aigroup-econ-mcp 1.3.2__tar.gz → 1.4.0__tar.gz

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of aigroup-econ-mcp might be problematic. Click here for more details.

Files changed (44) hide show
  1. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/PKG-INFO +228 -73
  2. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/README.md +225 -70
  3. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/pyproject.toml +3 -3
  4. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/__init__.py +19 -0
  5. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/cli.py +81 -81
  6. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/config.py +560 -560
  7. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/server.py +306 -39
  8. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/__init__.py +39 -0
  9. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/advanced_econometrics.py +596 -0
  10. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/advanced_regression.py +560 -0
  11. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/base.py +469 -469
  12. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/cache.py +532 -532
  13. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/data_loader.py +195 -0
  14. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/data_management.py +608 -0
  15. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/discrete_choice.py +595 -0
  16. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/file_parser.py +231 -227
  17. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/machine_learning.py +59 -59
  18. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/ml_ensemble.py +209 -209
  19. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/ml_evaluation.py +271 -271
  20. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_models.py +54 -0
  21. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/ml_regularization.py +186 -0
  22. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/monitoring.py +554 -554
  23. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/optimized_example.py +228 -228
  24. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/panel_data.py +641 -0
  25. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/regression.py +28 -28
  26. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/statistics.py +166 -153
  27. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/time_series.py +776 -684
  28. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/timeout.py +282 -282
  29. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_descriptions.py +797 -0
  30. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_handlers.py +1545 -0
  31. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/tool_registry.py +478 -0
  32. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/src/aigroup_econ_mcp/tools/validation.py +481 -481
  33. aigroup_econ_mcp-1.4.0/src/aigroup_econ_mcp/tools/visualization.py +684 -0
  34. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/__init__.py +0 -19
  35. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/__init__.py +0 -19
  36. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/data_loader.py +0 -195
  37. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/ml_models.py +0 -54
  38. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/ml_regularization.py +0 -186
  39. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/panel_data.py +0 -619
  40. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/tool_descriptions.py +0 -410
  41. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/tool_handlers.py +0 -962
  42. aigroup_econ_mcp-1.3.2/src/aigroup_econ_mcp/tools/tool_registry.py +0 -478
  43. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/.gitignore +0 -0
  44. {aigroup_econ_mcp-1.3.2 → aigroup_econ_mcp-1.4.0}/LICENSE +0 -0
@@ -1,14 +1,14 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: aigroup-econ-mcp
3
- Version: 1.3.2
4
- Summary: 专业计量经济学MCP工具 - 支持CSV/JSON/TXT格式,完善的参数描述,让大模型更智能地进行数据分析
3
+ Version: 1.4.0
4
+ Summary: 专业计量经济学MCP工具 - 100%覆盖Stata核心功能,50项专业分析工具,支持CSV/JSON/TXT格式,让大模型更智能地进行数据分析
5
5
  Project-URL: Homepage, https://github.com/aigroup/aigroup-econ-mcp
6
6
  Project-URL: Repository, https://github.com/aigroup/aigroup-econ-mcp.git
7
7
  Project-URL: Issues, https://github.com/aigroup/aigroup-econ-mcp/issues
8
8
  Author-email: AIGroup <jackdark425@gmail.com>
9
9
  License-File: LICENSE
10
10
  Keywords: data-analysis,econometrics,economics,mcp,panel-data,regression,statistics,time-series
11
- Classifier: Development Status :: 4 - Beta
11
+ Classifier: Development Status :: 5 - Production/Stable
12
12
  Classifier: Intended Audience :: Developers
13
13
  Classifier: License :: OSI Approved :: MIT License
14
14
  Classifier: Programming Language :: Python :: 3
@@ -36,14 +36,15 @@ Requires-Dist: statsmodels>=0.13.0
36
36
  Requires-Dist: uvicorn>=0.20.0
37
37
  Description-Content-Type: text/markdown
38
38
 
39
- # aigroup-econ-mcp - 专业计量经济学MCP工具
39
+ # aigroup-econ-mcp - 专业计量经济学MCP工具
40
40
 
41
- 🎯 专为Roo-Code设计的计量经济学MCP服务 - 提供统计分析、回归建模、时间序列分析,支持CSV/JSON/TXT多种数据格式
41
+ 🎯 **100%覆盖Stata核心功能** - 提供50项专业计量经济学分析工具,支持CSV/JSON/TXT多种数据格式
42
42
 
43
43
  ![Python](https://img.shields.io/badge/Python-3.8+-blue.svg)
44
44
  ![MCP](https://img.shields.io/badge/MCP-1.0+-green.svg)
45
45
  ![License](https://img.shields.io/badge/License-MIT-yellow.svg)
46
- ![Version](https://img.shields.io/badge/Version-1.2.0-orange.svg)
46
+ ![Version](https://img.shields.io/badge/Version-1.4.0-orange.svg)
47
+ ![Stata Coverage](https://img.shields.io/badge/Stata_Coverage-100%25-brightgreen.svg)
47
48
 
48
49
  ## 📋 目录
49
50
 
@@ -67,9 +68,9 @@ Description-Content-Type: text/markdown
67
68
  uvx aigroup-econ-mcp
68
69
  ```
69
70
 
70
- ### Roo-Code配置
71
+ ### Roo-Code、通义灵码、Claude code配置
71
72
 
72
- 在RooCode的MCP设置中添加:
73
+ MCP设置中添加:
73
74
 
74
75
  ```json
75
76
  {
@@ -85,87 +86,193 @@ uvx aigroup-econ-mcp
85
86
  "state_space_model_analysis", "variance_decomposition_analysis",
86
87
  "random_forest_regression_analysis", "gradient_boosting_regression_analysis",
87
88
  "lasso_regression_analysis", "ridge_regression_analysis",
88
- "cross_validation_analysis", "feature_importance_analysis_tool"
89
+ "cross_validation_analysis", "feature_importance_analysis_tool",
90
+ "logit_regression", "probit_regression", "poisson_count_regression",
91
+ "propensity_score_matching", "difference_in_differences",
92
+ "instrumental_variables_regression", "data_cleaning", "data_merge",
93
+ "reshape_to_long", "reshape_to_wide", "scatter_plot", "histogram_plot",
94
+ "correlation_heatmap", "wls_regression", "gmm_estimation", "bootstrap_analysis"
89
95
  ]
90
96
  }
91
97
  }
92
98
  }
93
99
  ```
94
100
 
95
- ## ✨ 核心功能
101
+ ## ✨ 核心功能 - 50项Stata功能全覆盖
96
102
 
97
- ### 📊 统计分析
98
- - **描述性统计** - 均值、方差、偏度、峰度、中位数、四分位数
103
+ ### 📊 数据管理 (8项)
104
+ - **数据清洗** - 缺失值处理、异常值检测、数据标准化
105
+ - **数据合并** - 内连接、外连接、左连接、右连接
106
+ - **数据追加** - 纵向数据合并
107
+ - **宽转长** - reshape wide to long格式转换
108
+ - **长转宽** - reshape long to wide格式转换
109
+ - **生成变量** - 9种数学函数,支持复杂表达式
110
+ - **删除变量** - 选择性删除指定变量
111
+ - **保留变量** - 选择性保留指定变量
112
+
113
+ ### 📈 描述性统计 (4项)
114
+ - **基本统计量** - 均值、方差、偏度、峰度、中位数、四分位数
99
115
  - **假设检验** - t检验、F检验、卡方检验、ADF检验、KPSS检验
100
116
  - **相关性分析** - Pearson、Spearman、Kendall相关系数
117
+ - **分布分析** - 正态性检验、分布拟合
101
118
 
102
- ### 📈 回归建模
119
+ ### 🔬 基础计量模型 (4项)
103
120
  - **OLS回归** - 普通最小二乘法回归,完整诊断统计
104
121
  - **正则化回归** - Lasso、Ridge回归,自动特征选择
105
122
  - **模型诊断** - 残差分析、异方差检验、多重共线性检测
123
+ - **稳健标准误** - HC0-HC3多种稳健标准误计算
106
124
 
107
- ### 时间序列分析
108
- - **平稳性检验** - ADF、KPSS检验,趋势强度分析
109
- - **自相关分析** - ACF、PACF函数计算和解释
110
- - **VAR/VECM模型** - 向量自回归/误差修正模型
111
- - **GARCH模型** - 波动率建模和预测
112
- - **状态空间模型** - 卡尔曼滤波和平滑
113
-
114
- ### 🏢 面板数据分析
125
+ ### 🏢 面板数据分析 (5项)
115
126
  - **固定效应模型** - 控制个体/时间固定效应
116
127
  - **随机效应模型** - 处理随机效应
117
128
  - **Hausman检验** - 模型选择检验
118
129
  - **面板单位根检验** - Levin-Lin-Chu等多种检验方法
130
+ - **面板数据诊断** - 组内相关、异方差检验
119
131
 
120
- ### 🤖 机器学习集成
121
- - **随机森林** - 非线性关系建模,特征重要性分析
122
- - **梯度提升** - 高精度预测,支持XGBoost风格
123
- - **特征重要性** - 基于多种方法的变量选择
124
- - **交叉验证** - K折交叉验证,模型稳定性评估
132
+ ### 时间序列分析 (7项)
133
+ - **平稳性检验** - ADF、KPSS检验,趋势强度分析
134
+ - **自相关分析** - ACF、PACF函数计算和解释
135
+ - **VAR模型** - 向量自回归模型,最优阶数选择
136
+ - **VECM模型** - 向量误差修正模型,协整分析
137
+ - **GARCH模型** - 波动率建模和预测
138
+ - **状态空间模型** - 卡尔曼滤波和平滑
139
+ - **方差分解** - 冲击响应方差分解分析
140
+
141
+ ### 🎯 离散选择模型 (6项)
142
+ - **Logit回归** - 二元选择模型,完整统计检验
143
+ - **Probit回归** - 二元选择模型,正态分布假设
144
+ - **多项Logit** - 多类别选择模型
145
+ - **有序选择模型** - 有序响应变量建模
146
+ - **Tobit模型** - 受限因变量回归
147
+ - **泊松回归** - 计数数据回归分析
148
+
149
+ ### 🔬 高级计量方法 (5项)
150
+ - **倾向得分匹配(PSM)** - 因果推断,处理效应估计
151
+ - **双重差分法(DID)** - 政策评估,因果效应识别
152
+ - **断点回归(RDD)** - 准自然实验设计
153
+ - **分位数回归** - 条件分布分析
154
+ - **生存分析** - Cox比例风险模型
155
+
156
+ ### 📊 可视化分析 (7项)
157
+ - **散点图** - 带回归线,相关性可视化
158
+ - **直方图** - 带密度曲线,分布可视化
159
+ - **箱线图** - 含离群值标识,分布比较
160
+ - **折线图** - 多系列支持,时间趋势分析
161
+ - **条形图** - 带数值标签,分类比较
162
+ - **相关矩阵热力图** - 彩色编码,相关性可视化
163
+ - **回归诊断图** - 4子图组合,模型诊断
164
+
165
+ ### ⚙️ 其他功能 (4项)
166
+ - **工具变量法(IV/2SLS)** - 内生性处理,弱工具变量检验
167
+ - **广义矩估计(GMM)** - 过度识别检验,最优权重矩阵
168
+ - **加权最小二乘(WLS)** - 3种权重类型,异方差修正
169
+ - **Bootstrap推断** - 置信区间,统计推断
170
+
171
+ ## 🔧 完整工具列表 (50项)
172
+
173
+ ### 数据管理工具 (8项)
125
174
 
126
- ## 🔧 工具列表
175
+ | 工具 | 功能 | 主要参数 | 输出 |
176
+ |------|------|----------|------|
177
+ | `data_cleaning` | 数据清洗 | data, handle_missing, handle_outliers | 清洗后数据、处理统计 |
178
+ | `data_merge` | 数据合并 | left_data, right_data, on, how | 合并后数据、匹配统计 |
179
+ | `data_append` | 数据追加 | data1, data2 | 纵向合并数据 |
180
+ | `reshape_to_long` | 宽转长 | data, id_vars, value_vars | 长格式数据 |
181
+ | `reshape_to_wide` | 长转宽 | data, id_var, variable_col, value_col | 宽格式数据 |
182
+ | `variable_generation` | 生成变量 | data, expression | 新变量数据 |
183
+ | `variable_dropping` | 删除变量 | data, drop_vars | 删除后数据 |
184
+ | `variable_keeping` | 保留变量 | data, keep_vars | 保留后数据 |
185
+
186
+ ### 统计分析工具 (4项)
127
187
 
128
- ### 基础统计工具(支持CSV/JSON/TXT格式)
129
188
  | 工具 | 功能 | 主要参数 | 输出 |
130
- |------|------|---------|------|
131
- | `descriptive_statistics` | 描述性统计 | data或file_content | 均值、标准差、偏度、峰度、相关矩阵 |
132
- | `ols_regression` | OLS回归 | y_data, x_data或file_content | R²、系数、t统计量、p值、置信区间 |
189
+ |------|------|----------|------|
190
+ | `descriptive_statistics` | 描述性统计 | data | 均值、标准差、偏度、峰度、相关矩阵 |
133
191
  | `hypothesis_testing` | 假设检验 | data1, data2, test_type | 统计量、p值、显著性判断 |
134
192
  | `correlation_analysis` | 相关性分析 | data, method | 相关系数矩阵 |
193
+ | `distribution_analysis` | 分布分析 | data, test_type | 分布检验结果 |
194
+
195
+ ### 基础计量工具 (4项)
135
196
 
136
- ### 时间序列工具(支持CSV/JSON/TXT格式)
137
197
  | 工具 | 功能 | 主要参数 | 输出 |
138
- |------|------|---------|------|
139
- | `time_series_analysis` | 时间序列分析 | data | 平稳性检验、ACF/PACF、模型建议 |
140
- | `var_model_analysis` | VAR模型 | data, max_lags, ic | 最优阶数、系数、脉冲响应 |
141
- | `vecm_model_analysis` | VECM模型 | data, coint_rank | 协整向量、误差修正项 |
142
- | `garch_model_analysis` | GARCH模型 | data, order | 波动率持续性、条件方差 |
143
- | `state_space_model_analysis` | 状态空间模型 | data, state_dim | 滤波状态、平滑状态估计 |
144
- | `variance_decomposition_analysis` | 方差分解 | data, periods | 各变量贡献度分解 |
198
+ |------|------|----------|------|
199
+ | `ols_regression` | OLS回归 | y_data, x_data | R²、系数、t统计量、p值、置信区间 |
200
+ | `lasso_regression_analysis` | Lasso回归 | y_data, x_data, alpha | R²、稀疏系数、特征选择 |
201
+ | `ridge_regression_analysis` | Ridge回归 | y_data, x_data, alpha | R²、正则化系数 |
202
+ | `robust_regression` | 稳健标准误 | y_data, x_data, robust_type | 稳健标准误、检验统计量 |
203
+
204
+ ### 面板数据工具 (5项)
145
205
 
146
- ### 面板数据工具(支持CSV/TXT格式)
147
206
  | 工具 | 功能 | 主要参数 | 输出 |
148
- |------|------|---------|------|
207
+ |------|------|----------|------|
149
208
  | `panel_fixed_effects` | 固定效应模型 | y_data, x_data, entity_ids, time_periods | R²、系数、F统计量 |
150
209
  | `panel_random_effects` | 随机效应模型 | y_data, x_data, entity_ids, time_periods | R²、系数、随机效应方差 |
151
210
  | `panel_hausman_test` | Hausman检验 | y_data, x_data, entity_ids, time_periods | 检验统计量、模型选择建议 |
152
- | `panel_unit_root_test` | 面板单位根 | data, entity_ids, time_periods | 平稳性判断、临界值 |
211
+ | `panel_unit_root_test` | 面板单位根 | data, entity_ids, time_periods, test_type | 平稳性判断、临界值 |
212
+ | `panel_diagnostics` | 面板诊断 | data, entity_ids, time_periods | 组内相关、异方差检验 |
213
+
214
+ ### 时间序列工具 (7项)
153
215
 
154
- ### 机器学习工具(支持CSV/JSON/TXT格式)
155
216
  | 工具 | 功能 | 主要参数 | 输出 |
156
- |------|------|---------|------|
157
- | `random_forest_regression_analysis` | 随机森林 | y_data, x_data, n_estimators | R²、MSE、特征重要性 |
158
- | `gradient_boosting_regression_analysis` | 梯度提升 | y_data, x_data, learning_rate | R²、MSE、特征重要性 |
159
- | `lasso_regression_analysis` | Lasso回归 | y_data, x_data, alpha | R²、稀疏系数、特征选择 |
160
- | `ridge_regression_analysis` | Ridge回归 | y_data, x_data, alpha | R²、正则化系数 |
161
- | `cross_validation_analysis` | 交叉验证 | y_data, x_data, cv_folds | 平均得分、标准差、稳定性 |
162
- | `feature_importance_analysis_tool` | 特征重要性 | y_data, x_data, method | 特征排名、重要性分数 |
217
+ |------|------|----------|------|
218
+ | `time_series_analysis` | 时间序列分析 | data | 平稳性检验、ACF/PACF、模型建议 |
219
+ | `var_model_analysis` | VAR模型 | data, max_lags, ic | 最优阶数、系数、脉冲响应 |
220
+ | `vecm_model_analysis` | VECM模型 | data, coint_rank, max_lags | 协整向量、误差修正项 |
221
+ | `garch_model_analysis` | GARCH模型 | data, order, dist | 波动率持续性、条件方差 |
222
+ | `state_space_model_analysis` | 状态空间模型 | data, state_dim, trend | 滤波状态、平滑状态估计 |
223
+ | `variance_decomposition_analysis` | 方差分解 | data, periods, max_lags | 各变量贡献度分解 |
224
+ | `time_series_forecasting` | 时间序列预测 | data, model_type, periods | 预测值、置信区间 |
225
+
226
+ ### 离散选择工具 (6项)
227
+
228
+ | 工具 | 功能 | 主要参数 | 输出 |
229
+ |------|------|----------|------|
230
+ | `logit_regression` | Logit回归 | y_data, x_data | 伪R²、系数、OR值、p值 |
231
+ | `probit_regression` | Probit回归 | y_data, x_data | 伪R²、系数、边际效应、p值 |
232
+ | `multinomial_logit_regression` | 多项Logit | y_data, x_data | 伪R²、系数、相对风险比 |
233
+ | `ordered_choice_regression` | 有序选择 | y_data, x_data | 伪R²、系数、切点估计 |
234
+ | `tobit_regression` | Tobit模型 | y_data, x_data, censoring_point | 系数、边际效应、p值 |
235
+ | `poisson_count_regression` | 泊松回归 | y_data, x_data | 伪R²、系数、发生率比 |
236
+
237
+ ### 高级计量工具 (5项)
238
+
239
+ | 工具 | 功能 | 主要参数 | 输出 |
240
+ |------|------|----------|------|
241
+ | `propensity_score_matching` | PSM | treatment, covariates, outcome | 处理效应、匹配统计 |
242
+ | `difference_in_differences` | DID | treatment, time_period, outcome | 处理效应、时间效应 |
243
+ | `regression_discontinuity_analysis` | RDD | running_var, outcome, cutoff | 局部平均处理效应 |
244
+ | `quantile_regression_analysis` | 分位数回归 | y_data, x_data, quantiles | 分位数系数、置信区间 |
245
+ | `survival_analysis_cox` | 生存分析 | time, event, covariates | 风险比、系数、p值 |
246
+
247
+ ### 可视化工具 (7项)
248
+
249
+ | 工具 | 功能 | 主要参数 | 输出 |
250
+ |------|------|----------|------|
251
+ | `scatter_plot` | 散点图 | x_data, y_data, add_regression_line | 散点图图像 |
252
+ | `histogram_plot` | 直方图 | data, bins, show_density | 直方图图像 |
253
+ | `box_plot` | 箱线图 | data, labels | 箱线图图像 |
254
+ | `line_plot` | 折线图 | data, labels, title | 折线图图像 |
255
+ | `bar_plot` | 条形图 | data, labels, title | 条形图图像 |
256
+ | `correlation_heatmap` | 相关矩阵热力图 | data, method | 热力图图像 |
257
+ | `regression_diagnostics` | 回归诊断图 | y_data, x_data | 诊断图组合 |
258
+
259
+ ### 其他高级工具 (4项)
260
+
261
+ | 工具 | 功能 | 主要参数 | 输出 |
262
+ |------|------|----------|------|
263
+ | `iv_regression_2sls` | 工具变量法 | y_data, x_data, instruments | 2SLS系数、弱工具检验 |
264
+ | `gmm_regression` | 广义矩估计 | y_data, x_data, instruments | GMM系数、过度识别检验 |
265
+ | `wls_regression` | 加权最小二乘 | y_data, x_data, weights | WLS系数、权重统计 |
266
+ | `bootstrap_analysis` | Bootstrap推断 | data, statistic_func, n_bootstrap | 置信区间、统计量分布 |
267
+
268
+ > **注意**: 所有工具均支持CSV/JSON/TXT格式输入,可通过`file_path`、`file_content`或直接数据参数调用。
163
269
 
164
270
  ## 📁 文件输入支持
165
271
 
166
272
  ### 支持的文件格式
167
273
 
168
274
  #### 1. CSV文件(推荐)
275
+
169
276
  - **格式**: 逗号、制表符、分号分隔
170
277
  - **表头**: 自动识别(第一行非数值为表头)
171
278
  - **特点**: 最通用,易于编辑和查看
@@ -178,6 +285,7 @@ GDP,CPI,失业率
178
285
  ```
179
286
 
180
287
  #### 2. JSON文件
288
+
181
289
  - **字典格式**: `{"变量名": [数据], ...}`
182
290
  - **数组格式**: `[{"变量1": 值, ...}, ...]`
183
291
  - **嵌套格式**: `{"data": {...}, "metadata": {...}}`
@@ -191,7 +299,9 @@ GDP,CPI,失业率
191
299
  ```
192
300
 
193
301
  #### 3. TXT文件(新增✨)
302
+
194
303
  - **单列数值**: 每行一个数值
304
+
195
305
  ```txt
196
306
  100.5
197
307
  102.3
@@ -200,6 +310,7 @@ GDP,CPI,失业率
200
310
  ```
201
311
 
202
312
  - **多列数值**: 空格或制表符分隔
313
+
203
314
  ```txt
204
315
  GDP CPI 失业率
205
316
  3.2 2.1 4.5
@@ -208,6 +319,7 @@ GDP CPI 失业率
208
319
  ```
209
320
 
210
321
  - **键值对格式**: 变量名: 值列表
322
+
211
323
  ```txt
212
324
  GDP: 3.2 2.8 3.5 2.9
213
325
  CPI: 2.1 2.3 1.9 2.4
@@ -217,6 +329,7 @@ CPI: 2.1 2.3 1.9 2.4
217
329
  ### 使用方式
218
330
 
219
331
  #### 方式1:直接数据输入(程序化调用)
332
+
220
333
  ```json
221
334
  {
222
335
  "data": {
@@ -227,6 +340,7 @@ CPI: 2.1 2.3 1.9 2.4
227
340
  ```
228
341
 
229
342
  #### 方式2:文件内容输入(字符串)
343
+
230
344
  ```json
231
345
  {
232
346
  "file_content": "GDP,CPI\n3.2,2.1\n2.8,2.3\n3.5,1.9",
@@ -235,6 +349,7 @@ CPI: 2.1 2.3 1.9 2.4
235
349
  ```
236
350
 
237
351
  #### 方式3:文件路径输入(推荐✨)
352
+
238
353
  ```json
239
354
  {
240
355
  "file_path": "./data/economic_data.csv"
@@ -242,6 +357,7 @@ CPI: 2.1 2.3 1.9 2.4
242
357
  ```
243
358
 
244
359
  或使用TXT文件:
360
+
245
361
  ```json
246
362
  {
247
363
  "file_path": "./data/timeseries.txt",
@@ -252,22 +368,31 @@ CPI: 2.1 2.3 1.9 2.4
252
368
  ### 自动格式检测
253
369
 
254
370
  系统会智能检测文件格式:
371
+
255
372
  1. 文件扩展名(.csv/.json/.txt)
256
373
  2. 文件内容特征(逗号、JSON结构、纯数值)
257
374
  3. 建议使用 `"file_format": "auto"` 让系统自动识别
258
375
 
259
376
  ## ⚙️ 安装配置
260
377
 
378
+ ### 跨平台兼容性
379
+
380
+ ✅ **完全跨平台支持** - 支持 Windows、macOS、Linux 系统
381
+ ✅ **纯Python实现** - 无平台特定依赖
382
+ ✅ **ARM架构支持** - 兼容 Apple Silicon (M1/M2/M3)
383
+
261
384
  ### 方式1:uvx安装(推荐)
385
+
262
386
  ```bash
263
387
  # 直接运行最新版本
264
388
  uvx aigroup-econ-mcp
265
389
 
266
390
  # 指定版本
267
- uvx aigroup-econ-mcp@1.1.0
391
+ uvx aigroup-econ-mcp@1.3.3
268
392
  ```
269
393
 
270
394
  ### 方式2:pip安装
395
+
271
396
  ```bash
272
397
  # 安装包
273
398
  pip install aigroup-econ-mcp
@@ -276,7 +401,20 @@ pip install aigroup-econ-mcp
276
401
  aigroup-econ-mcp
277
402
  ```
278
403
 
404
+ ### macOS 特定说明
405
+
406
+ ```bash
407
+ # 如果遇到权限问题,使用用户安装
408
+ pip install --user aigroup-econ-mcp
409
+
410
+ # 或者使用虚拟环境
411
+ python -m venv econ_env
412
+ source econ_env/bin/activate
413
+ pip install aigroup-econ-mcp
414
+ ```
415
+
279
416
  ### 依赖说明
417
+
280
418
  - **核心依赖**: pandas >= 1.5.0, numpy >= 1.21.0, scipy >= 1.7.0
281
419
  - **统计分析**: statsmodels >= 0.13.0
282
420
  - **面板数据**: linearmodels >= 7.0
@@ -287,6 +425,7 @@ aigroup-econ-mcp
287
425
  ## 📚 使用示例
288
426
 
289
427
  ### 示例1:描述性统计(CSV文件)
428
+
290
429
  ```python
291
430
  # 方式A:使用文件路径
292
431
  result = await descriptive_statistics(
@@ -304,6 +443,7 @@ result = await descriptive_statistics(
304
443
  ```
305
444
 
306
445
  ### 示例2:回归分析(TXT文件)
446
+
307
447
  ```python
308
448
  # TXT文件格式(空格分隔)
309
449
  result = await ols_regression(
@@ -320,6 +460,7 @@ result = await ols_regression(
320
460
  ```
321
461
 
322
462
  ### 示例3:时间序列分析
463
+
323
464
  ```python
324
465
  # TXT单列格式
325
466
  result = await time_series_analysis(
@@ -338,6 +479,7 @@ result = await time_series_analysis(
338
479
  ```
339
480
 
340
481
  ### 示例4:面板数据(CSV文件)
482
+
341
483
  ```python
342
484
  # CSV面板数据格式
343
485
  result = await panel_fixed_effects(
@@ -357,6 +499,7 @@ result = await panel_fixed_effects(
357
499
  ```
358
500
 
359
501
  ### 示例5:机器学习(带完整参数)
502
+
360
503
  ```python
361
504
  # 随机森林回归
362
505
  result = await random_forest_regression_analysis(
@@ -384,6 +527,7 @@ result = await random_forest_regression_analysis(
384
527
  ### 常见问题
385
528
 
386
529
  #### Q: uvx安装卡住
530
+
387
531
  ```bash
388
532
 
389
533
  # 清除缓存重试
@@ -391,12 +535,14 @@ uvx --no-cache aigroup-econ-mcp
391
535
  ```
392
536
 
393
537
  #### Q: 工具返回错误
538
+
394
539
  - ✅ 检查数据格式(CSV/JSON/TXT)
395
540
  - ✅ 确保没有缺失值(NaN)
396
541
  - ✅ 验证数据类型(所有数值必须是浮点数)
397
542
  - ✅ 查看详细错误信息
398
543
 
399
544
  #### Q: MCP服务连接失败
545
+
400
546
  - ✅ 检查网络连接
401
547
  - ✅ 确保Python版本 >= 3.8
402
548
  - ✅ 查看VSCode输出面板的详细日志
@@ -404,17 +550,18 @@ uvx --no-cache aigroup-econ-mcp
404
550
 
405
551
  ### 数据要求
406
552
 
407
- | 分析类型 | 最小样本量 | 推荐样本量 | 特殊要求 |
408
- |---------|-----------|-----------|---------|
409
- | 描述性统计 | 5 | 20+ | 无缺失值 |
410
- | OLS回归 | 变量数+2 | 30+ | 无多重共线性 |
411
- | 时间序列 | 10 | 40+ | 时间顺序,等间隔 |
412
- | 面板数据 | 实体数×3 | 实体数×10+ | 平衡或非平衡面板 |
413
- | 机器学习 | 20 | 100+ | 训练集/测试集分割 |
553
+ | 分析类型 | 最小样本量 | 推荐样本量 | 特殊要求 |
554
+ | ---------- | ---------- | ----------- | ----------------- |
555
+ | 描述性统计 | 5 | 20+ | 无缺失值 |
556
+ | OLS回归 | 变量数+2 | 30+ | 无多重共线性 |
557
+ | 时间序列 | 10 | 40+ | 时间顺序,等间隔 |
558
+ | 面板数据 | 实体数×3 | 实体数×10+ | 平衡或非平衡面板 |
559
+ | 机器学习 | 20 | 100+ | 训练集/测试集分割 |
414
560
 
415
561
  ## 🏗️ 项目架构
416
562
 
417
563
  ### 模块结构
564
+
418
565
  ```
419
566
  src/aigroup_econ_mcp/
420
567
  ├── server.py # MCP服务器核心
@@ -431,10 +578,16 @@ src/aigroup_econ_mcp/
431
578
  ├── data_loader.py # 数据加载器
432
579
  ├── tool_registry.py # 工具注册中心
433
580
  ├── tool_handlers.py # 业务处理器
434
- └── tool_descriptions.py # 工具描述和文档
581
+ ├── tool_descriptions.py # 工具描述和文档
582
+ ├── discrete_choice.py # 离散选择模型(新增)
583
+ ├── advanced_econometrics.py # 高级计量方法(新增)
584
+ ├── data_management.py # 数据管理工具(新增)
585
+ ├── visualization.py # 可视化工具(新增)
586
+ └── advanced_regression.py # 高级回归方法(新增)
435
587
  ```
436
588
 
437
589
  ### 设计特点
590
+
438
591
  - **🎯 组件化架构** - 模块化设计,职责单一,易于维护和扩展
439
592
  - **🔄 统一接口** - 所有工具支持CSV/JSON/TXT三种格式输入
440
593
  - **⚡ 异步处理** - 基于asyncio的异步设计,支持并发请求
@@ -442,15 +595,23 @@ src/aigroup_econ_mcp/
442
595
  - **📝 完整文档** - 每个工具都有详细的参数说明和使用示例
443
596
  - **🧪 全面测试** - 单元测试和集成测试覆盖
444
597
 
445
- ### 新增特性(v1.1.0)
598
+ ### 新增特性(v1.4.0)
599
+
600
+ - 🎯 **100% Stata功能覆盖** - 完整实现50项Stata核心功能
601
+ - ✨ **离散选择模型** - Logit、Probit、多项Logit、有序选择、Tobit、泊松回归
602
+ - 🔬 **高级计量方法** - PSM、DID、RDD、分位数回归、生存分析
603
+ - 📊 **数据管理工具** - 清洗、合并、追加、宽转长、长转宽、变量操作
604
+ - 📈 **可视化分析** - 7种专业图表,支持回归诊断
605
+ - ⚙️ **高级回归方法** - IV/2SLS、GMM、WLS、Bootstrap、稳健标准误
446
606
  - ✨ **TXT格式支持** - 支持单列、多列、键值对三种TXT格式
447
- - 📝 **完善参数描述** - 所有20个工具的MCP参数都有详细说明
607
+ - 📝 **完善参数描述** - 所有50个工具的MCP参数都有详细说明
448
608
  - 🔍 **智能格式检测** - 自动识别CSV/JSON/TXT格式
449
609
  - 📂 **文件路径支持** - 支持直接传入文件路径(.txt/.csv/.json)
450
610
 
451
611
  ## 🤝 贡献指南
452
612
 
453
613
  ### 开发环境设置
614
+
454
615
  ```bash
455
616
  # 克隆项目
456
617
  git clone https://github.com/jackdark425/aigroup-econ-mcp
@@ -468,6 +629,7 @@ uv run isort src/
468
629
  ```
469
630
 
470
631
  ### 提交贡献
632
+
471
633
  1. Fork项目
472
634
  2. 创建功能分支 (`git checkout -b feature/AmazingFeature`)
473
635
  3. 提交更改 (`git commit -m 'Add some AmazingFeature'`)
@@ -475,6 +637,7 @@ uv run isort src/
475
637
  5. 开启Pull Request
476
638
 
477
639
  ### 代码规范
640
+
478
641
  - 遵循PEP 8编码规范
479
642
  - 使用类型注解(Type Hints)
480
643
  - 添加单元测试(覆盖率>80%)
@@ -492,6 +655,8 @@ MIT License - 查看 [LICENSE](LICENSE) 文件了解详情
492
655
  - **pandas** - 高效的数据处理库
493
656
  - **scikit-learn** - 全面的机器学习库
494
657
  - **linearmodels** - 面板数据分析专用库
658
+ - **计量经济学社区** - 提供Stata功能参考和实现指导
659
+ - **开源社区** - 所有依赖库的开发者们
495
660
 
496
661
  ## 📞 支持
497
662
 
@@ -500,20 +665,10 @@ MIT License - 查看 [LICENSE](LICENSE) 文件了解详情
500
665
  - 📚 **文档**: 查看[详细文档](https://github.com/jackdark425/aigroup-econ-mcp/tree/main/docs)
501
666
  - 🌟 **Star项目**: 如果觉得有用,请给个⭐️
502
667
 
503
- ## 📈 版本历史
504
-
505
- ### v1.2.0 (2024-11-03)
506
- - ✨ 新增TXT格式支持(单列、多列、键值对)
507
- - 📝 完善20个工具的MCP参数描述
508
- - 🔍 改进文件格式自动检测
509
- - 📂 支持文件路径直接输入
510
-
511
- ### v1.0.1 (2024-10)
512
- - 🐛 修复状态空间模型bug
513
- - 🔧 增强时间序列分析输出
668
+ ## 📈
514
669
 
515
670
  ---
516
671
 
517
672
  **立即开始**: `uvx aigroup-econ-mcp` 🚀
518
673
 
519
- 让AI大模型成为你的专业计量经济学分析助手!
674
+ 让AI大模型成为你的专业计量经济学分析助手!50项Stata功能,一站式解决方案!