|
GDP: 3.2 2.8 3.5 2.9
|
|
325
387
|
CPI: 2.1 2.3 1.9 2.4
|
|
326
388
|
失业率: 4.5 4.2 4.0 4.3
|
|
@@ -560,31 +622,6 @@ uvx --no-cache aigroup-econ-mcp
|
|
|
560
622
|
|
|
561
623
|
## 🏗️ 项目架构
|
|
562
624
|
|
|
563
|
-
### 模块结构
|
|
564
|
-
|
|
565
|
-
```
|
|
566
|
-
src/aigroup_econ_mcp/
|
|
567
|
-
├── server.py # MCP服务器核心
|
|
568
|
-
├── cli.py # 命令行入口
|
|
569
|
-
├── config.py # 配置管理
|
|
570
|
-
└── tools/ # 工具模块
|
|
571
|
-
├── base.py # 基础工具类
|
|
572
|
-
├── statistics.py # 统计分析工具
|
|
573
|
-
├── regression.py # 回归分析工具
|
|
574
|
-
├── time_series.py # 时间序列工具
|
|
575
|
-
├── panel_data.py # 面板数据工具
|
|
576
|
-
├── machine_learning.py # 机器学习工具
|
|
577
|
-
├── file_parser.py # 文件解析器(CSV/JSON/TXT)
|
|
578
|
-
├── data_loader.py # 数据加载器
|
|
579
|
-
├── tool_registry.py # 工具注册中心
|
|
580
|
-
├── tool_handlers.py # 业务处理器
|
|
581
|
-
├── tool_descriptions.py # 工具描述和文档
|
|
582
|
-
├── discrete_choice.py # 离散选择模型(新增)
|
|
583
|
-
├── advanced_econometrics.py # 高级计量方法(新增)
|
|
584
|
-
├── data_management.py # 数据管理工具(新增)
|
|
585
|
-
├── visualization.py # 可视化工具(新增)
|
|
586
|
-
└── advanced_regression.py # 高级回归方法(新增)
|
|
587
|
-
```
|
|
588
625
|
|
|
589
626
|
### 设计特点
|
|
590
627
|
|
|
@@ -601,7 +638,6 @@ src/aigroup_econ_mcp/
|
|
|
601
638
|
- ✨ **离散选择模型** - Logit、Probit、多项Logit、有序选择、Tobit、泊松回归
|
|
602
639
|
- 🔬 **高级计量方法** - PSM、DID、RDD、分位数回归、生存分析
|
|
603
640
|
- 📊 **数据管理工具** - 清洗、合并、追加、宽转长、长转宽、变量操作
|
|
604
|
-
- 📈 **可视化分析** - 7种专业图表,支持回归诊断
|
|
605
641
|
- ⚙️ **高级回归方法** - IV/2SLS、GMM、WLS、Bootstrap、稳健标准误
|
|
606
642
|
- ✨ **TXT格式支持** - 支持单列、多列、键值对三种TXT格式
|
|
607
643
|
- 📝 **完善参数描述** - 所有50个工具的MCP参数都有详细说明
|
|
@@ -5,7 +5,7 @@
|
|
|
5
5
|

|
|
6
6
|

|
|
7
7
|

|
|
8
|
-

|
|
9
9
|

|
|
10
10
|
|
|
11
11
|
## 📋 目录
|
|
@@ -60,77 +60,150 @@ MCP设置中添加:
|
|
|
60
60
|
}
|
|
61
61
|
```
|
|
62
62
|
|
|
63
|
-
## ✨ 核心功能 - 50
|
|
64
|
-
|
|
65
|
-
###
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
-
|
|
70
|
-
-
|
|
71
|
-
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
-
|
|
78
|
-
-
|
|
79
|
-
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
-
|
|
84
|
-
|
|
85
|
-
-
|
|
86
|
-
|
|
87
|
-
###
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
-
|
|
92
|
-
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
-
|
|
96
|
-
-
|
|
97
|
-
- **
|
|
98
|
-
-
|
|
99
|
-
-
|
|
100
|
-
|
|
101
|
-
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
-
|
|
114
|
-
-
|
|
115
|
-
-
|
|
116
|
-
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
-
|
|
125
|
-
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
-
|
|
129
|
-
-
|
|
130
|
-
|
|
131
|
-
-
|
|
132
|
-
|
|
133
|
-
|
|
63
|
+
## ✨ 核心功能 - 50项功能覆盖
|
|
64
|
+
|
|
65
|
+
### 1. 基础与参数估计
|
|
66
|
+
|
|
67
|
+
解决建立变量间的基础参数化关系并进行估计的问题。
|
|
68
|
+
|
|
69
|
+
- **普通最小二乘法 (OLS)**
|
|
70
|
+
- **最大似然估计 (MLE)**
|
|
71
|
+
- **广义矩估计 (GMM)**
|
|
72
|
+
|
|
73
|
+
### 2. 模型设定、诊断与稳健推断
|
|
74
|
+
|
|
75
|
+
当基础模型的理想假设不成立时,修正模型或调整推断;对模型进行诊断和选择。
|
|
76
|
+
|
|
77
|
+
- **稳健标准误**(处理异方差/自相关)
|
|
78
|
+
- **广义最小二乘法 (GLS)**
|
|
79
|
+
- **加权最小二乘法 (WLS)**
|
|
80
|
+
- **岭回归/LASSO/弹性网络**(处理多重共线性/高维数据)
|
|
81
|
+
- **联立方程模型**(处理双向因果关系)
|
|
82
|
+
|
|
83
|
+
- **模型诊断**:异方差检验(White、Breusch-Pagan)、自相关检验(Durbin-Watson、Ljung-Box)、正态性检验(Jarque-Bera)、多重共线性诊断(VIF)、内生性检验(Durbin-Wu-Hausman)、残差诊断、影响点分析
|
|
84
|
+
|
|
85
|
+
- **模型选择**:信息准则(AIC/BIC/HQIC)、交叉验证(K折、留一法)、格兰杰因果检验
|
|
86
|
+
|
|
87
|
+
### 3. 因果识别策略
|
|
88
|
+
|
|
89
|
+
在非实验数据中,识别变量间的因果关系(解决内生性问题)。
|
|
90
|
+
|
|
91
|
+
- **工具变量法 (IV/2SLS)**
|
|
92
|
+
- **控制函数法**
|
|
93
|
+
- **面板数据模型**(固定效应、随机效应、一阶差分、Hausman检验)
|
|
94
|
+
- **双重差分法 (DID)**
|
|
95
|
+
- **三重差分法 (DDD)**
|
|
96
|
+
- **事件研究法 (Event Study)**
|
|
97
|
+
- **断点回归设计 (RDD)**
|
|
98
|
+
- **合成控制法**
|
|
99
|
+
- **匹配方法**(倾向得分匹配PSM、协变量平衡、倾向得分加权IPW、熵平衡法)
|
|
100
|
+
|
|
101
|
+
- **效应分解与异质性**:中介效应分析(Baron-Kenny、Bootstrap检验、Sobel检验)、调节效应分析(交互项回归)、处理效应异质性 (HTE)、条件平均处理效应 (CATE)、因果森林
|
|
102
|
+
|
|
103
|
+
- **稳健性检验**:敏感性分析、Rosenbaum bounds、双重机器学习 (Double ML)
|
|
104
|
+
|
|
105
|
+
### 4. 特定数据类型建模
|
|
106
|
+
|
|
107
|
+
针对因变量或数据结构的固有特性进行建模。
|
|
108
|
+
|
|
109
|
+
#### 微观离散与受限数据
|
|
110
|
+
|
|
111
|
+
因变量为分类、计数、截断等非连续情况。
|
|
112
|
+
|
|
113
|
+
- **Logit/Probit**
|
|
114
|
+
- **多项/有序/条件Logit**
|
|
115
|
+
- **混合/嵌套Logit**
|
|
116
|
+
- **Tobit**
|
|
117
|
+
- **泊松/负二项回归**
|
|
118
|
+
- **Heckman选择模型**
|
|
119
|
+
|
|
120
|
+
#### 时间序列与面板数据
|
|
121
|
+
|
|
122
|
+
分析具有时间维度数据的动态依赖、预测和非平稳性。
|
|
123
|
+
|
|
124
|
+
- **ARIMA**
|
|
125
|
+
- **指数平滑法**
|
|
126
|
+
- **VAR/SVAR**
|
|
127
|
+
- **GARCH**
|
|
128
|
+
- **协整分析/VECM**
|
|
129
|
+
- **面板VAR**
|
|
130
|
+
|
|
131
|
+
- **平稳性与单位根检验**:ADF检验、PP检验、KPSS检验
|
|
132
|
+
|
|
133
|
+
- **动态面板模型**:Arellano-Bond估计(差分GMM)、Blundell-Bond估计(系统GMM)
|
|
134
|
+
|
|
135
|
+
- **结构突变检验**:Chow检验、Quandt-Andrews检验、Bai-Perron检验(多重断点)
|
|
136
|
+
|
|
137
|
+
- **面板数据诊断**:Hausman检验(FE vs RE)、F检验(Pooled vs FE)、LM检验(Pooled vs RE)、组内相关性检验
|
|
138
|
+
|
|
139
|
+
- **时变参数模型**:门限模型/转换回归(TAR/STAR)、马尔科夫转换模型
|
|
140
|
+
|
|
141
|
+
#### 生存/持续时间数据
|
|
142
|
+
|
|
143
|
+
分析"事件发生时间"数据并处理右删失。
|
|
144
|
+
|
|
145
|
+
- **Kaplan-Meier估计量**
|
|
146
|
+
- **Cox比例风险模型**
|
|
147
|
+
- **加速失效时间模型**
|
|
148
|
+
|
|
149
|
+
### 5. 空间计量经济学
|
|
150
|
+
|
|
151
|
+
处理数据的空间依赖性和空间异质性。
|
|
152
|
+
|
|
153
|
+
- **空间权重矩阵构建**(邻接、距离、K近邻矩阵)
|
|
154
|
+
|
|
155
|
+
- **空间自相关检验**:Moran's I、Geary's C、局部空间自相关 (LISA)
|
|
156
|
+
|
|
157
|
+
- **空间回归模型**:空间滞后模型 (SAR)、空间误差模型 (SEM)、空间杜宾模型 (SDM)、地理加权回归 (GWR)、空间面板数据模型
|
|
158
|
+
|
|
159
|
+
### 6. 非参数与半参数方法
|
|
160
|
+
|
|
161
|
+
放宽函数形式的线性或参数化假设,让数据本身驱动关系形态。
|
|
162
|
+
|
|
163
|
+
- **核回归**
|
|
164
|
+
- **局部回归**
|
|
165
|
+
- **样条回归**
|
|
166
|
+
- **广义可加模型 (GAM)**
|
|
167
|
+
- **部分线性模型**
|
|
168
|
+
- **非参数工具变量估计**
|
|
169
|
+
|
|
170
|
+
### 7. 分布分析与分解方法
|
|
171
|
+
|
|
172
|
+
分析因变量整个条件分布的特征,而非仅仅条件均值;对差异或变化进行分解。
|
|
173
|
+
|
|
174
|
+
- **分位数回归**
|
|
175
|
+
|
|
176
|
+
- **分解方法**:Oaxaca-Blinder分解、DiNardo-Fortin-Lemieux反事实分解、方差分解、ANOVA分解、Shapley值分解、时间序列分解(趋势-季节-随机)
|
|
177
|
+
|
|
178
|
+
### 8. 现代计算与机器学习
|
|
179
|
+
|
|
180
|
+
处理高维数据、复杂模式识别、预测以及为因果推断提供辅助工具。
|
|
181
|
+
|
|
182
|
+
- **监督学习**:随机森林、梯度提升机 (GBM/XGBoost)、支持向量机 (SVM)、神经网络
|
|
183
|
+
|
|
184
|
+
- **无监督学习**:聚类分析(K-means、层次聚类)
|
|
185
|
+
|
|
186
|
+
- **因果推断增强**:双重机器学习 (Double ML)、因果森林 (Causal Forest)
|
|
187
|
+
|
|
188
|
+
### 9. 统计推断技术
|
|
189
|
+
|
|
190
|
+
在理论分布难以推导或模型复杂时,进行可靠的区间估计与假设检验。
|
|
191
|
+
|
|
192
|
+
- **重采样方法**:自助法 (Bootstrap)、Pairs Bootstrap、Residual Bootstrap、Wild Bootstrap(异方差)、Block Bootstrap(时间序列/面板)、刀切法 (Jackknife)
|
|
193
|
+
|
|
194
|
+
- **模拟方法**:蒙特卡洛模拟、置换检验 (Permutation Test)
|
|
195
|
+
|
|
196
|
+
- **渐近方法**:Delta方法、聚类稳健推断
|
|
197
|
+
|
|
198
|
+
### 10. 缺失数据与测量误差
|
|
199
|
+
|
|
200
|
+
处理数据不完整或变量测量不准确的问题。
|
|
201
|
+
|
|
202
|
+
- **缺失数据处理**:列表删除法、均值插补、回归插补、多重插补 (Multiple Imputation - MICE/Amelia)、期望最大化算法 (EM)
|
|
203
|
+
|
|
204
|
+
- **测量误差**:工具变量法、SIMEX方法
|
|
205
|
+
|
|
206
|
+
## 🔧 完整工具列表 (30+项)
|
|
134
207
|
|
|
135
208
|
### 数据管理工具 (8项)
|
|
136
209
|
|
|
@@ -206,17 +279,6 @@ MCP设置中添加:
|
|
|
206
279
|
| `quantile_regression_analysis` | 分位数回归 | y_data, x_data, quantiles | 分位数系数、置信区间 |
|
|
207
280
|
| `survival_analysis_cox` | 生存分析 | time, event, covariates | 风险比、系数、p值 |
|
|
208
281
|
|
|
209
|
-
### 可视化工具 (7项)
|
|
210
|
-
|
|
211
|
-
| 工具 | 功能 | 主要参数 | 输出 |
|
|
212
|
-
|------|------|----------|------|
|
|
213
|
-
| `scatter_plot` | 散点图 | x_data, y_data, add_regression_line | 散点图图像 |
|
|
214
|
-
| `histogram_plot` | 直方图 | data, bins, show_density | 直方图图像 |
|
|
215
|
-
| `box_plot` | 箱线图 | data, labels | 箱线图图像 |
|
|
216
|
-
| `line_plot` | 折线图 | data, labels, title | 折线图图像 |
|
|
217
|
-
| `bar_plot` | 条形图 | data, labels, title | 条形图图像 |
|
|
218
|
-
| `correlation_heatmap` | 相关矩阵热力图 | data, method | 热力图图像 |
|
|
219
|
-
| `regression_diagnostics` | 回归诊断图 | y_data, x_data | 诊断图组合 |
|
|
220
282
|
|
|
221
283
|
### 其他高级工具 (4项)
|
|
222
284
|
|
|
@@ -264,7 +326,7 @@ GDP,CPI,失业率
|
|
|
264
326
|
|
|
265
327
|
- **单列数值**: 每行一个数值
|
|
266
328
|
|
|
267
|
-
```
|
|
329
|
+
```
|
|
268
330
|
100.5
|
|
269
331
|
102.3
|
|
270
332
|
101.8
|
|
@@ -273,7 +335,7 @@ GDP,CPI,失业率
|
|
|
273
335
|
|
|
274
336
|
- **多列数值**: 空格或制表符分隔
|
|
275
337
|
|
|
276
|
-
```
|
|
338
|
+
```
|
|
277
339
|
GDP CPI 失业率
|
|
278
340
|
3.2 2.1 4.5
|
|
279
341
|
2.8 2.3 4.2
|
|
@@ -282,7 +344,7 @@ GDP CPI 失业率
|
|
|
282
344
|
|
|
283
345
|
- **键值对格式**: 变量名: 值列表
|
|
284
346
|
|
|
285
|
-
```
|
|
347
|
+
```
|
|
286
348
|
GDP: 3.2 2.8 3.5 2.9
|
|
287
349
|
CPI: 2.1 2.3 1.9 2.4
|
|
288
350
|
失业率: 4.5 4.2 4.0 4.3
|
|
@@ -522,31 +584,6 @@ uvx --no-cache aigroup-econ-mcp
|
|
|
522
584
|
|
|
523
585
|
## 🏗️ 项目架构
|
|
524
586
|
|
|
525
|
-
### 模块结构
|
|
526
|
-
|
|
527
|
-
```
|
|
528
|
-
src/aigroup_econ_mcp/
|
|
529
|
-
├── server.py # MCP服务器核心
|
|
530
|
-
├── cli.py # 命令行入口
|
|
531
|
-
├── config.py # 配置管理
|
|
532
|
-
└── tools/ # 工具模块
|
|
533
|
-
├── base.py # 基础工具类
|
|
534
|
-
├── statistics.py # 统计分析工具
|
|
535
|
-
├── regression.py # 回归分析工具
|
|
536
|
-
├── time_series.py # 时间序列工具
|
|
537
|
-
├── panel_data.py # 面板数据工具
|
|
538
|
-
├── machine_learning.py # 机器学习工具
|
|
539
|
-
├── file_parser.py # 文件解析器(CSV/JSON/TXT)
|
|
540
|
-
├── data_loader.py # 数据加载器
|
|
541
|
-
├── tool_registry.py # 工具注册中心
|
|
542
|
-
├── tool_handlers.py # 业务处理器
|
|
543
|
-
├── tool_descriptions.py # 工具描述和文档
|
|
544
|
-
├── discrete_choice.py # 离散选择模型(新增)
|
|
545
|
-
├── advanced_econometrics.py # 高级计量方法(新增)
|
|
546
|
-
├── data_management.py # 数据管理工具(新增)
|
|
547
|
-
├── visualization.py # 可视化工具(新增)
|
|
548
|
-
└── advanced_regression.py # 高级回归方法(新增)
|
|
549
|
-
```
|
|
550
587
|
|
|
551
588
|
### 设计特点
|
|
552
589
|
|
|
@@ -563,7 +600,6 @@ src/aigroup_econ_mcp/
|
|
|
563
600
|
- ✨ **离散选择模型** - Logit、Probit、多项Logit、有序选择、Tobit、泊松回归
|
|
564
601
|
- 🔬 **高级计量方法** - PSM、DID、RDD、分位数回归、生存分析
|
|
565
602
|
- 📊 **数据管理工具** - 清洗、合并、追加、宽转长、长转宽、变量操作
|
|
566
|
-
- 📈 **可视化分析** - 7种专业图表,支持回归诊断
|
|
567
603
|
- ⚙️ **高级回归方法** - IV/2SLS、GMM、WLS、Bootstrap、稳健标准误
|
|
568
604
|
- ✨ **TXT格式支持** - 支持单列、多列、键值对三种TXT格式
|
|
569
605
|
- 📝 **完善参数描述** - 所有50个工具的MCP参数都有详细说明
|
|
@@ -0,0 +1,14 @@
|
|
|
1
|
+
"""
|
|
2
|
+
AIGroup Econometrics MCP Package
|
|
3
|
+
专业计量经济学MCP工具包
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
__version__ = "1.4.2"
|
|
7
|
+
__author__ = "AIGroup"
|
|
8
|
+
__email__ = "jackdark425@gmail.com"
|
|
9
|
+
|
|
10
|
+
# 导出主要模块
|
|
11
|
+
from .server import main
|
|
12
|
+
from .cli import main as cli_main
|
|
13
|
+
|
|
14
|
+
__all__ = ["main", "cli_main"]
|